| /* Copyright (c) 2011-2015, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "BMS: %s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/power_supply.h> |
| #include <linux/spmi.h> |
| #include <linux/rtc.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/qpnp/qpnp-adc.h> |
| #include <linux/qpnp/power-on.h> |
| #include <linux/of_batterydata.h> |
| #include <linux/wakelock.h> |
| |
| /* BMS Register Offsets */ |
| #define REVISION1 0x0 |
| #define REVISION2 0x1 |
| #define BMS1_STATUS1 0x8 |
| #define BMS1_MODE_CTL 0X40 |
| /* Coulomb counter clear registers */ |
| #define BMS1_CC_DATA_CTL 0x42 |
| #define BMS1_CC_CLEAR_CTL 0x43 |
| /* BMS Tolerances */ |
| #define BMS1_TOL_CTL 0X44 |
| /* OCV limit registers */ |
| #define BMS1_OCV_USE_LOW_LIMIT_THR0 0x48 |
| #define BMS1_OCV_USE_LOW_LIMIT_THR1 0x49 |
| #define BMS1_OCV_USE_HIGH_LIMIT_THR0 0x4A |
| #define BMS1_OCV_USE_HIGH_LIMIT_THR1 0x4B |
| #define BMS1_OCV_USE_LIMIT_CTL 0x4C |
| /* Delay control */ |
| #define BMS1_S1_DELAY_CTL 0x5A |
| /* OCV interrupt threshold */ |
| #define BMS1_OCV_THR0 0x50 |
| #define BMS1_S2_SAMP_AVG_CTL 0x61 |
| /* SW CC interrupt threshold */ |
| #define BMS1_SW_CC_THR0 0xA0 |
| /* OCV for r registers */ |
| #define BMS1_OCV_FOR_R_DATA0 0x80 |
| #define BMS1_VSENSE_FOR_R_DATA0 0x82 |
| /* Coulomb counter data */ |
| #define BMS1_CC_DATA0 0x8A |
| /* Shadow Coulomb counter data */ |
| #define BMS1_SW_CC_DATA0 0xA8 |
| /* OCV for soc data */ |
| #define BMS1_OCV_FOR_SOC_DATA0 0x90 |
| #define BMS1_VSENSE_PON_DATA0 0x94 |
| #define BMS1_VSENSE_AVG_DATA0 0x98 |
| #define BMS1_VBAT_AVG_DATA0 0x9E |
| /* Extra bms registers */ |
| #define SOC_STORAGE_REG 0xB0 |
| #define IAVG_STORAGE_REG 0xB1 |
| #define BMS_FCC_COUNT 0xB2 |
| #define BMS_FCC_BASE_REG 0xB3 /* FCC updates - 0xB3 to 0xB7 */ |
| #define BMS_CHGCYL_BASE_REG 0xB8 /* FCC chgcyl - 0xB8 to 0xBC */ |
| #define CHARGE_INCREASE_STORAGE 0xBD |
| #define CHARGE_CYCLE_STORAGE_LSB 0xBE /* LSB=0xBE, MSB=0xBF */ |
| |
| /* IADC Channel Select */ |
| #define IADC1_BMS_REVISION2 0x01 |
| #define IADC1_BMS_ADC_CH_SEL_CTL 0x48 |
| #define IADC1_BMS_ADC_INT_RSNSN_CTL 0x49 |
| #define IADC1_BMS_FAST_AVG_EN 0x5B |
| |
| /* Configuration for saving of shutdown soc/iavg */ |
| #define IGNORE_SOC_TEMP_DECIDEG 50 |
| #define IAVG_STEP_SIZE_MA 10 |
| #define IAVG_INVALID 0xFF |
| #define SOC_INVALID 0x7E |
| |
| #define IAVG_SAMPLES 16 |
| |
| /* FCC learning constants */ |
| #define MAX_FCC_CYCLES 5 |
| #define DELTA_FCC_PERCENT 5 |
| #define VALID_FCC_CHGCYL_RANGE 50 |
| #define CHGCYL_RESOLUTION 20 |
| #define FCC_DEFAULT_TEMP 250 |
| |
| #define QPNP_BMS_DEV_NAME "qcom,qpnp-bms" |
| |
| enum { |
| SHDW_CC, |
| CC |
| }; |
| |
| enum { |
| NORESET, |
| RESET |
| }; |
| |
| struct soc_params { |
| int fcc_uah; |
| int cc_uah; |
| int rbatt_mohm; |
| int iavg_ua; |
| int uuc_uah; |
| int ocv_charge_uah; |
| int delta_time_s; |
| }; |
| |
| struct raw_soc_params { |
| uint16_t last_good_ocv_raw; |
| int64_t cc; |
| int64_t shdw_cc; |
| int last_good_ocv_uv; |
| }; |
| |
| struct fcc_sample { |
| int fcc_new; |
| int chargecycles; |
| }; |
| |
| struct bms_irq { |
| int irq; |
| unsigned long disabled; |
| unsigned long wake_enabled; |
| bool ready; |
| bool is_wake; |
| }; |
| |
| struct bms_wakeup_source { |
| struct wakeup_source source; |
| unsigned long disabled; |
| }; |
| |
| struct qpnp_bms_chip { |
| struct device *dev; |
| struct power_supply bms_psy; |
| bool bms_psy_registered; |
| struct power_supply *batt_psy; |
| struct spmi_device *spmi; |
| wait_queue_head_t bms_wait_queue; |
| u16 base; |
| u16 iadc_base; |
| u16 batt_pres_addr; |
| u16 soc_storage_addr; |
| |
| u8 revision1; |
| u8 revision2; |
| |
| u8 iadc_bms_revision1; |
| u8 iadc_bms_revision2; |
| |
| int battery_present; |
| int battery_status; |
| bool batfet_closed; |
| bool new_battery; |
| bool done_charging; |
| bool last_soc_invalid; |
| /* platform data */ |
| int r_sense_uohm; |
| unsigned int v_cutoff_uv; |
| int max_voltage_uv; |
| int r_conn_mohm; |
| int shutdown_soc_valid_limit; |
| int adjust_soc_low_threshold; |
| int chg_term_ua; |
| enum battery_type batt_type; |
| unsigned int fcc_mah; |
| struct single_row_lut *fcc_temp_lut; |
| struct single_row_lut *fcc_sf_lut; |
| struct pc_temp_ocv_lut *pc_temp_ocv_lut; |
| struct sf_lut *pc_sf_lut; |
| struct sf_lut *rbatt_sf_lut; |
| int default_rbatt_mohm; |
| int rbatt_capacitive_mohm; |
| int rbatt_mohm; |
| |
| struct delayed_work calculate_soc_delayed_work; |
| struct work_struct recalc_work; |
| struct work_struct batfet_open_work; |
| |
| struct mutex bms_output_lock; |
| struct mutex last_ocv_uv_mutex; |
| struct mutex vbat_monitor_mutex; |
| struct mutex soc_invalidation_mutex; |
