blob: c55adebe7047e22289857e428a08587c10f1f16c [file] [log] [blame]
/* Copyright (c) 2011-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "BMS: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/power_supply.h>
#include <linux/spmi.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/qpnp/power-on.h>
#include <linux/of_batterydata.h>
#include <linux/wakelock.h>
/* BMS Register Offsets */
#define REVISION1 0x0
#define REVISION2 0x1
#define BMS1_STATUS1 0x8
#define BMS1_MODE_CTL 0X40
/* Coulomb counter clear registers */
#define BMS1_CC_DATA_CTL 0x42
#define BMS1_CC_CLEAR_CTL 0x43
/* BMS Tolerances */
#define BMS1_TOL_CTL 0X44
/* OCV limit registers */
#define BMS1_OCV_USE_LOW_LIMIT_THR0 0x48
#define BMS1_OCV_USE_LOW_LIMIT_THR1 0x49
#define BMS1_OCV_USE_HIGH_LIMIT_THR0 0x4A
#define BMS1_OCV_USE_HIGH_LIMIT_THR1 0x4B
#define BMS1_OCV_USE_LIMIT_CTL 0x4C
/* Delay control */
#define BMS1_S1_DELAY_CTL 0x5A
/* OCV interrupt threshold */
#define BMS1_OCV_THR0 0x50
#define BMS1_S2_SAMP_AVG_CTL 0x61
/* SW CC interrupt threshold */
#define BMS1_SW_CC_THR0 0xA0
/* OCV for r registers */
#define BMS1_OCV_FOR_R_DATA0 0x80
#define BMS1_VSENSE_FOR_R_DATA0 0x82
/* Coulomb counter data */
#define BMS1_CC_DATA0 0x8A
/* Shadow Coulomb counter data */
#define BMS1_SW_CC_DATA0 0xA8
/* OCV for soc data */
#define BMS1_OCV_FOR_SOC_DATA0 0x90
#define BMS1_VSENSE_PON_DATA0 0x94
#define BMS1_VSENSE_AVG_DATA0 0x98
#define BMS1_VBAT_AVG_DATA0 0x9E
/* Extra bms registers */
#define SOC_STORAGE_REG 0xB0
#define IAVG_STORAGE_REG 0xB1
#define BMS_FCC_COUNT 0xB2
#define BMS_FCC_BASE_REG 0xB3 /* FCC updates - 0xB3 to 0xB7 */
#define BMS_CHGCYL_BASE_REG 0xB8 /* FCC chgcyl - 0xB8 to 0xBC */
#define CHARGE_INCREASE_STORAGE 0xBD
#define CHARGE_CYCLE_STORAGE_LSB 0xBE /* LSB=0xBE, MSB=0xBF */
/* IADC Channel Select */
#define IADC1_BMS_REVISION2 0x01
#define IADC1_BMS_ADC_CH_SEL_CTL 0x48
#define IADC1_BMS_ADC_INT_RSNSN_CTL 0x49
#define IADC1_BMS_FAST_AVG_EN 0x5B
/* Configuration for saving of shutdown soc/iavg */
#define IGNORE_SOC_TEMP_DECIDEG 50
#define IAVG_STEP_SIZE_MA 10
#define IAVG_INVALID 0xFF
#define SOC_INVALID 0x7E
#define IAVG_SAMPLES 16
/* FCC learning constants */
#define MAX_FCC_CYCLES 5
#define DELTA_FCC_PERCENT 5
#define VALID_FCC_CHGCYL_RANGE 50
#define CHGCYL_RESOLUTION 20
#define FCC_DEFAULT_TEMP 250
#define QPNP_BMS_DEV_NAME "qcom,qpnp-bms"
enum {
SHDW_CC,
CC
};
enum {
NORESET,
RESET
};
struct soc_params {
int fcc_uah;
int cc_uah;
int rbatt_mohm;
int iavg_ua;
int uuc_uah;
int ocv_charge_uah;
int delta_time_s;
};
struct raw_soc_params {
uint16_t last_good_ocv_raw;
int64_t cc;
int64_t shdw_cc;
int last_good_ocv_uv;
};
struct fcc_sample {
int fcc_new;
int chargecycles;
};
struct bms_irq {
int irq;
unsigned long disabled;
unsigned long wake_enabled;
bool ready;
bool is_wake;
};
struct bms_wakeup_source {
struct wakeup_source source;
unsigned long disabled;
};
struct qpnp_bms_chip {
struct device *dev;
struct power_supply bms_psy;
bool bms_psy_registered;
struct power_supply *batt_psy;
struct spmi_device *spmi;
wait_queue_head_t bms_wait_queue;
u16 base;
u16 iadc_base;
u16 batt_pres_addr;
u16 soc_storage_addr;
u8 revision1;
u8 revision2;
u8 iadc_bms_revision1;
u8 iadc_bms_revision2;
int battery_present;
int battery_status;
bool batfet_closed;
bool new_battery;
bool done_charging;
bool last_soc_invalid;
/* platform data */
int r_sense_uohm;
unsigned int v_cutoff_uv;
int max_voltage_uv;
int r_conn_mohm;
int shutdown_soc_valid_limit;
int adjust_soc_low_threshold;
int chg_term_ua;
enum battery_type batt_type;
unsigned int fcc_mah;
struct single_row_lut *fcc_temp_lut;
struct single_row_lut *fcc_sf_lut;
struct pc_temp_ocv_lut *pc_temp_ocv_lut;
struct sf_lut *pc_sf_lut;
struct sf_lut *rbatt_sf_lut;
int default_rbatt_mohm;
int rbatt_capacitive_mohm;
int rbatt_mohm;
struct delayed_work calculate_soc_delayed_work;
struct work_struct recalc_work;
struct work_struct batfet_open_work;
struct mutex bms_output_lock;
struct mutex last_ocv_uv_mutex;
struct mutex vbat_monitor_mutex;
struct mutex soc_invalidation_mutex;
struct mutex last_soc_mutex;
struct mutex status_lock;
bool use_external_rsense;
bool use_ocv_thresholds;
bool ignore_shutdown_soc;
bool shutdown_soc_invalid;
int shutdown_soc;
int shutdown_iavg_ma;
struct wake_lock low_voltage_wake_lock;
int low_voltage_threshold;
int low_soc_calc_threshold;
int low_soc_calculate_soc_ms;
int low_voltage_calculate_soc_ms;
int calculate_soc_ms;
struct bms_wakeup_source soc_wake_source;
struct wake_lock cv_wake_lock;
uint16_t ocv_reading_at_100;
uint16_t prev_last_good_ocv_raw;
int insertion_ocv_uv;
int last_ocv_uv;
int charging_adjusted_ocv;
int last_ocv_temp;
int last_cc_uah;
unsigned long last_soc_change_sec;
unsigned long tm_sec;
unsigned long report_tm_sec;
bool first_time_calc_soc;
bool first_time_calc_uuc;
int64_t software_cc_uah;
int64_t software_shdw_cc_uah;
int iavg_samples_ma[IAVG_SAMPLES];
int iavg_index;
int iavg_num_samples;
struct timespec t_soc_queried;
int last_soc;
int last_soc_est;
int last_soc_unbound;
bool was_charging_at_sleep;
int charge_start_tm_sec;
int catch_up_time_sec;
struct single_row_lut *adjusted_fcc_temp_lut;
struct qpnp_adc_tm_btm_param vbat_monitor_params;
struct qpnp_adc_tm_btm_param die_temp_monitor_params;
int temperature_margin;
unsigned int vadc_v0625;
unsigned int vadc_v1250;
int system_load_count;
int prev_uuc_iavg_ma;
int prev_pc_unusable;
int ibat_at_cv_ua;
int soc_at_cv;
int prev_chg_soc;
int calculated_soc;
int prev_voltage_based_soc;
bool use_voltage_soc;
bool in_cv_range;
int prev_batt_terminal_uv;
int high_ocv_correction_limit_uv;
int low_ocv_correction_limit_uv;
int flat_ocv_threshold_uv;
int hold_soc_est;
int ocv_high_threshold_uv;
int ocv_low_threshold_uv;
unsigned long last_recalc_time;
struct fcc_sample *fcc_learning_samples;
u8 fcc_sample_count;
int enable_fcc_learning;
int min_fcc_learning_soc;
int min_fcc_ocv_pc;
int min_fcc_learning_samples;
int start_soc;
int end_soc;
int start_pc;
int start_cc_uah;
int start_real_soc;
int end_cc_uah;
uint16_t fcc_new_mah;
int fcc_new_batt_temp;
uint16_t charge_cycles;
u8 charge_increase;
int fcc_resolution;
bool battery_removed;
bool in_taper_charge;
struct bms_irq sw_cc_thr_irq;
struct bms_irq ocv_thr_irq;
struct qpnp_vadc_chip *vadc_dev;
struct qpnp_iadc_chip *iadc_dev;
struct qpnp_adc_tm_chip *adc_tm_dev;
};
static struct of_device_id qpnp_bms_match_table[] = {
{ .compatible = QPNP_BMS_DEV_NAME },
{}
};
static char *qpnp_bms_supplicants[] = {
"battery"
};
static enum power_supply_property msm_bms_power_props[] = {
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_RESISTANCE,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_CHARGE_COUNTER_SHADOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CYCLE_COUNT,
};
static int discard_backup_fcc_data(struct qpnp_bms_chip *chip);
static void backup_charge_cycle(struct qpnp_bms_chip *chip);
static bool bms_reset;
static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
if (rc) {
pr_err("SPMI read failed rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count);
if (rc) {
pr_err("SPMI write failed rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = qpnp_read_wrapper(chip, &reg, addr, 1);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = qpnp_write_wrapper(chip, &reg, addr, 1);
if (rc) {
pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n",
addr, val, mask, reg, rc);
return rc;
}
return 0;
}
static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val);
}
static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
return qpnp_masked_write_base(chip, chip->base + addr, mask, val);
}
static void bms_stay_awake(struct bms_wakeup_source *source)
{
if (__test_and_clear_bit(0, &source->disabled)) {
__pm_stay_awake(&source->source);
pr_debug("enabled source %s\n", source->source.name);
}
}
static void bms_relax(struct bms_wakeup_source *source)
{
if (!__test_and_set_bit(0, &source->disabled)) {
__pm_relax(&source->source);
pr_debug("disabled source %s\n", source->source.name);
}
}
static void enable_bms_irq(struct bms_irq *irq)
{
if (irq->ready && __test_and_clear_bit(0, &irq->disabled)) {
enable_irq(irq->irq);
pr_debug("enabled irq %d\n", irq->irq);
if ((irq->is_wake) &&
!__test_and_set_bit(0, &irq->wake_enabled))
enable_irq_wake(irq->irq);
}
}
static void disable_bms_irq(struct bms_irq *irq)
{
if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) {
disable_irq(irq->irq);
pr_debug("disabled irq %d\n", irq->irq);
if ((irq->is_wake) &&
__test_and_clear_bit(0, &irq->wake_enabled))
disable_irq_wake(irq->irq);
}
}
static void disable_bms_irq_nosync(struct bms_irq *irq)
{
if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) {
disable_irq_nosync(irq->irq);
pr_debug("disabled irq %d\n", irq->irq);
if ((irq->is_wake) &&
__test_and_clear_bit(0, &irq->wake_enabled))
disable_irq_wake(irq->irq);
}
}
#define HOLD_OREG_DATA BIT(0)
static int lock_output_data(struct qpnp_bms_chip *chip)
{
int rc;
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL,
HOLD_OREG_DATA, HOLD_OREG_DATA);
if (rc) {
pr_err("couldnt lock bms output rc = %d\n", rc);
return rc;
}
/*
* Sleep for at least 60 microseconds here to make sure there has
* been at least two cycles of the sleep clock so that the registers
* are correctly locked.