| struct mutex last_soc_mutex; |
| struct mutex status_lock; |
| |
| bool use_external_rsense; |
| bool use_ocv_thresholds; |
| |
| bool ignore_shutdown_soc; |
| bool shutdown_soc_invalid; |
| int shutdown_soc; |
| int shutdown_iavg_ma; |
| |
| struct wake_lock low_voltage_wake_lock; |
| int low_voltage_threshold; |
| int low_soc_calc_threshold; |
| int low_soc_calculate_soc_ms; |
| int low_voltage_calculate_soc_ms; |
| int calculate_soc_ms; |
| struct bms_wakeup_source soc_wake_source; |
| struct wake_lock cv_wake_lock; |
| |
| uint16_t ocv_reading_at_100; |
| uint16_t prev_last_good_ocv_raw; |
| int insertion_ocv_uv; |
| int last_ocv_uv; |
| int charging_adjusted_ocv; |
| int last_ocv_temp; |
| int last_cc_uah; |
| unsigned long last_soc_change_sec; |
| unsigned long tm_sec; |
| unsigned long report_tm_sec; |
| bool first_time_calc_soc; |
| bool first_time_calc_uuc; |
| int64_t software_cc_uah; |
| int64_t software_shdw_cc_uah; |
| |
| int iavg_samples_ma[IAVG_SAMPLES]; |
| int iavg_index; |
| int iavg_num_samples; |
| struct timespec t_soc_queried; |
| int last_soc; |
| int last_soc_est; |
| int last_soc_unbound; |
| bool was_charging_at_sleep; |
| int charge_start_tm_sec; |
| int catch_up_time_sec; |
| struct single_row_lut *adjusted_fcc_temp_lut; |
| |
| struct qpnp_adc_tm_btm_param vbat_monitor_params; |
| struct qpnp_adc_tm_btm_param die_temp_monitor_params; |
| int temperature_margin; |
| unsigned int vadc_v0625; |
| unsigned int vadc_v1250; |
| |
| int system_load_count; |
| int prev_uuc_iavg_ma; |
| int prev_pc_unusable; |
| int ibat_at_cv_ua; |
| int soc_at_cv; |
| int prev_chg_soc; |
| int calculated_soc; |
| int prev_voltage_based_soc; |
| bool use_voltage_soc; |
| bool in_cv_range; |
| |
| int prev_batt_terminal_uv; |
| int high_ocv_correction_limit_uv; |
| int low_ocv_correction_limit_uv; |
| int flat_ocv_threshold_uv; |
| int hold_soc_est; |
| |
| int ocv_high_threshold_uv; |
| int ocv_low_threshold_uv; |
| unsigned long last_recalc_time; |
| |
| struct fcc_sample *fcc_learning_samples; |
| u8 fcc_sample_count; |
| int enable_fcc_learning; |
| int min_fcc_learning_soc; |
| int min_fcc_ocv_pc; |
| int min_fcc_learning_samples; |
| int start_soc; |
| int end_soc; |
| int start_pc; |
| int start_cc_uah; |
| int start_real_soc; |
| int end_cc_uah; |
| uint16_t fcc_new_mah; |
| int fcc_new_batt_temp; |
| uint16_t charge_cycles; |
| u8 charge_increase; |
| int fcc_resolution; |
| bool battery_removed; |
| bool in_taper_charge; |
| struct bms_irq sw_cc_thr_irq; |
| struct bms_irq ocv_thr_irq; |
| struct qpnp_vadc_chip *vadc_dev; |
| struct qpnp_iadc_chip *iadc_dev; |
| struct qpnp_adc_tm_chip *adc_tm_dev; |
| }; |
| |
| static struct of_device_id qpnp_bms_match_table[] = { |
| { .compatible = QPNP_BMS_DEV_NAME }, |
| {} |
| }; |
| |
| static char *qpnp_bms_supplicants[] = { |
| "battery" |
| }; |
| |
| static enum power_supply_property msm_bms_power_props[] = { |
| POWER_SUPPLY_PROP_CAPACITY, |
| POWER_SUPPLY_PROP_STATUS, |
| POWER_SUPPLY_PROP_CURRENT_NOW, |
| POWER_SUPPLY_PROP_RESISTANCE, |
| POWER_SUPPLY_PROP_CHARGE_COUNTER, |
| POWER_SUPPLY_PROP_CHARGE_COUNTER_SHADOW, |
| POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, |
| POWER_SUPPLY_PROP_CHARGE_FULL, |
| POWER_SUPPLY_PROP_CYCLE_COUNT, |
| }; |
| |
| static int discard_backup_fcc_data(struct qpnp_bms_chip *chip); |
| static void backup_charge_cycle(struct qpnp_bms_chip *chip); |
| |
| static bool bms_reset; |
| |
| static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val, |
| u16 base, int count) |
| { |
| int rc; |
| struct spmi_device *spmi = chip->spmi; |
| |
| rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count); |
| if (rc) { |
| pr_err("SPMI read failed rc=%d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val, |
| u16 base, int count) |
| { |
| int rc; |
| struct spmi_device *spmi = chip->spmi; |
| |
| rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count); |
| if (rc) { |
| pr_err("SPMI write failed rc=%d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| int rc; |
| u8 reg; |
| |
| rc = qpnp_read_wrapper(chip, ®, addr, 1); |
| if (rc) { |
| pr_err("read failed addr = %03X, rc = %d\n", addr, rc); |
| return rc; |
| } |
| reg &= ~mask; |
| reg |= val & mask; |
| rc = qpnp_write_wrapper(chip, ®, addr, 1); |
| if (rc) { |
| pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n", |
| addr, val, mask, reg, rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val); |
| } |
| |
| static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr, |
| u8 mask, u8 val) |
| { |
| return qpnp_masked_write_base(chip, chip->base + addr, mask, val); |
| } |
| |
| static void bms_stay_awake(struct bms_wakeup_source *source) |
| { |
| if (__test_and_clear_bit(0, &source->disabled)) { |
| __pm_stay_awake(&source->source); |
| pr_debug("enabled source %s\n", source->source.name); |
| } |
| } |
| |
| static void bms_relax(struct bms_wakeup_source *source) |
| { |
| if (!__test_and_set_bit(0, &source->disabled)) { |
| __pm_relax(&source->source); |
| pr_debug("disabled source %s\n", source->source.name); |
| } |
| } |
| |
| static void enable_bms_irq(struct bms_irq *irq) |
| { |
| if (irq->ready && __test_and_clear_bit(0, &irq->disabled)) { |
| enable_irq(irq->irq); |
| pr_debug("enabled irq %d\n", irq->irq); |
| if ((irq->is_wake) && |
| !__test_and_set_bit(0, &irq->wake_enabled)) |
| enable_irq_wake(irq->irq); |
| } |
| } |
| |
| static void disable_bms_irq(struct bms_irq *irq) |
| { |
| if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) { |
| disable_irq(irq->irq); |
| pr_debug("disabled irq %d\n", irq->irq); |
| if ((irq->is_wake) && |
| __test_and_clear_bit(0, &irq->wake_enabled)) |
| disable_irq_wake(irq->irq); |
| } |
| } |
| |
| static void disable_bms_irq_nosync(struct bms_irq *irq) |
| { |
| if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) { |
| disable_irq_nosync(irq->irq); |
| pr_debug("disabled irq %d\n", irq->irq); |
| if ((irq->is_wake) && |
| __test_and_clear_bit(0, &irq->wake_enabled)) |
| disable_irq_wake(irq->irq); |
| } |
| } |
| |
| #define HOLD_OREG_DATA BIT(0) |
| static int lock_output_data(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, |
| HOLD_OREG_DATA, HOLD_OREG_DATA); |
| if (rc) { |
| pr_err("couldnt lock bms output rc = %d\n", rc); |
| return rc; |
| } |
| /* |
| * Sleep for at least 60 microseconds here to make sure there has |
| * been at least two cycles of the sleep clock so that the registers |
| * are correctly locked. |
| */ |
| usleep_range(60, 2000); |
| return 0; |
| } |
| |
| static int unlock_output_data(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0); |
| if (rc) { |
| pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc); |
| return rc; |
| } |
| return 0; |
| } |
| |
| #define V_PER_BIT_MUL_FACTOR 97656 |
| #define V_PER_BIT_DIV_FACTOR 1000 |
| #define VADC_INTRINSIC_OFFSET 0x6000 |
| |
| static int vadc_reading_to_uv(int reading) |
| { |
| if (reading <= VADC_INTRINSIC_OFFSET) |
| return 0; |
| |
| return (reading - VADC_INTRINSIC_OFFSET) |
| * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR; |
| } |
| |
| #define VADC_CALIB_UV 625000 |
| #define VBATT_MUL_FACTOR 3 |
| static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv) |
| { |
| s64 numerator, denominator; |
| |
| if (reading_uv == 0) |
| return 0; |
| |
| /* don't adjust if not calibrated */ |
| if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) { |
| pr_debug("No cal yet return %d\n", |
| VBATT_MUL_FACTOR * reading_uv); |
| return VBATT_MUL_FACTOR * reading_uv; |
| } |
| |
| numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV; |
| denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625; |
| if (denominator == 0) |
| return reading_uv * VBATT_MUL_FACTOR; |
| return (VADC_CALIB_UV + div_s64(numerator, denominator)) |
| * VBATT_MUL_FACTOR; |
| } |
| |
| static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip, |
| int unadjusted_vbatt) |
| { |
| int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR; |
| |
| if (scaled_vbatt <= 0) |
| return VADC_INTRINSIC_OFFSET; |
| return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR) |
| + VADC_INTRINSIC_OFFSET; |
| } |
| |
| static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip, |
| uint16_t reading, bool is_pon_ocv) |
| { |
| int64_t uv; |
| int rc; |
| |
| uv = vadc_reading_to_uv(reading); |
| pr_debug("%u raw converted into %lld uv\n", reading, uv); |
| uv = adjust_vbatt_reading(chip, uv); |
| pr_debug("adjusted into %lld uv\n", uv); |
| rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv); |
| if (rc) |
| pr_debug("could not compensate vbatt\n"); |
| pr_debug("compensated into %lld uv\n", uv); |
| return uv; |
| } |
| |
| #define CC_READING_RESOLUTION_N 542535 |
| #define CC_READING_RESOLUTION_D 100000 |
| static s64 cc_reading_to_uv(s64 reading) |
| { |
| return div_s64(reading * CC_READING_RESOLUTION_N, |
| CC_READING_RESOLUTION_D); |
| } |
| |
| #define QPNP_ADC_GAIN_IDEAL 3291LL |
| static s64 cc_adjust_for_gain(s64 uv, uint16_t gain) |
| { |
| s64 result_uv; |
| |
| pr_debug("adjusting_uv = %lld\n", uv); |
| if (gain == 0) { |
| pr_debug("gain is %d, not adjusting\n", gain); |
| return uv; |
| } |
| pr_debug("adjusting by factor: %lld/%hu = %lld%%\n", |
| QPNP_ADC_GAIN_IDEAL, gain, |
| div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain)); |
| |
| result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain); |