*/
usleep_range(60, 2000);
return 0;
}
static int unlock_output_data(struct qpnp_bms_chip *chip)
{
int rc;
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0);
if (rc) {
pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
return rc;
}
return 0;
}
#define V_PER_BIT_MUL_FACTOR 97656
#define V_PER_BIT_DIV_FACTOR 1000
#define VADC_INTRINSIC_OFFSET 0x6000
static int vadc_reading_to_uv(int reading)
{
if (reading <= VADC_INTRINSIC_OFFSET)
return 0;
return (reading - VADC_INTRINSIC_OFFSET)
* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
}
#define VADC_CALIB_UV 625000
#define VBATT_MUL_FACTOR 3
static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv)
{
s64 numerator, denominator;
if (reading_uv == 0)
return 0;
/* don't adjust if not calibrated */
if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) {
pr_debug("No cal yet return %d\n",
VBATT_MUL_FACTOR * reading_uv);
return VBATT_MUL_FACTOR * reading_uv;
}
numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV;
denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625;
if (denominator == 0)
return reading_uv * VBATT_MUL_FACTOR;
return (VADC_CALIB_UV + div_s64(numerator, denominator))
* VBATT_MUL_FACTOR;
}
static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip,
int unadjusted_vbatt)
{
int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR;
if (scaled_vbatt <= 0)
return VADC_INTRINSIC_OFFSET;
return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR)
+ VADC_INTRINSIC_OFFSET;
}
static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip,
uint16_t reading, bool is_pon_ocv)
{
int64_t uv;
int rc;
uv = vadc_reading_to_uv(reading);
pr_debug("%u raw converted into %lld uv\n", reading, uv);
uv = adjust_vbatt_reading(chip, uv);
pr_debug("adjusted into %lld uv\n", uv);
rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv);
if (rc)
pr_debug("could not compensate vbatt\n");
pr_debug("compensated into %lld uv\n", uv);
return uv;
}
#define CC_READING_RESOLUTION_N 542535
#define CC_READING_RESOLUTION_D 100000
static s64 cc_reading_to_uv(s64 reading)
{
return div_s64(reading * CC_READING_RESOLUTION_N,
CC_READING_RESOLUTION_D);
}
#define QPNP_ADC_GAIN_IDEAL 3291LL
static s64 cc_adjust_for_gain(s64 uv, uint16_t gain)
{
s64 result_uv;
pr_debug("adjusting_uv = %lld\n", uv);
if (gain == 0) {
pr_debug("gain is %d, not adjusting\n", gain);
return uv;
}
pr_debug("adjusting by factor: %lld/%hu = %lld%%\n",
QPNP_ADC_GAIN_IDEAL, gain,
div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain));
result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain);
pr_debug("result_uv = %lld\n", result_uv);
return result_uv;
}
static s64 cc_reverse_adjust_for_gain(struct qpnp_bms_chip *chip, s64 uv)
{
struct qpnp_iadc_calib calibration;
int gain;
s64 result_uv;
qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
gain = (int)calibration.gain_raw - (int)calibration.offset_raw;
pr_debug("reverse adjusting_uv = %lld\n", uv);
if (gain == 0) {
pr_debug("gain is %d, not adjusting\n", gain);
return uv;
}
pr_debug("adjusting by factor: %hu/%lld = %lld%%\n",
gain, QPNP_ADC_GAIN_IDEAL,
div64_s64((s64)gain * 100LL,
(s64)QPNP_ADC_GAIN_IDEAL));
result_uv = div64_s64(uv * (s64)gain, QPNP_ADC_GAIN_IDEAL);
pr_debug("result_uv = %lld\n", result_uv);
return result_uv;
}
static int convert_vsense_to_uv(struct qpnp_bms_chip *chip,
int16_t reading)
{
struct qpnp_iadc_calib calibration;
qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
return cc_adjust_for_gain(cc_reading_to_uv(reading),
calibration.gain_raw - calibration.offset_raw);
}
static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv)
{
int rc;
int16_t reading;
rc = qpnp_read_wrapper(chip, (u8 *)&reading,
chip->base + BMS1_VSENSE_AVG_DATA0, 2);
if (rc) {
pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
return rc;
}
*result_uv = convert_vsense_to_uv(chip, reading);
return 0;
}
static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua)
{
int rc, vsense_uv = 0;
int64_t temp_current;
if (chip->r_sense_uohm == 0) {
pr_err("r_sense is zero\n");
return -EINVAL;
}
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
read_vsense_avg(chip, &vsense_uv);
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
pr_debug("vsense_uv=%duV\n", vsense_uv);
/* cast for signed division */
temp_current = div_s64((vsense_uv * 1000000LL),
(int)chip->r_sense_uohm);
*result_ua = temp_current;
rc = qpnp_iadc_comp_result(chip->iadc_dev, &temp_current);
if (rc)
pr_debug("error compensation failed: %d\n", rc);
pr_debug("%d uA err compensated ibat=%llduA\n",
*result_ua, temp_current);
*result_ua = temp_current;
return 0;
}
static int get_battery_voltage(struct qpnp_bms_chip *chip, int *result_uv)
{
int rc;
struct qpnp_vadc_result adc_result;
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &adc_result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
VBAT_SNS, rc);
return rc;
}
pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical,
adc_result.measurement);
*result_uv = (int)adc_result.physical;
return 0;
}
#define CC_36_BIT_MASK 0xFFFFFFFFFLL
static uint64_t convert_s64_to_s36(int64_t raw64)
{
return (uint64_t) raw64 & CC_36_BIT_MASK;
}
#define SIGN_EXTEND_36_TO_64_MASK (-1LL ^ CC_36_BIT_MASK)
static int64_t convert_s36_to_s64(uint64_t raw36)
{
raw36 = raw36 & CC_36_BIT_MASK;
/* convert 36 bit signed value into 64 signed value */
return (raw36 >> 35) == 0LL ?
raw36 : (SIGN_EXTEND_36_TO_64_MASK | raw36);
}
static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading,
int cc_type)
{
int64_t raw_reading;
int rc;
if (cc_type == SHDW_CC)
rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
chip->base + BMS1_SW_CC_DATA0, 5);
else
rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
chip->base + BMS1_CC_DATA0, 5);
if (rc) {
pr_err("Error reading cc: rc = %d\n", rc);
return -ENXIO;
}
*reading = convert_s36_to_s64(raw_reading);
return 0;
}
static int calib_vadc(struct qpnp_bms_chip *chip)
{
int rc, raw_0625, raw_1250;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(chip->vadc_dev, REF_625MV, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
raw_0625 = result.adc_code;
rc = qpnp_vadc_read(chip->vadc_dev, REF_125V, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
raw_1250 = result.adc_code;
chip->vadc_v0625 = vadc_reading_to_uv(raw_0625);
chip->vadc_v1250 = vadc_reading_to_uv(raw_1250);
pr_debug("vadc calib: 0625 = %d raw (%d uv), 1250 = %d raw (%d uv)\n",
raw_0625, chip->vadc_v0625,
raw_1250, chip->vadc_v1250);
return 0;
}
static void convert_and_store_ocv(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp, bool is_pon_ocv)
{
int rc;
pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n",
chip->prev_last_good_ocv_raw,
raw->last_good_ocv_raw);
rc = calib_vadc(chip);
if (rc)
pr_err("Vadc reference voltage read failed, rc = %d\n", rc);
chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip,
raw->last_good_ocv_raw, is_pon_ocv);
chip->last_ocv_uv = raw->last_good_ocv_uv;
chip->last_ocv_temp = batt_temp;
chip->software_cc_uah = 0;
pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv);
}
#define CLEAR_CC BIT(7)
#define CLEAR_SHDW_CC BIT(6)
/**
* reset both cc and sw-cc.
* note: this should only be ever called from one thread
* or there may be a race condition where CC is never enabled
* again
*/
static void reset_cc(struct qpnp_bms_chip *chip, u8 flags)
{
int rc;
pr_debug("resetting cc manually with flags %hhu\n", flags);
mutex_lock(&chip->bms_output_lock);
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
flags,
flags);
if (rc)
pr_err("cc reset failed: %d\n", rc);
/* wait for 100us for cc to reset */
udelay(100);
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
flags, 0);
if (rc)
pr_err("cc reenable failed: %d\n", rc);
mutex_unlock(&chip->bms_output_lock);
}
static int get_battery_status(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc;
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the status property */
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
if (rc) {
pr_debug("Battery does not export status: %d\n", rc);
return POWER_SUPPLY_STATUS_UNKNOWN;
}
return ret.intval;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return POWER_SUPPLY_STATUS_UNKNOWN;
}
static int get_battery_charge_type(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc;
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the type property */
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_CHARGE_TYPE, &ret);
if (rc) {
pr_debug("Battery does not export charge type: %d\n"
, rc);
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
return ret.intval;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
static bool is_battery_charging(struct qpnp_bms_chip *chip)
{
return get_battery_status(chip) == POWER_SUPPLY_STATUS_CHARGING;
}
static bool is_battery_full(struct qpnp_bms_chip *chip)
{
return get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL;
}
#define BAT_PRES_BIT BIT(7)
static bool is_battery_present(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc;
u8 batt_pres;
/* first try to use the batt_pres register if given */
if (chip->batt_pres_addr) {
rc = qpnp_read_wrapper(chip, &batt_pres,
chip->batt_pres_addr, 1);
if (!rc && (batt_pres & BAT_PRES_BIT))
return true;
else
return false;
}
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the present property */
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_PRESENT, &ret);
if (rc) {
pr_debug("battery does not export present: %d\n", rc);
return true;
}
return ret.intval;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return false;
}
static int get_battery_insertion_ocv_uv(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc, vbat;
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the ocv property */
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_VOLTAGE_OCV, &ret);
if (rc) {
/*
* Default to vbatt if the battery OCV is not
* registered.
*/
pr_debug("Battery psy does not have voltage ocv\n");
rc = get_battery_voltage(chip, &vbat);
if (rc)
return -EINVAL;
return vbat;
}
return ret.intval;
}
pr_debug("battery power supply is not registered\n");
return -EINVAL;
}
static bool is_batfet_closed(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc;
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the online property */
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_ONLINE, &ret);
if (rc) {
pr_debug("Battery does not export online: %d\n", rc);
return true;
}
return !!ret.intval;
}
/* Default to true if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return true;
}
static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip,
int *ibat_ua, int *vbat_uv)
{
struct qpnp_iadc_result i_result;
struct qpnp_vadc_result v_result;
enum qpnp_iadc_channels iadc_channel;
int rc;
iadc_channel = chip->use_external_rsense ?