| pr_debug("result_uv = %lld\n", result_uv); |
| return result_uv; |
| } |
| |
| static s64 cc_reverse_adjust_for_gain(struct qpnp_bms_chip *chip, s64 uv) |
| { |
| struct qpnp_iadc_calib calibration; |
| int gain; |
| s64 result_uv; |
| |
| qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration); |
| gain = (int)calibration.gain_raw - (int)calibration.offset_raw; |
| |
| pr_debug("reverse adjusting_uv = %lld\n", uv); |
| if (gain == 0) { |
| pr_debug("gain is %d, not adjusting\n", gain); |
| return uv; |
| } |
| pr_debug("adjusting by factor: %hu/%lld = %lld%%\n", |
| gain, QPNP_ADC_GAIN_IDEAL, |
| div64_s64((s64)gain * 100LL, |
| (s64)QPNP_ADC_GAIN_IDEAL)); |
| |
| result_uv = div64_s64(uv * (s64)gain, QPNP_ADC_GAIN_IDEAL); |
| pr_debug("result_uv = %lld\n", result_uv); |
| return result_uv; |
| } |
| |
| static int convert_vsense_to_uv(struct qpnp_bms_chip *chip, |
| int16_t reading) |
| { |
| struct qpnp_iadc_calib calibration; |
| |
| qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration); |
| return cc_adjust_for_gain(cc_reading_to_uv(reading), |
| calibration.gain_raw - calibration.offset_raw); |
| } |
| |
| static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv) |
| { |
| int rc; |
| int16_t reading; |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&reading, |
| chip->base + BMS1_VSENSE_AVG_DATA0, 2); |
| |
| if (rc) { |
| pr_err("fail to read VSENSE_AVG rc = %d\n", rc); |
| return rc; |
| } |
| |
| *result_uv = convert_vsense_to_uv(chip, reading); |
| return 0; |
| } |
| |
| static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua) |
| { |
| int rc, vsense_uv = 0; |
| int64_t temp_current; |
| |
| if (chip->r_sense_uohm == 0) { |
| pr_err("r_sense is zero\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&chip->bms_output_lock); |
| lock_output_data(chip); |
| read_vsense_avg(chip, &vsense_uv); |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| pr_debug("vsense_uv=%duV\n", vsense_uv); |
| /* cast for signed division */ |
| temp_current = div_s64((vsense_uv * 1000000LL), |
| (int)chip->r_sense_uohm); |
| |
| *result_ua = temp_current; |
| rc = qpnp_iadc_comp_result(chip->iadc_dev, &temp_current); |
| if (rc) |
| pr_debug("error compensation failed: %d\n", rc); |
| |
| pr_debug("%d uA err compensated ibat=%llduA\n", |
| *result_ua, temp_current); |
| *result_ua = temp_current; |
| return 0; |
| } |
| |
| static int get_battery_voltage(struct qpnp_bms_chip *chip, int *result_uv) |
| { |
| int rc; |
| struct qpnp_vadc_result adc_result; |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &adc_result); |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| VBAT_SNS, rc); |
| return rc; |
| } |
| pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical, |
| adc_result.measurement); |
| *result_uv = (int)adc_result.physical; |
| return 0; |
| } |
| |
| #define CC_36_BIT_MASK 0xFFFFFFFFFLL |
| static uint64_t convert_s64_to_s36(int64_t raw64) |
| { |
| return (uint64_t) raw64 & CC_36_BIT_MASK; |
| } |
| |
| #define SIGN_EXTEND_36_TO_64_MASK (-1LL ^ CC_36_BIT_MASK) |
| static int64_t convert_s36_to_s64(uint64_t raw36) |
| { |
| raw36 = raw36 & CC_36_BIT_MASK; |
| /* convert 36 bit signed value into 64 signed value */ |
| return (raw36 >> 35) == 0LL ? |
| raw36 : (SIGN_EXTEND_36_TO_64_MASK | raw36); |
| } |
| |
| static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading, |
| int cc_type) |
| { |
| int64_t raw_reading; |
| int rc; |
| |
| if (cc_type == SHDW_CC) |
| rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading, |
| chip->base + BMS1_SW_CC_DATA0, 5); |
| else |
| rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading, |
| chip->base + BMS1_CC_DATA0, 5); |
| if (rc) { |
| pr_err("Error reading cc: rc = %d\n", rc); |
| return -ENXIO; |
| } |
| |
| *reading = convert_s36_to_s64(raw_reading); |
| |
| return 0; |
| } |
| |
| static int calib_vadc(struct qpnp_bms_chip *chip) |
| { |
| int rc, raw_0625, raw_1250; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, REF_625MV, &result); |
| if (rc) { |
| pr_debug("vadc read failed with rc = %d\n", rc); |
| return rc; |
| } |
| raw_0625 = result.adc_code; |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, REF_125V, &result); |
| if (rc) { |
| pr_debug("vadc read failed with rc = %d\n", rc); |
| return rc; |
| } |
| raw_1250 = result.adc_code; |
| chip->vadc_v0625 = vadc_reading_to_uv(raw_0625); |
| chip->vadc_v1250 = vadc_reading_to_uv(raw_1250); |
| pr_debug("vadc calib: 0625 = %d raw (%d uv), 1250 = %d raw (%d uv)\n", |
| raw_0625, chip->vadc_v0625, |
| raw_1250, chip->vadc_v1250); |
| return 0; |
| } |
| |
| static void convert_and_store_ocv(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp, bool is_pon_ocv) |
| { |
| int rc; |
| |
| pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n", |
| chip->prev_last_good_ocv_raw, |
| raw->last_good_ocv_raw); |
| rc = calib_vadc(chip); |
| if (rc) |
| pr_err("Vadc reference voltage read failed, rc = %d\n", rc); |
| chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; |
| raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip, |
| raw->last_good_ocv_raw, is_pon_ocv); |
| chip->last_ocv_uv = raw->last_good_ocv_uv; |
| chip->last_ocv_temp = batt_temp; |
| chip->software_cc_uah = 0; |
| pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv); |
| } |
| |
| #define CLEAR_CC BIT(7) |
| #define CLEAR_SHDW_CC BIT(6) |
| /** |
| * reset both cc and sw-cc. |
| * note: this should only be ever called from one thread |
| * or there may be a race condition where CC is never enabled |
| * again |
| */ |
| static void reset_cc(struct qpnp_bms_chip *chip, u8 flags) |
| { |
| int rc; |
| |
| pr_debug("resetting cc manually with flags %hhu\n", flags); |
| mutex_lock(&chip->bms_output_lock); |
| rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL, |
| flags, |
| flags); |
| if (rc) |
| pr_err("cc reset failed: %d\n", rc); |
| |
| /* wait for 100us for cc to reset */ |
| udelay(100); |
| |
| rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL, |
| flags, 0); |
| if (rc) |
| pr_err("cc reenable failed: %d\n", rc); |
| mutex_unlock(&chip->bms_output_lock); |
| } |
| |
| static int get_battery_status(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| int rc; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the status property */ |
| rc = chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_STATUS, &ret); |
| if (rc) { |
| pr_debug("Battery does not export status: %d\n", rc); |
| return POWER_SUPPLY_STATUS_UNKNOWN; |
| } |
| return ret.intval; |
| } |
| |
| /* Default to false if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return POWER_SUPPLY_STATUS_UNKNOWN; |
| } |
| |
| static int get_battery_charge_type(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| int rc; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the type property */ |
| rc = chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_CHARGE_TYPE, &ret); |
| if (rc) { |
| pr_debug("Battery does not export charge type: %d\n" |
| , rc); |
| return POWER_SUPPLY_CHARGE_TYPE_NONE; |
| } |
| return ret.intval; |
| } |
| |
| /* Default to false if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return POWER_SUPPLY_CHARGE_TYPE_NONE; |
| } |
| |
| static bool is_battery_charging(struct qpnp_bms_chip *chip) |
| { |
| return get_battery_status(chip) == POWER_SUPPLY_STATUS_CHARGING; |
| } |
| |
| static bool is_battery_full(struct qpnp_bms_chip *chip) |
| { |
| return get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL; |
| } |
| |
| #define BAT_PRES_BIT BIT(7) |
| static bool is_battery_present(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| int rc; |
| u8 batt_pres; |
| |
| /* first try to use the batt_pres register if given */ |
| if (chip->batt_pres_addr) { |
| rc = qpnp_read_wrapper(chip, &batt_pres, |
| chip->batt_pres_addr, 1); |
| if (!rc && (batt_pres & BAT_PRES_BIT)) |
| return true; |
| else |
| return false; |
| } |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the present property */ |
| rc = chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_PRESENT, &ret); |
| if (rc) { |
| pr_debug("battery does not export present: %d\n", rc); |
| return true; |
| } |
| return ret.intval; |
| } |
| |
| /* Default to false if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return false; |
| } |
| |
| static int get_battery_insertion_ocv_uv(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| int rc, vbat; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the ocv property */ |
| rc = chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_VOLTAGE_OCV, &ret); |
| if (rc) { |
| /* |
| * Default to vbatt if the battery OCV is not |
| * registered. |
| */ |
| pr_debug("Battery psy does not have voltage ocv\n"); |
| rc = get_battery_voltage(chip, &vbat); |
| if (rc) |
| return -EINVAL; |
| return vbat; |
| } |
| return ret.intval; |
| } |
| |
| pr_debug("battery power supply is not registered\n"); |
| return -EINVAL; |
| } |
| |
| static bool is_batfet_closed(struct qpnp_bms_chip *chip) |
| { |
| union power_supply_propval ret = {0,}; |
| int rc; |
| |
| if (chip->batt_psy == NULL) |
| chip->batt_psy = power_supply_get_by_name("battery"); |
| if (chip->batt_psy) { |
| /* if battery has been registered, use the online property */ |
| rc = chip->batt_psy->get_property(chip->batt_psy, |
| POWER_SUPPLY_PROP_ONLINE, &ret); |
| if (rc) { |
| pr_debug("Battery does not export online: %d\n", rc); |
| return true; |
| } |
| return !!ret.intval; |