EXTERNAL_RSENSE : INTERNAL_RSENSE;
if (is_battery_full(chip)) {
rc = get_battery_current(chip, ibat_ua);
if (rc) {
pr_err("bms current read failed with rc: %d\n", rc);
return rc;
}
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &v_result);
if (rc) {
pr_err("vadc read failed with rc: %d\n", rc);
return rc;
}
*vbat_uv = (int)v_result.physical;
} else {
rc = qpnp_iadc_vadc_sync_read(chip->iadc_dev,
iadc_channel, &i_result,
VBAT_SNS, &v_result);
if (rc) {
pr_err("adc sync read failed with rc: %d\n", rc);
return rc;
}
/*
* reverse the current read by the iadc, since the bms uses
* flipped battery current polarity.
*/
*ibat_ua = -1 * (int)i_result.result_ua;
*vbat_uv = (int)v_result.physical;
}
return 0;
}
static int get_rbatt(struct qpnp_bms_chip *chip,
int soc_rbatt_mohm, int batt_temp)
{
int rbatt_mohm, scalefactor;
rbatt_mohm = chip->default_rbatt_mohm;
if (chip->rbatt_sf_lut == NULL) {
pr_debug("RBATT = %d\n", rbatt_mohm);
return rbatt_mohm;
}
/* Convert the batt_temp to DegC from deciDegC */
scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut,
batt_temp, soc_rbatt_mohm);
rbatt_mohm = (rbatt_mohm * scalefactor) / 100;
rbatt_mohm += chip->r_conn_mohm;
rbatt_mohm += chip->rbatt_capacitive_mohm;
return rbatt_mohm;
}
#define DEFAULT_RBATT_SOC 50
static int estimate_ocv(struct qpnp_bms_chip *chip, int batt_temp)
{
int ibat_ua, vbat_uv, ocv_est_uv, rbatt_mohm, rc;
rbatt_mohm = get_rbatt(chip, DEFAULT_RBATT_SOC, batt_temp);
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
if (rc) {
pr_err("simultaneous failed rc = %d\n", rc);
return rc;
}
ocv_est_uv = vbat_uv + (ibat_ua * rbatt_mohm) / 1000;
pr_debug("estimated pon ocv = %d, vbat_uv = %d ibat_ua = %d rbatt_mohm = %d\n",
ocv_est_uv, vbat_uv, ibat_ua, rbatt_mohm);
return ocv_est_uv;
}
#define MIN_IAVG_MA 250
static void reset_for_new_battery(struct qpnp_bms_chip *chip, int batt_temp)
{
chip->last_ocv_uv = chip->insertion_ocv_uv;
mutex_lock(&chip->last_soc_mutex);
chip->last_soc = -EINVAL;
chip->last_soc_invalid = true;
mutex_unlock(&chip->last_soc_mutex);
chip->soc_at_cv = -EINVAL;
chip->shutdown_soc_invalid = true;
chip->shutdown_soc = 0;
chip->shutdown_iavg_ma = MIN_IAVG_MA;
chip->prev_pc_unusable = -EINVAL;
reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
chip->software_cc_uah = 0;
chip->software_shdw_cc_uah = 0;
chip->last_cc_uah = INT_MIN;
chip->last_ocv_temp = batt_temp;
chip->prev_batt_terminal_uv = 0;
if (chip->enable_fcc_learning) {
chip->adjusted_fcc_temp_lut = NULL;
chip->fcc_new_mah = -EINVAL;
/* reset the charge-cycle and charge-increase registers */
chip->charge_increase = 0;
chip->charge_cycles = 0;
backup_charge_cycle(chip);
/* discard all the FCC learnt data and reset the local table */
discard_backup_fcc_data(chip);
memset(chip->fcc_learning_samples, 0,
chip->min_fcc_learning_samples *
sizeof(struct fcc_sample));
}
}
#define SIGN(x) ((x) < 0 ? -1 : 1)
#define UV_PER_SPIN 50000
static int find_ocv_for_pc(struct qpnp_bms_chip *chip, int batt_temp, int pc)
{
int new_pc;
int ocv_mv;
int delta_mv = 5;
int max_spin_count;
int count = 0;
int sign, new_sign;
ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp, pc);
new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp, ocv_mv);
pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_mv);
max_spin_count = 1 + (chip->max_voltage_uv - chip->v_cutoff_uv)
/ UV_PER_SPIN;
sign = SIGN(pc - new_pc);
while (abs(new_pc - pc) != 0 && count < max_spin_count) {
/*
* If the newly interpolated pc is larger than the lookup pc,
* the ocv should be reduced and vice versa
*/
new_sign = SIGN(pc - new_pc);
/*
* If the sign has changed, then we have passed the lookup pc.
* reduce the ocv step size to get finer results.
*
* If we have already reduced the ocv step size and still
* passed the lookup pc, just stop and use the current ocv.
* This can only happen if the batterydata profile is
* non-monotonic anyways.
*/
if (new_sign != sign) {
if (delta_mv > 1)
delta_mv = 1;
else
break;
}
sign = new_sign;
ocv_mv = ocv_mv + delta_mv * sign;
new_pc = interpolate_pc(chip->pc_temp_ocv_lut,
batt_temp, ocv_mv);
pr_debug("test revlookup pc = %d for ocv = %d\n",
new_pc, ocv_mv);
count++;
}
return ocv_mv * 1000;
}
#define OCV_RAW_UNINITIALIZED 0xFFFF
#define MIN_OCV_UV 2000000
static int read_soc_params_raw(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp)
{
int warm_reset, rc;
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw,
chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
if (rc) {
pr_err("Error reading ocv: rc = %d\n", rc);
goto param_err;
}
rc = read_cc_raw(chip, &raw->cc, CC);
rc |= read_cc_raw(chip, &raw->shdw_cc, SHDW_CC);
if (rc) {
pr_err("Failed to read raw cc data, rc = %d\n", rc);
goto param_err;
}
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
convert_and_store_ocv(chip, raw, batt_temp, true);
pr_debug("PON_OCV_UV = %d, cc = %llx\n",
chip->last_ocv_uv, raw->cc);
warm_reset = qpnp_pon_is_warm_reset();
if (raw->last_good_ocv_uv < MIN_OCV_UV || warm_reset > 0) {
pr_debug("OCV is stale or bad, estimating new OCV.\n");
chip->last_ocv_uv = estimate_ocv(chip, batt_temp);
raw->last_good_ocv_uv = chip->last_ocv_uv;
reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
pr_debug("New PON_OCV_UV = %d, cc = %llx\n",
chip->last_ocv_uv, raw->cc);
}
} else if (chip->new_battery) {
/* if a new battery was inserted, estimate the ocv */
reset_for_new_battery(chip, batt_temp);
raw->cc = 0;
raw->shdw_cc = 0;
raw->last_good_ocv_uv = chip->last_ocv_uv;
chip->new_battery = false;
} else if (chip->done_charging) {
chip->done_charging = false;
/* if we just finished charging, reset CC and fake 100% */
chip->ocv_reading_at_100 = raw->last_good_ocv_raw;
chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp, 100);
raw->last_good_ocv_uv = chip->last_ocv_uv;
raw->cc = 0;
raw->shdw_cc = 0;
reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
chip->last_ocv_temp = batt_temp;
chip->software_cc_uah = 0;
chip->software_shdw_cc_uah = 0;
chip->last_cc_uah = INT_MIN;
pr_debug("EOC Battery full ocv_reading = 0x%x\n",
chip->ocv_reading_at_100);
} else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
convert_and_store_ocv(chip, raw, batt_temp, false);
/* forget the old cc value upon ocv */
chip->last_cc_uah = INT_MIN;
} else {
raw->last_good_ocv_uv = chip->last_ocv_uv;
}
/* stop faking a high OCV if we get a new OCV */
if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw)
chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
raw->last_good_ocv_raw, raw->last_good_ocv_uv);
pr_debug("cc_raw= 0x%llx\n", raw->cc);
return 0;
param_err:
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
return rc;
}
static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv,
int batt_temp)
{
int pc;
pc = interpolate_pc(chip->pc_temp_ocv_lut,
batt_temp, ocv_uv / 1000);
pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n",
pc, ocv_uv, batt_temp);
/* Multiply the initial FCC value by the scale factor. */
return pc;
}
static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp)
{
int fcc_uah;
if (chip->adjusted_fcc_temp_lut == NULL) {
/* interpolate_fcc returns a mv value. */
fcc_uah = interpolate_fcc(chip->fcc_temp_lut,
batt_temp) * 1000;
pr_debug("fcc = %d uAh\n", fcc_uah);
return fcc_uah;
} else {
return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut,
batt_temp);
}
}
/* calculate remaining charge at the time of ocv */
static int calculate_ocv_charge(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int fcc_uah)
{
int ocv_uv, pc;
ocv_uv = raw->last_good_ocv_uv;
pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp);
pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc);
return (fcc_uah * pc) / 100;
}
#define CC_READING_TICKS 56
#define SLEEP_CLK_HZ 32764
#define SECONDS_PER_HOUR 3600
static s64 cc_uv_to_pvh(s64 cc_uv)
{
/* Note that it is necessary need to multiply by 1000000 to convert
* from uvh to pvh here.
* However, the maximum Coulomb Counter value is 2^35, which can cause
* an over flow.
* Multiply by 100000 first to perserve as much precision as possible
* then multiply by 10 after doing the division in order to avoid
* overflow on the maximum Coulomb Counter value.
*/
return div_s64(cc_uv * CC_READING_TICKS * 100000,
SLEEP_CLK_HZ * SECONDS_PER_HOUR) * 10;
}
/**
* calculate_cc() - converts a hardware coulomb counter reading into uah
* @chip: the bms chip pointer
* @cc: the cc reading from bms h/w
* @cc_type: calcualte cc from regular or shadow coulomb counter
* @clear_cc: whether this function should clear the hardware counter
* after reading
*
* Converts the 64 bit hardware coulomb counter into microamp-hour by taking
* into account hardware resolution and adc errors.
*
* Return: the coulomb counter based charge in uAh (micro-amp hour)
*/
static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc,
int cc_type, int clear_cc)
{
struct qpnp_iadc_calib calibration;
struct qpnp_vadc_result result;
int64_t cc_voltage_uv, cc_pvh, cc_uah, *software_counter;
int rc;
software_counter = cc_type == SHDW_CC ?