| } |
| |
| /* Default to true if the battery power supply is not registered. */ |
| pr_debug("battery power supply is not registered\n"); |
| return true; |
| } |
| |
| static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip, |
| int *ibat_ua, int *vbat_uv) |
| { |
| struct qpnp_iadc_result i_result; |
| struct qpnp_vadc_result v_result; |
| enum qpnp_iadc_channels iadc_channel; |
| int rc; |
| |
| iadc_channel = chip->use_external_rsense ? |
| EXTERNAL_RSENSE : INTERNAL_RSENSE; |
| if (is_battery_full(chip)) { |
| rc = get_battery_current(chip, ibat_ua); |
| if (rc) { |
| pr_err("bms current read failed with rc: %d\n", rc); |
| return rc; |
| } |
| rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &v_result); |
| if (rc) { |
| pr_err("vadc read failed with rc: %d\n", rc); |
| return rc; |
| } |
| *vbat_uv = (int)v_result.physical; |
| } else { |
| rc = qpnp_iadc_vadc_sync_read(chip->iadc_dev, |
| iadc_channel, &i_result, |
| VBAT_SNS, &v_result); |
| if (rc) { |
| pr_err("adc sync read failed with rc: %d\n", rc); |
| return rc; |
| } |
| /* |
| * reverse the current read by the iadc, since the bms uses |
| * flipped battery current polarity. |
| */ |
| *ibat_ua = -1 * (int)i_result.result_ua; |
| *vbat_uv = (int)v_result.physical; |
| } |
| |
| return 0; |
| } |
| |
| static int get_rbatt(struct qpnp_bms_chip *chip, |
| int soc_rbatt_mohm, int batt_temp) |
| { |
| int rbatt_mohm, scalefactor; |
| |
| rbatt_mohm = chip->default_rbatt_mohm; |
| if (chip->rbatt_sf_lut == NULL) { |
| pr_debug("RBATT = %d\n", rbatt_mohm); |
| return rbatt_mohm; |
| } |
| /* Convert the batt_temp to DegC from deciDegC */ |
| scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut, |
| batt_temp, soc_rbatt_mohm); |
| rbatt_mohm = (rbatt_mohm * scalefactor) / 100; |
| |
| rbatt_mohm += chip->r_conn_mohm; |
| rbatt_mohm += chip->rbatt_capacitive_mohm; |
| return rbatt_mohm; |
| } |
| |
| #define DEFAULT_RBATT_SOC 50 |
| static int estimate_ocv(struct qpnp_bms_chip *chip, int batt_temp) |
| { |
| int ibat_ua, vbat_uv, ocv_est_uv, rbatt_mohm, rc; |
| |
| rbatt_mohm = get_rbatt(chip, DEFAULT_RBATT_SOC, batt_temp); |
| rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv); |
| if (rc) { |
| pr_err("simultaneous failed rc = %d\n", rc); |
| return rc; |
| } |
| |
| ocv_est_uv = vbat_uv + (ibat_ua * rbatt_mohm) / 1000; |
| pr_debug("estimated pon ocv = %d, vbat_uv = %d ibat_ua = %d rbatt_mohm = %d\n", |
| ocv_est_uv, vbat_uv, ibat_ua, rbatt_mohm); |
| return ocv_est_uv; |
| } |
| |
| #define MIN_IAVG_MA 250 |
| static void reset_for_new_battery(struct qpnp_bms_chip *chip, int batt_temp) |
| { |
| chip->last_ocv_uv = chip->insertion_ocv_uv; |
| mutex_lock(&chip->last_soc_mutex); |
| chip->last_soc = -EINVAL; |
| chip->last_soc_invalid = true; |
| mutex_unlock(&chip->last_soc_mutex); |
| chip->soc_at_cv = -EINVAL; |
| chip->shutdown_soc_invalid = true; |
| chip->shutdown_soc = 0; |
| chip->shutdown_iavg_ma = MIN_IAVG_MA; |
| chip->prev_pc_unusable = -EINVAL; |
| reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC); |
| chip->software_cc_uah = 0; |
| chip->software_shdw_cc_uah = 0; |
| chip->last_cc_uah = INT_MIN; |
| chip->last_ocv_temp = batt_temp; |
| chip->prev_batt_terminal_uv = 0; |
| if (chip->enable_fcc_learning) { |
| chip->adjusted_fcc_temp_lut = NULL; |
| chip->fcc_new_mah = -EINVAL; |
| /* reset the charge-cycle and charge-increase registers */ |
| chip->charge_increase = 0; |
| chip->charge_cycles = 0; |
| backup_charge_cycle(chip); |
| /* discard all the FCC learnt data and reset the local table */ |
| discard_backup_fcc_data(chip); |
| memset(chip->fcc_learning_samples, 0, |
| chip->min_fcc_learning_samples * |
| sizeof(struct fcc_sample)); |
| } |
| } |
| |
| #define SIGN(x) ((x) < 0 ? -1 : 1) |
| #define UV_PER_SPIN 50000 |
| static int find_ocv_for_pc(struct qpnp_bms_chip *chip, int batt_temp, int pc) |
| { |
| int new_pc; |
| int ocv_mv; |
| int delta_mv = 5; |
| int max_spin_count; |
| int count = 0; |
| int sign, new_sign; |
| |
| ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp, pc); |
| |
| new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp, ocv_mv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_mv); |
| max_spin_count = 1 + (chip->max_voltage_uv - chip->v_cutoff_uv) |
| / UV_PER_SPIN; |
| sign = SIGN(pc - new_pc); |
| |
| while (abs(new_pc - pc) != 0 && count < max_spin_count) { |
| /* |
| * If the newly interpolated pc is larger than the lookup pc, |
| * the ocv should be reduced and vice versa |
| */ |
| new_sign = SIGN(pc - new_pc); |
| /* |
| * If the sign has changed, then we have passed the lookup pc. |
| * reduce the ocv step size to get finer results. |
| * |
| * If we have already reduced the ocv step size and still |