&chip->software_shdw_cc_uah : &chip->software_cc_uah;
rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);
if (rc) {
pr_err("could not read pmic die temperature: %d\n", rc);
return *software_counter;
}
qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
pr_debug("%scc = %lld, die_temp = %lld\n",
cc_type == SHDW_CC ? "shdw_" : "",
cc, result.physical);
cc_voltage_uv = cc_reading_to_uv(cc);
cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv,
calibration.gain_raw
- calibration.offset_raw);
cc_pvh = cc_uv_to_pvh(cc_voltage_uv);
cc_uah = div_s64(cc_pvh, chip->r_sense_uohm);
rc = qpnp_iadc_comp_result(chip->iadc_dev, &cc_uah);
if (rc)
pr_debug("error compensation failed: %d\n", rc);
if (clear_cc == RESET) {
pr_debug("software_%scc = %lld, added cc_uah = %lld\n",
cc_type == SHDW_CC ? "sw_" : "",
*software_counter, cc_uah);
*software_counter += cc_uah;
reset_cc(chip, cc_type == SHDW_CC ? CLEAR_SHDW_CC : CLEAR_CC);
return (int)*software_counter;
} else {
pr_debug("software_%scc = %lld, cc_uah = %lld, total = %lld\n",
cc_type == SHDW_CC ? "shdw_" : "",
*software_counter, cc_uah,
*software_counter + cc_uah);
return *software_counter + cc_uah;
}
}
#define IAVG_MINIMAL_TIME 2
static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah,
int *iavg_ua, int delta_time_s)
{
int delta_cc_uah = 0;
/*
* use the battery current if called too quickly
*/
if (delta_time_s < IAVG_MINIMAL_TIME
|| chip->last_cc_uah == INT_MIN) {
get_battery_current(chip, iavg_ua);
goto out;
}
delta_cc_uah = cc_uah - chip->last_cc_uah;
*iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s);
out:
pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua);
/* remember cc_uah */
chip->last_cc_uah = cc_uah;
}
static int calculate_termination_uuc(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp, int uuc_iavg_ma,
int *ret_pc_unusable)
{
int unusable_uv, pc_unusable, uuc_uah;
int i = 0;
int ocv_mv;
int rbatt_mohm;
int delta_uv;
int prev_delta_uv = 0;
int prev_rbatt_mohm = 0;
int uuc_rbatt_mohm;
for (i = 0; i <= 100; i++) {
ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
batt_temp, i);
rbatt_mohm = get_rbatt(chip, i, batt_temp);
unusable_uv = (rbatt_mohm * uuc_iavg_ma)
+ (chip->v_cutoff_uv);
delta_uv = ocv_mv * 1000 - unusable_uv;
if (delta_uv > 0)
break;
prev_delta_uv = delta_uv;
prev_rbatt_mohm = rbatt_mohm;
}
uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv,
prev_rbatt_mohm, prev_delta_uv,
0);
unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv);
pc_unusable = calculate_pc(chip, unusable_uv, batt_temp);
uuc_uah = (params->fcc_uah * pc_unusable) / 100;
pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d rbatt_pc = %d uuc = %d\n",
uuc_iavg_ma,
uuc_rbatt_mohm, unusable_uv,
pc_unusable, i, uuc_uah);
*ret_pc_unusable = pc_unusable;
return uuc_uah;
}
#define TIME_PER_PERCENT_UUC 60
static int adjust_uuc(struct qpnp_bms_chip *chip,
struct soc_params *params,
int new_pc_unusable,
int new_uuc_uah,
int batt_temp)
{
int new_unusable_mv, new_iavg_ma;
int max_percent_change;
max_percent_change = max(params->delta_time_s
/ TIME_PER_PERCENT_UUC, 1);
if (chip->first_time_calc_uuc || chip->prev_pc_unusable == -EINVAL
|| abs(chip->prev_pc_unusable - new_pc_unusable)
<= max_percent_change) {
chip->prev_pc_unusable = new_pc_unusable;
return new_uuc_uah;
}
/* the uuc is trying to change more than 1% restrict it */
if (new_pc_unusable > chip->prev_pc_unusable)
chip->prev_pc_unusable += max_percent_change;
else
chip->prev_pc_unusable -= max_percent_change;
new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100;
/* also find update the iavg_ma accordingly */
new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
batt_temp, chip->prev_pc_unusable);
if (new_unusable_mv < chip->v_cutoff_uv/1000)
new_unusable_mv = chip->v_cutoff_uv/1000;
new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv)
/ params->rbatt_mohm;
if (new_iavg_ma == 0)
new_iavg_ma = 1;
chip->prev_uuc_iavg_ma = new_iavg_ma;
pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n",
new_uuc_uah, chip->prev_pc_unusable,
new_unusable_mv, new_iavg_ma);
return new_uuc_uah;
}
static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp)
{
int uuc_uah_iavg;
int i;
int uuc_iavg_ma = params->iavg_ua / 1000;
int pc_unusable;
/*
* if called first time, fill all the samples with
* the shutdown_iavg_ma
*/
if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) {
pr_debug("Using shutdown_iavg_ma = %d in all samples\n",
chip->shutdown_iavg_ma);
for (i = 0; i < IAVG_SAMPLES; i++)
chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma;
chip->iavg_index = 0;
chip->iavg_num_samples = IAVG_SAMPLES;
}
if (params->delta_time_s >= IAVG_MINIMAL_TIME) {
/*
* if charging use a nominal avg current to keep
* a reasonable UUC while charging
*/
if (uuc_iavg_ma < MIN_IAVG_MA)
uuc_iavg_ma = MIN_IAVG_MA;
chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma;
chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES;
chip->iavg_num_samples++;
if (chip->iavg_num_samples >= IAVG_SAMPLES)
chip->iavg_num_samples = IAVG_SAMPLES;
}
/* now that this sample is added calcualte the average */
uuc_iavg_ma = 0;
if (chip->iavg_num_samples != 0) {
for (i = 0; i < chip->iavg_num_samples; i++) {
pr_debug("iavg_samples_ma[%d] = %d\n", i,
chip->iavg_samples_ma[i]);
uuc_iavg_ma += chip->iavg_samples_ma[i];
}
uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma,
chip->iavg_num_samples);
}
/*
* if we're in bms reset mode, force uuc to be 3% of fcc
*/
if (bms_reset)
return (params->fcc_uah * 3) / 100;
uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp,
uuc_iavg_ma, &pc_unusable);
pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n",
uuc_iavg_ma, uuc_uah_iavg);
chip->prev_uuc_iavg_ma = uuc_iavg_ma;
/* restrict the uuc such that it can increase only by one percent */
uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable,
uuc_uah_iavg, batt_temp);
return uuc_uah_iavg;
}
static s64 find_ocv_charge_for_soc(struct qpnp_bms_chip *chip,
struct soc_params *params, int soc)
{
return div_s64((s64)soc * (params->fcc_uah - params->uuc_uah),
100) + params->cc_uah + params->uuc_uah;
}
static int find_pc_for_soc(struct qpnp_bms_chip *chip,
struct soc_params *params, int soc)
{
int ocv_charge_uah = find_ocv_charge_for_soc(chip, params, soc);
int pc;
pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah);
pc = clamp(pc, 0, 100);
pr_debug("soc = %d, fcc = %d uuc = %d rc = %d pc = %d\n",
soc, params->fcc_uah, params->uuc_uah,
ocv_charge_uah, pc);
return pc;
}
static int get_current_time(unsigned long *now_tm_sec)
{
struct rtc_time tm;
struct rtc_device *rtc;
int rc;
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
if (rtc == NULL) {
pr_err("%s: unable to open rtc device (%s)\n",
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
return -EINVAL;
}
rc = rtc_read_time(rtc, &tm);
if (rc) {
pr_err("Error reading rtc device (%s) : %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rc = rtc_valid_tm(&tm);
if (rc) {
pr_err("Invalid RTC time (%s): %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rtc_tm_to_time(&tm, now_tm_sec);
close_time:
rtc_class_close(rtc);
return rc;
}
/* Returns estimated battery resistance */
static int get_prop_bms_batt_resistance(struct qpnp_bms_chip *chip)
{
return chip->rbatt_mohm * 1000;
}
/* Returns instantaneous current in uA */
static int get_prop_bms_current_now(struct qpnp_bms_chip *chip)
{
int rc, result_ua;
rc = get_battery_current(chip, &result_ua);
if (rc) {
pr_err("failed to get current: %d\n", rc);
return rc;
}
return result_ua;
}
/* Returns coulomb counter in uAh */
static int get_prop_bms_charge_counter(struct qpnp_bms_chip *chip)
{
int64_t cc_raw;
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
read_cc_raw(chip, &cc_raw, CC);
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
return calculate_cc(chip, cc_raw, CC, NORESET);
}
/* Returns shadow coulomb counter in uAh */
static int get_prop_bms_charge_counter_shadow(struct qpnp_bms_chip *chip)
{
int64_t cc_raw;
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
read_cc_raw(chip, &cc_raw, SHDW_CC);
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
return calculate_cc(chip, cc_raw, SHDW_CC, NORESET);
}
/* Returns full charge design in uAh */
static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip)
{
return chip->fcc_mah * 1000;
}
/* Returns the current full charge in uAh */
static int get_prop_bms_charge_full(struct qpnp_bms_chip *chip)
{
int rc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);
if (rc) {
pr_err("Unable to read battery temperature\n");
return rc;
}
return calculate_fcc(chip, (int)result.physical);
}
static int calculate_delta_time(unsigned long *time_stamp, int *delta_time_s)
{
unsigned long now_tm_sec = 0;
/* default to delta time = 0 if anything fails */
*delta_time_s = 0;
if (get_current_time(&now_tm_sec)) {
pr_err("RTC read failed\n");
return 0;
}
*delta_time_s = (now_tm_sec - *time_stamp);
/* remember this time */
*time_stamp = now_tm_sec;
return 0;
}
static void calculate_soc_params(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
struct soc_params *params,
int batt_temp)
{
int soc_rbatt, shdw_cc_uah;
calculate_delta_time(&chip->tm_sec, &params->delta_time_s);
pr_debug("tm_sec = %ld, delta_s = %d\n",
chip->tm_sec, params->delta_time_s);
params->fcc_uah = calculate_fcc(chip, batt_temp);
pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp);
/* calculate remainging charge */
params->ocv_charge_uah = calculate_ocv_charge(
chip, raw,
params->fcc_uah);
pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah);
/* calculate cc micro_volt_hour */
params->cc_uah = calculate_cc(chip, raw->cc, CC, RESET);