| * passed the lookup pc, just stop and use the current ocv. |
| * This can only happen if the batterydata profile is |
| * non-monotonic anyways. |
| */ |
| if (new_sign != sign) { |
| if (delta_mv > 1) |
| delta_mv = 1; |
| else |
| break; |
| } |
| sign = new_sign; |
| |
| ocv_mv = ocv_mv + delta_mv * sign; |
| new_pc = interpolate_pc(chip->pc_temp_ocv_lut, |
| batt_temp, ocv_mv); |
| pr_debug("test revlookup pc = %d for ocv = %d\n", |
| new_pc, ocv_mv); |
| count++; |
| } |
| |
| return ocv_mv * 1000; |
| } |
| |
| #define OCV_RAW_UNINITIALIZED 0xFFFF |
| #define MIN_OCV_UV 2000000 |
| static int read_soc_params_raw(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp) |
| { |
| int warm_reset, rc; |
| |
| mutex_lock(&chip->bms_output_lock); |
| |
| lock_output_data(chip); |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw, |
| chip->base + BMS1_OCV_FOR_SOC_DATA0, 2); |
| if (rc) { |
| pr_err("Error reading ocv: rc = %d\n", rc); |
| goto param_err; |
| } |
| |
| rc = read_cc_raw(chip, &raw->cc, CC); |
| rc |= read_cc_raw(chip, &raw->shdw_cc, SHDW_CC); |
| if (rc) { |
| pr_err("Failed to read raw cc data, rc = %d\n", rc); |
| goto param_err; |
| } |
| |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) { |
| convert_and_store_ocv(chip, raw, batt_temp, true); |
| pr_debug("PON_OCV_UV = %d, cc = %llx\n", |
| chip->last_ocv_uv, raw->cc); |
| warm_reset = qpnp_pon_is_warm_reset(); |
| if (raw->last_good_ocv_uv < MIN_OCV_UV || warm_reset > 0) { |
| pr_debug("OCV is stale or bad, estimating new OCV.\n"); |
| chip->last_ocv_uv = estimate_ocv(chip, batt_temp); |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC); |
| pr_debug("New PON_OCV_UV = %d, cc = %llx\n", |
| chip->last_ocv_uv, raw->cc); |
| } |
| } else if (chip->new_battery) { |
| /* if a new battery was inserted, estimate the ocv */ |
| reset_for_new_battery(chip, batt_temp); |
| raw->cc = 0; |
| raw->shdw_cc = 0; |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| chip->new_battery = false; |
| } else if (chip->done_charging) { |
| chip->done_charging = false; |
| /* if we just finished charging, reset CC and fake 100% */ |
| chip->ocv_reading_at_100 = raw->last_good_ocv_raw; |
| chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp, 100); |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| raw->cc = 0; |
| raw->shdw_cc = 0; |
| reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC); |
| chip->last_ocv_temp = batt_temp; |
| chip->software_cc_uah = 0; |
| chip->software_shdw_cc_uah = 0; |
| chip->last_cc_uah = INT_MIN; |
| pr_debug("EOC Battery full ocv_reading = 0x%x\n", |
| chip->ocv_reading_at_100); |
| } else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) { |
| convert_and_store_ocv(chip, raw, batt_temp, false); |
| /* forget the old cc value upon ocv */ |
| chip->last_cc_uah = INT_MIN; |
| } else { |
| raw->last_good_ocv_uv = chip->last_ocv_uv; |
| } |
| |
| /* stop faking a high OCV if we get a new OCV */ |
| if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) |
| chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED; |
| |
| pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n", |
| raw->last_good_ocv_raw, raw->last_good_ocv_uv); |
| pr_debug("cc_raw= 0x%llx\n", raw->cc); |
| return 0; |
| |
| param_err: |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| return rc; |
| } |
| |
| static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv, |
| int batt_temp) |
| { |
| int pc; |
| |
| pc = interpolate_pc(chip->pc_temp_ocv_lut, |
| batt_temp, ocv_uv / 1000); |
| pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n", |
| pc, ocv_uv, batt_temp); |
| /* Multiply the initial FCC value by the scale factor. */ |
| return pc; |
| } |
| |
| static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp) |
| { |
| int fcc_uah; |
| |
| if (chip->adjusted_fcc_temp_lut == NULL) { |
| /* interpolate_fcc returns a mv value. */ |
| fcc_uah = interpolate_fcc(chip->fcc_temp_lut, |
| batt_temp) * 1000; |
| pr_debug("fcc = %d uAh\n", fcc_uah); |
| return fcc_uah; |
| } else { |
| return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut, |
| batt_temp); |
| } |
| } |
| |
| /* calculate remaining charge at the time of ocv */ |
| static int calculate_ocv_charge(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int fcc_uah) |
| { |
| int ocv_uv, pc; |
| |
| ocv_uv = raw->last_good_ocv_uv; |
| pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp); |
| pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc); |
| return (fcc_uah * pc) / 100; |
| } |
| |
| #define CC_READING_TICKS 56 |
| #define SLEEP_CLK_HZ 32764 |
| #define SECONDS_PER_HOUR 3600 |
| |
| static s64 cc_uv_to_pvh(s64 cc_uv) |
| { |