shdw_cc_uah = calculate_cc(chip, raw->shdw_cc, SHDW_CC, RESET);
pr_debug("cc_uah = %duAh raw->cc = %llx, shdw_cc_uah = %duAh raw->shdw_cc = %llx\n",
params->cc_uah, raw->cc,
shdw_cc_uah, raw->shdw_cc);
soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100)
/ params->fcc_uah;
if (soc_rbatt < 0)
soc_rbatt = 0;
params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp);
pr_debug("rbatt_mohm = %d\n", params->rbatt_mohm);
if (params->rbatt_mohm != chip->rbatt_mohm) {
chip->rbatt_mohm = params->rbatt_mohm;
if (chip->bms_psy_registered)
power_supply_changed(&chip->bms_psy);
}
calculate_iavg(chip, params->cc_uah, &params->iavg_ua,
params->delta_time_s);
params->uuc_uah = calculate_unusable_charge_uah(chip, params,
batt_temp);
pr_debug("UUC = %uuAh\n", params->uuc_uah);
}
static int bound_soc(int soc)
{
soc = max(0, soc);
soc = min(100, soc);
return soc;
}
#define IBAT_TOL_MASK 0x0F
#define OCV_TOL_MASK 0xF0
#define IBAT_TOL_DEFAULT 0x03
#define IBAT_TOL_NOCHG 0x0F
#define OCV_TOL_DEFAULT 0x20
#define OCV_TOL_NO_OCV 0x00
static int stop_ocv_updates(struct qpnp_bms_chip *chip)
{
pr_debug("stopping ocv updates\n");
return qpnp_masked_write(chip, BMS1_TOL_CTL,
OCV_TOL_MASK, OCV_TOL_NO_OCV);
}
static int reset_bms_for_test(struct qpnp_bms_chip *chip)
{
int ibat_ua = 0, vbat_uv = 0, rc;
int ocv_est_uv;
if (!chip) {
pr_err("BMS driver has not been initialized yet!\n");
return -EINVAL;
}
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
/*
* Don't include rbatt and rbatt_capacitative since we expect this to
* be used with a fake battery which does not have internal resistances
*/
ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv);
chip->last_ocv_uv = ocv_est_uv;
mutex_lock(&chip->last_soc_mutex);
chip->last_soc = -EINVAL;
chip->last_soc_invalid = true;
mutex_unlock(&chip->last_soc_mutex);
reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
chip->software_cc_uah = 0;
chip->software_shdw_cc_uah = 0;
chip->last_cc_uah = INT_MIN;
stop_ocv_updates(chip);
pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n",
chip->last_ocv_uv, vbat_uv, ibat_ua);
return rc;
}
static int bms_reset_set(const char *val, const struct kernel_param *kp)
{
int rc;
rc = param_set_bool(val, kp);
if (rc) {
pr_err("Unable to set bms_reset: %d\n", rc);
return rc;
}
if (*(bool *)kp->arg) {
struct power_supply *bms_psy = power_supply_get_by_name("bms");
struct qpnp_bms_chip *chip = container_of(bms_psy,
struct qpnp_bms_chip, bms_psy);
rc = reset_bms_for_test(chip);
if (rc) {
pr_err("Unable to modify bms_reset: %d\n", rc);
return rc;
}
}
return 0;
}
static struct kernel_param_ops bms_reset_ops = {
.set = bms_reset_set,
.get = param_get_bool,
};
module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644);
#define SOC_STORAGE_MASK 0xFE
static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp,
int soc)
{
u8 temp;
int rc;
int iavg_ma = chip->prev_uuc_iavg_ma;
if (iavg_ma > MIN_IAVG_MA)
temp = (iavg_ma - MIN_IAVG_MA) / IAVG_STEP_SIZE_MA;
else
temp = 0;
rc = qpnp_write_wrapper(chip, &temp, chip->base + IAVG_STORAGE_REG, 1);
/* store an invalid soc if temperature is below 5degC */
if (batt_temp > IGNORE_SOC_TEMP_DECIDEG)
qpnp_masked_write_base(chip, chip->soc_storage_addr,
SOC_STORAGE_MASK, (soc + 1) << 1);
else
qpnp_masked_write_base(chip, chip->soc_storage_addr,
SOC_STORAGE_MASK, SOC_STORAGE_MASK);
}
static int scale_soc_while_chg(struct qpnp_bms_chip *chip, int chg_time_sec,
int catch_up_sec, int new_soc, int prev_soc)
{
int scaled_soc;
int numerator;
/*
* Don't report a high value immediately slowly scale the
* value from prev_soc to the new soc based on a charge time
* weighted average
*/
pr_debug("cts = %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec);
if (catch_up_sec == 0)
return new_soc;
if (chg_time_sec > catch_up_sec)
return new_soc;
numerator = (catch_up_sec - chg_time_sec) * prev_soc
+ chg_time_sec * new_soc;
scaled_soc = numerator / catch_up_sec;
pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n",
chg_time_sec, new_soc, prev_soc, scaled_soc);
return scaled_soc;
}
/*
* bms_fake_battery is set in setups where a battery emulator is used instead
* of a real battery. This makes the bms driver report a different/fake value
* regardless of the calculated state of charge.
*/
static int bms_fake_battery = -EINVAL;
module_param(bms_fake_battery, int, 0644);
static int report_voltage_based_soc(struct qpnp_bms_chip *chip)
{
pr_debug("Reported voltage based soc = %d\n",
chip->prev_voltage_based_soc);
return chip->prev_voltage_based_soc;
}
#define SOC_CATCHUP_SEC_MAX 600
#define SOC_CATCHUP_SEC_PER_PERCENT 60
#define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX / SOC_CATCHUP_SEC_PER_PERCENT)
#define SOC_CHANGE_PER_SEC 5
#define REPORT_SOC_WAIT_MS 10000
static int report_cc_based_soc(struct qpnp_bms_chip *chip)
{
int soc, soc_change;
int time_since_last_change_sec, charge_time_sec = 0;
unsigned long last_change_sec;
struct qpnp_vadc_result result;
int batt_temp;
int rc;
bool charging, charging_since_last_report;
rc = wait_event_interruptible_timeout(chip->bms_wait_queue,
chip->calculated_soc != -EINVAL,
round_jiffies_relative(msecs_to_jiffies
(REPORT_SOC_WAIT_MS)));
if (rc == 0 && chip->calculated_soc == -EINVAL) {
pr_debug("calculate soc timed out\n");
} else if (rc == -ERESTARTSYS) {
pr_err("Wait for SoC interrupted.\n");
return rc;
}
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
batt_temp = (int)result.physical;
mutex_lock(&chip->last_soc_mutex);
soc = chip->calculated_soc;
last_change_sec = chip->last_soc_change_sec;
calculate_delta_time(&last_change_sec, &time_since_last_change_sec);
charging = chip->battery_status == POWER_SUPPLY_STATUS_CHARGING;
charging_since_last_report = charging || (chip->last_soc_unbound
&& chip->was_charging_at_sleep);
/*
* account for charge time - limit it to SOC_CATCHUP_SEC to
* avoid overflows when charging continues for extended periods
*/
if (charging) {
if (chip->charge_start_tm_sec == 0) {
/*
* calculating soc for the first time
* after start of chg. Initialize catchup time
*/
if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
chip->catch_up_time_sec =
(soc - chip->last_soc)
* SOC_CATCHUP_SEC_PER_PERCENT;
else
chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;
if (chip->catch_up_time_sec < 0)
chip->catch_up_time_sec = 0;
chip->charge_start_tm_sec = last_change_sec;
}
charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec
- chip->charge_start_tm_sec);
/* end catchup if calculated soc and last soc are same */
if (chip->last_soc == soc)
chip->catch_up_time_sec = 0;
}
if (chip->last_soc != -EINVAL) {
/*
* last_soc < soc ... if we have not been charging at all
* since the last time this was called, report previous SoC.
* Otherwise, scale and catch up.
*/
if (chip->last_soc < soc && !charging_since_last_report)
soc = chip->last_soc;
else if (chip->last_soc < soc && soc != 100)
soc = scale_soc_while_chg(chip, charge_time_sec,
chip->catch_up_time_sec,
soc, chip->last_soc);
/* if the battery is close to cutoff allow more change */
if (wake_lock_active(&chip->low_voltage_wake_lock))
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec);
else
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec
/ SOC_CHANGE_PER_SEC);
if (chip->last_soc_unbound) {
chip->last_soc_unbound = false;
} else {
/*
* if soc have not been unbound by resume,
* only change reported SoC by 1.
*/
soc_change = min(1, soc_change);
}
if (soc < chip->last_soc && soc != 0)
soc = chip->last_soc - soc_change;
if (soc > chip->last_soc && soc != 100)
soc = chip->last_soc + soc_change;
}
if (chip->last_soc != soc && !chip->last_soc_unbound)
chip->last_soc_change_sec = last_change_sec;
pr_debug("last_soc = %d, calculated_soc = %d, soc = %d, time since last change = %d\n",
chip->last_soc, chip->calculated_soc,
soc, time_since_last_change_sec);
chip->last_soc = bound_soc(soc);
backup_soc_and_iavg(chip, batt_temp, chip->last_soc);
pr_debug("Reported SOC = %d\n", chip->last_soc);
mutex_unlock(&chip->last_soc_mutex);
return soc;
}
static int report_state_of_charge(struct qpnp_bms_chip *chip)
{
if (bms_fake_battery != -EINVAL) {
pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
return bms_fake_battery;
} else if (chip->use_voltage_soc)
return report_voltage_based_soc(chip);
else
return report_cc_based_soc(chip);
}
#define VDD_MAX_ERR 5000
#define VDD_STEP_SIZE 10000
#define MAX_COUNT_BEFORE_RESET_TO_CC 3
static int charging_adjustments(struct qpnp_bms_chip *chip,
struct soc_params *params, int soc,
int vbat_uv, int ibat_ua, int batt_temp)
{
int chg_soc, soc_ibat, batt_terminal_uv, weight_ibat, weight_cc;
batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
if (chip->soc_at_cv == -EINVAL) {
if (batt_terminal_uv >= chip->max_voltage_uv - VDD_MAX_ERR ||
chip->in_taper_charge) {
chip->soc_at_cv = soc;
chip->prev_chg_soc = soc;
chip->ibat_at_cv_ua = params->iavg_ua;
pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n",
ibat_ua, soc);
} else {
/* In constant current charging return the calc soc */
pr_debug("CC CHG SOC %d\n", soc);
}
chip->prev_batt_terminal_uv = batt_terminal_uv;
chip->system_load_count = 0;
return soc;
} else if (ibat_ua > 0 && batt_terminal_uv
< chip->max_voltage_uv - (VDD_MAX_ERR * 2)) {
if (chip->system_load_count > MAX_COUNT_BEFORE_RESET_TO_CC) {
chip->soc_at_cv = -EINVAL;
pr_debug("Vbat below CV threshold, resetting CC_TO_CV\n");
chip->system_load_count = 0;
} else {
chip->system_load_count += 1;
pr_debug("Vbat below CV threshold, count: %d\n",
chip->system_load_count);
}
return soc;
} else if (ibat_ua > 0) {
pr_debug("NOT CHARGING SOC %d\n", soc);
chip->system_load_count = 0;
chip->prev_chg_soc = soc;
return soc;
}
chip->system_load_count = 0;
/*
* battery is in CV phase - begin linear interpolation of soc based on
* battery charge current
*/
/*
* if voltage lessened (possibly because of a system load)
* keep reporting the prev chg soc
*/
if (batt_terminal_uv <= chip->prev_batt_terminal_uv - VDD_STEP_SIZE) {
pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n",
batt_terminal_uv, chip->prev_batt_terminal_uv,
chip->prev_chg_soc);
chip->prev_batt_terminal_uv = batt_terminal_uv;
return chip->prev_chg_soc;
}
soc_ibat = bound_soc(linear_interpolate(chip->soc_at_cv,
chip->ibat_at_cv_ua,
100, -1 * chip->chg_term_ua,
params->iavg_ua));
weight_ibat = bound_soc(linear_interpolate(1, chip->soc_at_cv,
100, 100, chip->prev_chg_soc));
weight_cc = 100 - weight_ibat;
chg_soc = bound_soc(DIV_ROUND_CLOSEST(soc_ibat * weight_ibat
+ weight_cc * soc, 100));
pr_debug("weight_ibat = %d, weight_cc = %d, soc_ibat = %d, soc_cc = %d\n",
weight_ibat, weight_cc, soc_ibat, soc);
/* always report a higher soc */
if (chg_soc > chip->prev_chg_soc) {
chip->prev_chg_soc = chg_soc;
chip->charging_adjusted_ocv = find_ocv_for_pc(chip, batt_temp,
find_pc_for_soc(chip, params, chg_soc));
pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n",
chip->charging_adjusted_ocv,
chip->prev_chg_soc);
}
pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc);
chip->prev_batt_terminal_uv = batt_terminal_uv;
return chip->prev_chg_soc;
}
static void very_low_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
/*
* if battery is very low (v_cutoff voltage + 20mv) hold
* a wakelock untill soc = 0%
*/
if (vbat_uv <= chip->low_voltage_threshold
&& !wake_lock_active(&chip->low_voltage_wake_lock)) {
pr_debug("voltage = %d low holding wakelock\n", vbat_uv);
wake_lock(&chip->low_voltage_wake_lock);
} else if (vbat_uv > chip->low_voltage_threshold
&& wake_lock_active(&chip->low_voltage_wake_lock)) {
pr_debug("voltage = %d releasing wakelock\n", vbat_uv);
wake_unlock(&chip->low_voltage_wake_lock);
}
}
#define VBATT_ERROR_MARGIN 20000
static void cv_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
/*
* if battery is very low (v_cutoff voltage + 20mv) hold
* a wakelock untill soc = 0%
*/
if (wake_lock_active(&chip->cv_wake_lock)) {
if (chip->soc_at_cv != -EINVAL) {
pr_debug("hit CV, releasing cv wakelock\n");
wake_unlock(&chip->cv_wake_lock);
} else if (!is_battery_charging(chip)) {
pr_debug("charging stopped, releasing cv wakelock\n");
wake_unlock(&chip->cv_wake_lock);
}
} else if (vbat_uv > chip->max_voltage_uv - VBATT_ERROR_MARGIN
&& chip->soc_at_cv == -EINVAL
&& is_battery_charging(chip)
&& !wake_lock_active(&chip->cv_wake_lock)) {
pr_debug("voltage = %d holding cv wakelock\n", vbat_uv);
wake_lock(&chip->cv_wake_lock);
}
}
#define NO_ADJUST_HIGH_SOC_THRESHOLD 98
static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params,
int soc, int batt_temp)
{
int ibat_ua = 0, vbat_uv = 0;
int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0;
int delta_ocv_uv = 0;
int n = 0;
int rc_new_uah = 0;
int pc_new = 0;
int soc_new = 0;
int slope = 0;
int rc = 0;
int delta_ocv_uv_limit = 0;
int correction_limit_uv = 0;
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
if (rc < 0) {
pr_err("simultaneous vbat ibat failed err = %d\n", rc);
goto out;
}
very_low_voltage_check(chip, vbat_uv);
cv_voltage_check(chip, vbat_uv);
delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000);
ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000;
pc_est = calculate_pc(chip, ocv_est_uv, batt_temp);
soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100,
(s64)params->fcc_uah - params->uuc_uah);
soc_est = bound_soc(soc_est);
/* never adjust during bms reset mode */
if (bms_reset) {
pr_debug("bms reset mode, SOC adjustment skipped\n");
goto out;
}
if (is_battery_charging(chip)) {
soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua,
batt_temp);
/* Skip adjustments if we are in CV or ibat is negative */
if (chip->soc_at_cv != -EINVAL || ibat_ua < 0)
goto out;
}
/*
* do not adjust
* if soc_est is same as what bms calculated
* OR if soc_est > adjust_soc_low_threshold
* OR if soc is above 90
* because we might pull it low
* and cause a bad user experience
*/
if (!wake_lock_active(&chip->low_voltage_wake_lock) &&
(soc_est == soc
|| soc_est > chip->adjust_soc_low_threshold
|| soc >= NO_ADJUST_HIGH_SOC_THRESHOLD))
goto out;
if (chip->last_soc_est == -EINVAL)
chip->last_soc_est = soc;
n = min(200, max(1 , soc + soc_est + chip->last_soc_est));
chip->last_soc_est = soc_est;
pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
if (pc > 0) {
pc_new = calculate_pc(chip,
chip->last_ocv_uv - (++slope * 1000),
chip->last_ocv_temp);
while (pc_new == pc) {
/* start taking 10mV steps */
slope = slope + 10;
pc_new = calculate_pc(chip,
chip->last_ocv_uv - (slope * 1000),
chip->last_ocv_temp);
}
} else {
/*
* pc is already at the lowest point,
* assume 1 millivolt translates to 1% pc
*/
pc = 1;
pc_new = 0;
slope = 1;
}
delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000,
n * (pc - pc_new));
if (abs(delta_ocv_uv) > delta_ocv_uv_limit) {
pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv,
delta_ocv_uv_limit);
if (delta_ocv_uv > 0)
delta_ocv_uv = delta_ocv_uv_limit;
else
delta_ocv_uv = -1 * delta_ocv_uv_limit;
pr_debug("new delta ocv = %d\n", delta_ocv_uv);
}
if (wake_lock_active(&chip->low_voltage_wake_lock)) {
/* when in the cutoff region, do not correct upwards */
delta_ocv_uv = max(0, delta_ocv_uv);
goto skip_limits;
}
if (chip->last_ocv_uv > chip->flat_ocv_threshold_uv)
correction_limit_uv = chip->high_ocv_correction_limit_uv;
else
correction_limit_uv = chip->low_ocv_correction_limit_uv;
if (abs(delta_ocv_uv) > correction_limit_uv) {
pr_debug("limiting delta ocv %d limit = %d\n",
delta_ocv_uv, correction_limit_uv);
if (delta_ocv_uv > 0)
delta_ocv_uv = correction_limit_uv;
else
delta_ocv_uv = -correction_limit_uv;
pr_debug("new delta ocv = %d\n", delta_ocv_uv);
}
skip_limits:
chip->last_ocv_uv -= delta_ocv_uv;
if (chip->last_ocv_uv >= chip->max_voltage_uv)
chip->last_ocv_uv = chip->max_voltage_uv;
/* calculate the soc based on this new ocv */
pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
rc_new_uah = (params->fcc_uah * pc_new) / 100;
soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100
/ (params->fcc_uah - params->uuc_uah);
/*
* if soc_new is ZERO force it higher so that phone doesnt report soc=0
* soc = 0 should happen only when soc_est is above a set value
*/
if (soc_new == 0 && soc_est >= chip->hold_soc_est)
soc_new = 1;
soc = soc_new;
out:
pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n",
ibat_ua, vbat_uv, ocv_est_uv, pc_est,
soc_est, n, delta_ocv_uv, chip->last_ocv_uv,
pc_new, soc_new, params->rbatt_mohm, slope);
return soc;
}
static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc)
{
int rc, vbat_uv;
rc = get_battery_voltage(chip, &vbat_uv);
if (rc < 0) {
pr_err("adc vbat failed err = %d\n", rc);
return soc;
}
/* only clamp when discharging */
if (is_battery_charging(chip))
return soc;
if (soc <= 0 && vbat_uv > chip->v_cutoff_uv) {
pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n",
vbat_uv, chip->v_cutoff_uv);
return 1;
} else {
pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n",
soc, vbat_uv, chip->v_cutoff_uv);
return soc;
}
}
static int64_t convert_cc_uah_to_raw(struct qpnp_bms_chip *chip, int64_t cc_uah)
{
int64_t cc_uv, cc_pvh, cc_raw;
cc_pvh = cc_uah * chip->r_sense_uohm;
cc_uv = div_s64(cc_pvh * SLEEP_CLK_HZ * SECONDS_PER_HOUR,
CC_READING_TICKS * 1000000LL);
cc_raw = div_s64(cc_uv * CC_READING_RESOLUTION_D,
CC_READING_RESOLUTION_N);
return cc_raw;
}
#define CC_STEP_INCREMENT_UAH 1500
#define OCV_STEP_INCREMENT 0x10
static void configure_soc_wakeup(struct qpnp_bms_chip *chip,
struct soc_params *params,
int batt_temp, int target_soc)
{
int target_ocv_uv;
int64_t target_cc_uah, cc_raw_64, current_shdw_cc_raw_64;
int64_t current_shdw_cc_uah, iadc_comp_factor;
uint64_t cc_raw, current_shdw_cc_raw;
int16_t ocv_raw, current_ocv_raw;
current_shdw_cc_raw = 0;
mutex_lock(&chip->bms_output_lock);
lock_output_data(chip);
qpnp_read_wrapper(chip, (u8 *)&current_ocv_raw,
chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
current_shdw_cc_uah = get_prop_bms_charge_counter_shadow(chip);
current_shdw_cc_raw_64 = convert_cc_uah_to_raw(chip,
current_shdw_cc_uah);
/*
* Calculate the target shadow coulomb counter threshold for when
* the SoC changes.
*
* Since the BMS driver resets the shadow coulomb counter every
* 20 seconds when the device is awake, calculate the threshold as
* a delta from the current shadow coulomb count.
*/
target_cc_uah = (100 - target_soc)
* (params->fcc_uah - params->uuc_uah)
/ 100 - current_shdw_cc_uah;
if (target_cc_uah < 0) {
/*
* If the target cc is below 0, that means we have already
* passed the point where SoC should have fallen.
* Set a wakeup in a few more mAh and check back again
*/
target_cc_uah = CC_STEP_INCREMENT_UAH;
}
iadc_comp_factor = 100000;
qpnp_iadc_comp_result(chip->iadc_dev, &iadc_comp_factor);
target_cc_uah = div64_s64(target_cc_uah * 100000, iadc_comp_factor);
target_cc_uah = cc_reverse_adjust_for_gain(chip, target_cc_uah);
cc_raw_64 = convert_cc_uah_to_raw(chip, target_cc_uah);
cc_raw = convert_s64_to_s36(cc_raw_64);
target_ocv_uv = find_ocv_for_pc(chip, batt_temp,
find_pc_for_soc(chip, params, target_soc));
ocv_raw = convert_vbatt_uv_to_raw(chip, target_ocv_uv);
/*
* If the current_ocv_raw was updated since reaching 100% and is lower
* than the calculated target ocv threshold, set the new target
* threshold 1.5mAh lower in order to check if the SoC changed yet.
*/
if (current_ocv_raw != chip->ocv_reading_at_100
&& current_ocv_raw < ocv_raw)
ocv_raw = current_ocv_raw - OCV_STEP_INCREMENT;
qpnp_write_wrapper(chip, (u8 *)&cc_raw,
chip->base + BMS1_SW_CC_THR0, 5);
qpnp_write_wrapper(chip, (u8 *)&ocv_raw,
chip->base + BMS1_OCV_THR0, 2);
enable_bms_irq(&chip->ocv_thr_irq);
enable_bms_irq(&chip->sw_cc_thr_irq);
pr_debug("current sw_cc_raw = 0x%llx, current ocv = 0x%hx\n",
current_shdw_cc_raw, (uint16_t)current_ocv_raw);
pr_debug("target_cc_uah = %lld, raw64 = 0x%llx, raw 36 = 0x%llx, ocv_raw = 0x%hx\n",
target_cc_uah,
(uint64_t)cc_raw_64, cc_raw,
(uint16_t)ocv_raw);
}
#define BAD_SOC_THRESH -10
static int calculate_raw_soc(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
struct soc_params *params,
int batt_temp)
{
int soc, remaining_usable_charge_uah;
/* calculate remaining usable charge */
remaining_usable_charge_uah = params->ocv_charge_uah
- params->cc_uah
- params->uuc_uah;
pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params->fcc_uah - params->uuc_uah));
if (chip->first_time_calc_soc && soc > BAD_SOC_THRESH && soc < 0) {
/*
* first time calcualtion and the pon ocv is too low resulting
* in a bad soc. Adjust ocv to get 0 soc
*/
pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc);
chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp,
find_pc_for_soc(chip, params, 0));
params->ocv_charge_uah = find_ocv_charge_for_soc(chip,
params, 0);
remaining_usable_charge_uah = params->ocv_charge_uah
- params->cc_uah
- params->uuc_uah;
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params->fcc_uah
- params->uuc_uah));
pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n",
soc, chip->last_ocv_uv);
}
if (soc > 100)
soc = 100;
if (soc > BAD_SOC_THRESH && soc < 0) {
pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n",
remaining_usable_charge_uah,
params->ocv_charge_uah,
params->cc_uah, params->uuc_uah);
pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n",
chip->last_ocv_uv, batt_temp,
params->fcc_uah, soc);
soc = 0;
}
return soc;
}
#define SLEEP_RECALC_INTERVAL 3
static int calculate_state_of_charge(struct qpnp_bms_chip *chip,
struct raw_soc_params *raw,
int batt_temp)
{
struct soc_params params;
int soc, previous_soc, shutdown_soc, new_calculated_soc;
int remaining_usable_charge_uah;
calculate_soc_params(chip, raw, &params, batt_temp);
if (!is_battery_present(chip)) {
pr_debug("battery gone, reporting 100\n");
new_calculated_soc = 100;
goto done_calculating;
}
if (params.fcc_uah - params.uuc_uah <= 0) {
pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
params.fcc_uah,
params.uuc_uah);
new_calculated_soc = 0;
goto done_calculating;
}
soc = calculate_raw_soc(chip, raw, &params, batt_temp);
mutex_lock(&chip->soc_invalidation_mutex);
shutdown_soc = chip->shutdown_soc;
if (chip->first_time_calc_soc && soc != shutdown_soc
&& !chip->shutdown_soc_invalid) {
/*
* soc for the first time - use shutdown soc
* to adjust pon ocv since it is a small percent away from
* the real soc
*/
pr_debug("soc = %d before forcing shutdown_soc = %d\n",
soc, shutdown_soc);
chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp,
find_pc_for_soc(chip, &params, shutdown_soc));
params.ocv_charge_uah = find_ocv_charge_for_soc(chip,
&params, shutdown_soc);
remaining_usable_charge_uah = params.ocv_charge_uah
- params.cc_uah
- params.uuc_uah;
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
(params.fcc_uah
- params.uuc_uah));
pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n",
shutdown_soc, soc, chip->last_ocv_uv);
}
mutex_unlock(&chip->soc_invalidation_mutex);
if (chip->first_time_calc_soc && !chip->shutdown_soc_invalid) {
pr_debug("Skip adjustment when shutdown SOC has been forced\n");
new_calculated_soc = soc;
} else {
pr_debug("SOC before adjustment = %d\n", soc);
new_calculated_soc = adjust_soc(chip, &params, soc, batt_temp);
}
/* always clamp soc due to BMS hw/sw immaturities */
new_calculated_soc = clamp_soc_based_on_voltage(chip,
new_calculated_soc);
new_calculated_soc = bound_soc(new_calculated_soc);
/*
* If the battery is full, configure the cc threshold so the system
* wakes up after SoC changes
*/
if (is_battery_full(chip)) {
configure_soc_wakeup(chip, &params,
batt_temp, bound_soc(new_calculated_soc - 1));
} else {
disable_bms_irq(&chip->ocv_thr_irq);
disable_bms_irq(&chip->sw_cc_thr_irq);
}
done_calculating:
mutex_lock(&chip->last_soc_mutex);
previous_soc = chip->calculated_soc;
chip->calculated_soc = new_calculated_soc;
pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc);
if (chip->last_soc_invalid) {
chip->last_soc_invalid = false;
chip->last_soc = -EINVAL;
}
/*
* Check if more than a long time has passed since the last
* calculation (more than n times compared to the soc recalculation
* rate, where n is defined by SLEEP_RECALC_INTERVAL). If this is true,
* then the system must have gone through a long sleep, and SoC can be
* allowed to become unbounded by the last reported SoC
*/
if (params.delta_time_s * 1000 >
chip->calculate_soc_ms * SLEEP_RECALC_INTERVAL
&& !chip->first_time_calc_soc) {
chip->last_soc_unbound = true;
chip->last_soc_change_sec = chip->last_recalc_time;
pr_debug("last_soc unbound because elapsed time = %d\n",
params.delta_time_s);
}
mutex_unlock(&chip->last_soc_mutex);
wake_up_interruptible(&chip->bms_wait_queue);
if (new_calculated_soc != previous_soc && chip->bms_psy_registered) {
power_supply_changed(&chip->bms_psy);
pr_debug("power supply changed\n");
} else {
/*
* Call report state of charge anyways to periodically update
* reported SoC. This prevents reported SoC from being stuck
* when calculated soc doesn't change.
*/
report_state_of_charge(chip);
}
get_current_time(&chip->last_recalc_time);
chip->first_time_calc_soc = 0;
chip->first_time_calc_uuc = 0;
return chip->calculated_soc;
}
static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip)
{
int voltage_range_uv, voltage_remaining_uv, voltage_based_soc;
int rc, vbat_uv;
rc = get_battery_voltage(chip, &vbat_uv);
if (rc < 0) {
pr_err("adc vbat failed err = %d\n", rc);
return rc;
}
voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv;
voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv;
voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv;
voltage_based_soc = clamp(voltage_based_soc, 0, 100);
if (chip->prev_voltage_based_soc != voltage_based_soc
&& chip->bms_psy_registered) {
power_supply_changed(&chip->bms_psy);
pr_debug("power supply changed\n");
}
chip->prev_voltage_based_soc = voltage_based_soc;
pr_debug("vbat used = %duv\n", vbat_uv);
pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc);
return voltage_based_soc;
}
static int recalculate_raw_soc(struct qpnp_bms_chip *chip)
{
int batt_temp, rc, soc;
struct qpnp_vadc_result result;
struct raw_soc_params raw;
struct soc_params params;
bms_stay_awake(&chip->soc_wake_source);
if (chip->use_voltage_soc) {
soc = calculate_soc_from_voltage(chip);
} else {
if (!chip->batfet_closed)
qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false);
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM,
&result);
if (rc) {
pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
soc = chip->calculated_soc;
} else {
pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
result.physical,
result.measurement);
batt_temp = (int)result.physical;
mutex_lock(&chip->last_ocv_uv_mutex);
rc = read_soc_params_raw(chip, &raw, batt_temp);
if (rc) {
pr_err("Unable to read params, rc: %d\n", rc);
soc = 0;
goto done;
}
calculate_soc_params(chip, &raw, &params, batt_temp);
if (!is_battery_present(chip)) {
pr_debug("battery gone\n");
soc = 0;
} else if (params.fcc_uah - params.uuc_uah <= 0) {
pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
params.fcc_uah,
params.uuc_uah);
soc = 0;
} else {
soc = calculate_raw_soc(chip, &raw,
&params, batt_temp);
}
done:
mutex_unlock(&chip->last_ocv_uv_mutex);
}
}
bms_relax(&chip->soc_wake_source);
return soc;
}
static int recalculate_soc(struct qpnp_bms_chip *chip)
{
int batt_temp, rc, soc;
struct qpnp_vadc_result result;
struct raw_soc_params raw;
bms_stay_awake(&chip->soc_wake_source);
mutex_lock(&chip->vbat_monitor_mutex);
if (chip->vbat_monitor_params.state_request !=
ADC_TM_HIGH_LOW_THR_DISABLE)
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
mutex_unlock(&chip->vbat_monitor_mutex);
if (chip->use_voltage_soc) {
soc = calculate_soc_from_voltage(chip);
} else {
if (!chip->batfet_closed)
qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false);
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM,
&result);
if (rc) {
pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
soc = chip->calculated_soc;
} else {
pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
result.physical,
result.measurement);
batt_temp = (int)result.physical;
mutex_lock(&chip->last_ocv_uv_mutex);
rc = read_soc_params_raw(chip, &raw, batt_temp);
if (rc) {
pr_err("Unable to read params, rc: %d\n", rc);
soc = chip->calculated_soc;
} else {
soc = calculate_state_of_charge(chip,
&raw, batt_temp);
}
mutex_unlock(&chip->last_ocv_uv_mutex);
}
}
bms_relax(&chip->soc_wake_source);
return soc;
}
static void recalculate_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
recalc_work);
recalculate_soc(chip);
}
static int get_calculation_delay_ms(struct qpnp_bms_chip *chip)
{
if (wake_lock_active(&chip->low_voltage_wake_lock))
return chip->low_voltage_calculate_soc_ms;
else if (chip->calculated_soc < chip->low_soc_calc_threshold)
return chip->low_soc_calculate_soc_ms;
else
return chip->calculate_soc_ms;
}
static void calculate_soc_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
calculate_soc_delayed_work.work);
recalculate_soc(chip);
schedule_delayed_work(&chip->calculate_soc_delayed_work,
round_jiffies_relative(msecs_to_jiffies
(get_calculation_delay_ms(chip))));
}
static void configure_vbat_monitor_low(struct qpnp_bms_chip *chip)
{
mutex_lock(&chip->vbat_monitor_mutex);
if (chip->vbat_monitor_params.state_request
== ADC_TM_HIGH_LOW_THR_ENABLE) {
/*
* Battery is now around or below v_cutoff
*/
pr_debug("battery entered cutoff range\n");
if (!wake_lock_active(&chip->low_voltage_wake_lock)) {
pr_debug("voltage low, holding wakelock\n");
wake_lock(&chip->low_voltage_wake_lock);
cancel_delayed_work_sync(
&chip->calculate_soc_delayed_work);
schedule_delayed_work(
&chip->calculate_soc_delayed_work, 0);
}
chip->vbat_monitor_params.state_request =
ADC_TM_HIGH_THR_ENABLE;
chip->vbat_monitor_params.high_thr =
(chip->low_voltage_threshold + VBATT_ERROR_MARGIN);
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
chip->vbat_monitor_params.low_thr = 0;
} else if (chip->vbat_monitor_params.state_request
== ADC_TM_LOW_THR_ENABLE) {
/*
* Battery is in normal operation range.
*/
pr_debug("battery entered normal range\n");
if (wake_lock_active(&chip->cv_wake_lock)) {
wake_unlock(&chip->cv_wake_lock);
pr_debug("releasing cv wake lock\n");
}
chip->in_cv_range = false;
chip->vbat_monitor_params.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
- VBATT_ERROR_MARGIN;
chip->vbat_monitor_params.low_thr =
chip->low_voltage_threshold;
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
}
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
mutex_unlock(&chip->vbat_monitor_mutex);
}
#define CV_LOW_THRESHOLD_HYST_UV 100000
static void configure_vbat_monitor_high(struct qpnp_bms_chip *chip)
{
mutex_lock(&chip->vbat_monitor_mutex);
if (chip->vbat_monitor_params.state_request
== ADC_TM_HIGH_LOW_THR_ENABLE) {
/*
* Battery is around vddmax
*/
pr_debug("battery entered vddmax range\n");
chip->in_cv_range = true;
if (!wake_lock_active(&chip->cv_wake_lock)) {
wake_lock(&chip->cv_wake_lock);
pr_debug("holding cv wake lock\n");
}
schedule_work(&chip->recalc_work);
chip->vbat_monitor_params.state_request =
ADC_TM_LOW_THR_ENABLE;
chip->vbat_monitor_params.low_thr =
(chip->max_voltage_uv - CV_LOW_THRESHOLD_HYST_UV);
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv * 2;
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
} else if (chip->vbat_monitor_params.state_request
== ADC_TM_HIGH_THR_ENABLE) {
/*
* Battery is in normal operation range.
*/
pr_debug("battery entered normal range\n");
if (wake_lock_active(&chip->low_voltage_wake_lock)) {
pr_debug("voltage high, releasing wakelock\n");
wake_unlock(&chip->low_voltage_wake_lock);
}
chip->vbat_monitor_params.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
chip->vbat_monitor_params.high_thr =
chip->max_voltage_uv - VBATT_ERROR_MARGIN;
chip->vbat_monitor_params.low_thr =
chip->low_voltage_threshold;
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
}
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
mutex_unlock(&chip->vbat_monitor_mutex);
}
static void btm_notify_vbat(enum qpnp_tm_state state, void *ctx)
{
struct qpnp_bms_chip *chip = ctx;
int vbat_uv;
struct qpnp_vadc_result result;
int rc;
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &result);
pr_debug("vbat = %lld, raw = 0x%x\n", result.physical, result.adc_code);
get_battery_voltage(chip, &vbat_uv);
pr_debug("vbat is at %d, state is at %d\n", vbat_uv, state);
if (state == ADC_TM_LOW_STATE) {
pr_debug("low voltage btm notification triggered\n");
if (vbat_uv - VBATT_ERROR_MARGIN
< chip->vbat_monitor_params.low_thr) {
configure_vbat_monitor_low(chip);
} else {
pr_debug("faulty btm trigger, discarding\n");
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
}
} else if (state == ADC_TM_HIGH_STATE) {
pr_debug("high voltage btm notification triggered\n");
if (vbat_uv + VBATT_ERROR_MARGIN
> chip->vbat_monitor_params.high_thr) {
configure_vbat_monitor_high(chip);
} else {
pr_debug("faulty btm trigger, discarding\n");
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
}
} else {
pr_debug("unknown voltage notification state: %d\n", state);
}
if (chip->bms_psy_registered)
power_supply_changed(&chip->bms_psy);
}
static int reset_vbat_monitoring(struct qpnp_bms_chip *chip)
{
int rc;
chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_DISABLE;
rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
if (rc) {
pr_err("tm disable failed: %d\n", rc);
return rc;
}
if (wake_lock_active(&chip->low_voltage_wake_lock)) {
pr_debug("battery removed, releasing wakelock\n");
wake_unlock(&chip->low_voltage_wake_lock);
}
if (chip->in_cv_range) {
pr_debug("battery removed, removing in_cv_range state\n");
chip->in_cv_range = false;
}
return 0;
}
static int setup_vbat_monitoring(struct qpnp_bms_chip *chip)
{
int rc;
chip->vbat_monitor_params.low_thr = chip->low_voltage_threshold;
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
- VBATT_ERROR_MARGIN;
chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
chip->vbat_monitor_params.channel = VBAT_SNS;
chip->vbat_monitor_params.btm_ctx = (void *)chip;
chip->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
chip->vbat_monitor_params.threshold_notification = &btm_notify_vbat;
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
if (!is_battery_present(chip)) {
pr_debug("no battery inserted, do not enable vbat monitoring\n");
chip->vbat_monitor_params.state_request =
ADC_TM_HIGH_LOW_THR_DISABLE;
} else {
rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
if (rc) {
pr_err("tm setup failed: %d\n", rc);
return rc;
}
}
pr_debug("setup complete\n");
return 0;
}
static void readjust_fcc_table(struct qpnp_bms_chip *chip)
{
struct single_row_lut *temp, *old;
int i, fcc, ratio;
if (!chip->enable_fcc_learning)
return;
if (!chip->fcc_temp_lut) {
pr_err("The static fcc lut table is NULL\n");
return;
}
temp = devm_kzalloc(chip->dev, sizeof(struct single_row_lut),
GFP_KERNEL);
if (!temp) {
pr_err("Cannot allocate memory for adjusted fcc table\n");
return;
}
fcc = interpolate_fcc(chip->fcc_temp_lut, chip->fcc_new_batt_temp);
temp->cols = chip->fcc_temp_lut->cols;
for (i = 0; i < chip->fcc_temp_lut->cols; i++) {
temp->x[i] = chip->fcc_temp_lut->x[i];
ratio = div_u64(chip->fcc_temp_lut->y[i] * 1000, fcc);
temp->y[i] = (ratio * chip->fcc_new_mah);
temp->y[i] /= 1000;
}
old = chip->adjusted_fcc_temp_lut;
chip->adjusted_fcc_temp_lut = temp;
devm_kfree(chip->dev, old);
}
static int read_fcc_data_from_backup(struct qpnp_bms_chip *chip)
{
int rc, i;
u8 fcc = 0, chgcyl = 0;
for (i = 0; i < chip->min_fcc_learning_samples; i++) {
rc = qpnp_read_wrapper(chip, &fcc,
chip->base + BMS_FCC_BASE_REG + i, 1);
rc |= qpnp_read_wrapper(chip, &chgcyl,
chip->base + BMS_CHGCYL_BASE_REG + i, 1);
if (rc) {
pr_err("Unable to read FCC data\n");
return rc;
}
if (fcc == 0 || (fcc == 0xFF && chgcyl == 0xFF)) {
/* FCC invalid/not present */
chip->fcc_learning_samples[i].fcc_new = 0;
chip->fcc_learning_samples[i].chargecycles = 0;
} else {
/* valid FCC data */
chip->fcc_sample_count++;
chip->fcc_learning_samples[i].fcc_new =
fcc * chip->fcc_resolution;
chip->fcc_learning_samples[i].chargecycles =
chgcyl * CHGCYL_RESOLUTION;
}
}
return 0;
}
static int discard_backup_fcc_data(struct qpnp_bms_chip *chip)
{
int rc = 0, i;
u8 temp_u8 = 0;
chip->fcc_sample_count = 0;
for (i = 0; i < chip->min_fcc_learning_samples; i++) {
rc = qpnp_write_wrapper(chip, &temp_u8,
chip->base + BMS_FCC_BASE_REG + i, 1);
rc |= qpnp_write_wrapper(chip, &temp_u8,
chip->base + BMS_CHGCYL_BASE_REG + i, 1);
if (rc) {
pr_err("Unable to clear FCC data\n");
return rc;
}
}
return 0;
}
static void
average_fcc_samples_and_readjust_fcc_table(struct qpnp_bms_chip *chip)
{
int i, temp_fcc_avg = 0, temp_fcc_delta = 0, new_fcc_avg = 0;
struct fcc_sample *ft;
for (i = 0; i < chip->min_fcc_learning_samples; i++)
temp_fcc_avg += chip->fcc_learning_samples[i].fcc_new;
temp_fcc_avg /= chip->min_fcc_learning_samples;
temp_fcc_delta = div_u64(temp_fcc_avg * DELTA_FCC_PERCENT, 100);
/* fix the fcc if its an outlier i.e. > 5% of the average */
for (i = 0; i < chip->min_fcc_learning_samples; i++) {
ft = &chip->fcc_learning_samples[i];
if (abs(ft->fcc_new - temp_fcc_avg) > temp_fcc_delta)
new_fcc_avg += temp_fcc_avg;
else
new_fcc_avg += ft->fcc_new;
}
new_fcc_avg /= chip->min_fcc_learning_samples;
chip->fcc_new_mah = new_fcc_avg;
chip->fcc_new_batt_temp = FCC_DEFAULT_TEMP;
pr_info("FCC update: New fcc_mah=%d, fcc_batt_temp=%d\n",
new_fcc_avg, FCC_DEFAULT_TEMP);
readjust_fcc_table(chip);
}
static void backup_charge_cycle(struct qpnp_bms_chip *chip)
{
int rc = 0;
if (chip->charge_increase >= 0) {
rc = qpnp_write_wrapper(chip, &chip->charge_increase,
chip->base + CHARGE_INCREASE_STORAGE, 1);
if (rc)
pr_err("Unable to backup charge_increase\n");
}
if (chip->charge_cycles >= 0) {
rc = qpnp_write_wrapper(chip, (u8 *)&chip->charge_cycles,
chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
if (rc)
pr_err("Unable to backup charge_cycles\n");
}
}
static bool chargecycles_in_range(struct qpnp_bms_chip *chip)
{
int i, min_cycle, max_cycle, valid_range;
/* find the smallest and largest charge cycle */
max_cycle = min_cycle = chip->fcc_learning_samples[0].chargecycles;
for (i = 1; i < chip->min_fcc_learning_samples; i++) {
if (min_cycle > chip->fcc_learning_samples[i].chargecycles)
min_cycle = chip->fcc_learning_samples[i].chargecycles;
if (max_cycle < chip->fcc_learning_samples[i].chargecycles)
max_cycle = chip->fcc_learning_samples[i].chargecycles;
}
/* check if chargecyles are in range to continue with FCC update */
valid_range = DIV_ROUND_UP(VALID_FCC_CHGCYL_RANGE,
CHGCYL_RESOLUTION) * CHGCYL_RESOLUTION;
if (abs(max_cycle - min_cycle) > valid_range)
return false;
return true;
}
static int read_chgcycle_data_from_backup(struct qpnp_bms_chip *chip)
{
int rc;
uint16_t temp_u16 = 0;
u8 temp_u8 = 0;
rc = qpnp_read_wrapper(chip, &temp_u8,
chip->base + CHARGE_INCREASE_STORAGE, 1);
if (!rc && temp_u8 != 0xFF)
chip->charge_increase = temp_u8;
rc = qpnp_read_wrapper(chip, (u8 *)&temp_u16,
chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
if (!rc && temp_u16 != 0xFFFF)
chip->charge_cycles = temp_u16;
return rc;
}
static void
attempt_learning_new_fcc(struct qpnp_bms_chip *chip)