| /* Note that it is necessary need to multiply by 1000000 to convert |
| * from uvh to pvh here. |
| * However, the maximum Coulomb Counter value is 2^35, which can cause |
| * an over flow. |
| * Multiply by 100000 first to perserve as much precision as possible |
| * then multiply by 10 after doing the division in order to avoid |
| * overflow on the maximum Coulomb Counter value. |
| */ |
| return div_s64(cc_uv * CC_READING_TICKS * 100000, |
| SLEEP_CLK_HZ * SECONDS_PER_HOUR) * 10; |
| } |
| |
| /** |
| * calculate_cc() - converts a hardware coulomb counter reading into uah |
| * @chip: the bms chip pointer |
| * @cc: the cc reading from bms h/w |
| * @cc_type: calcualte cc from regular or shadow coulomb counter |
| * @clear_cc: whether this function should clear the hardware counter |
| * after reading |
| * |
| * Converts the 64 bit hardware coulomb counter into microamp-hour by taking |
| * into account hardware resolution and adc errors. |
| * |
| * Return: the coulomb counter based charge in uAh (micro-amp hour) |
| */ |
| static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc, |
| int cc_type, int clear_cc) |
| { |
| struct qpnp_iadc_calib calibration; |
| struct qpnp_vadc_result result; |
| int64_t cc_voltage_uv, cc_pvh, cc_uah, *software_counter; |
| int rc; |
| |
| software_counter = cc_type == SHDW_CC ? |
| &chip->software_shdw_cc_uah : &chip->software_cc_uah; |
| rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result); |
| if (rc) { |
| pr_err("could not read pmic die temperature: %d\n", rc); |
| return *software_counter; |
| } |
| |
| qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration); |
| pr_debug("%scc = %lld, die_temp = %lld\n", |
| cc_type == SHDW_CC ? "shdw_" : "", |
| cc, result.physical); |
| cc_voltage_uv = cc_reading_to_uv(cc); |
| cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv, |
| calibration.gain_raw |
| - calibration.offset_raw); |
| cc_pvh = cc_uv_to_pvh(cc_voltage_uv); |
| cc_uah = div_s64(cc_pvh, chip->r_sense_uohm); |
| rc = qpnp_iadc_comp_result(chip->iadc_dev, &cc_uah); |
| if (rc) |
| pr_debug("error compensation failed: %d\n", rc); |
| if (clear_cc == RESET) { |
| pr_debug("software_%scc = %lld, added cc_uah = %lld\n", |
| cc_type == SHDW_CC ? "sw_" : "", |
| *software_counter, cc_uah); |
| *software_counter += cc_uah; |
| reset_cc(chip, cc_type == SHDW_CC ? CLEAR_SHDW_CC : CLEAR_CC); |
| return (int)*software_counter; |
| } else { |
| pr_debug("software_%scc = %lld, cc_uah = %lld, total = %lld\n", |
| cc_type == SHDW_CC ? "shdw_" : "", |
| *software_counter, cc_uah, |
| *software_counter + cc_uah); |
| return *software_counter + cc_uah; |
| } |
| } |
| |
| #define IAVG_MINIMAL_TIME 2 |
| static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah, |
| int *iavg_ua, int delta_time_s) |
| { |
| int delta_cc_uah = 0; |
| |
| /* |
| * use the battery current if called too quickly |
| */ |
| if (delta_time_s < IAVG_MINIMAL_TIME |
| || chip->last_cc_uah == INT_MIN) { |
| get_battery_current(chip, iavg_ua); |
| goto out; |
| } |
| |
| delta_cc_uah = cc_uah - chip->last_cc_uah; |
| |
| *iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s); |
| |
| out: |
| pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua); |
| |
| /* remember cc_uah */ |
| chip->last_cc_uah = cc_uah; |
| } |
| |
| static int calculate_termination_uuc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp, int uuc_iavg_ma, |
| int *ret_pc_unusable) |
| { |
| int unusable_uv, pc_unusable, uuc_uah; |
| int i = 0; |
| int ocv_mv; |
| int rbatt_mohm; |
| int delta_uv; |
| int prev_delta_uv = 0; |
| int prev_rbatt_mohm = 0; |
| int uuc_rbatt_mohm; |
| |
| for (i = 0; i <= 100; i++) { |
| ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut, |
| batt_temp, i); |
| rbatt_mohm = get_rbatt(chip, i, batt_temp); |
| unusable_uv = (rbatt_mohm * uuc_iavg_ma) |
| + (chip->v_cutoff_uv); |
| delta_uv = ocv_mv * 1000 - unusable_uv; |
| |
| if (delta_uv > 0) |
| break; |
| |
| prev_delta_uv = delta_uv; |
| prev_rbatt_mohm = rbatt_mohm; |
| } |
| |
| uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv, |
| prev_rbatt_mohm, prev_delta_uv, |
| 0); |
| |
| unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv); |
| |
| pc_unusable = calculate_pc(chip, unusable_uv, batt_temp); |
| uuc_uah = (params->fcc_uah * pc_unusable) / 100; |
| pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d rbatt_pc = %d uuc = %d\n", |
| uuc_iavg_ma, |
| uuc_rbatt_mohm, unusable_uv, |
| pc_unusable, i, uuc_uah); |
| *ret_pc_unusable = pc_unusable; |
| return uuc_uah; |
| } |
| |
| #define TIME_PER_PERCENT_UUC 60 |
| static int adjust_uuc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int new_pc_unusable, |
| int new_uuc_uah, |
| int batt_temp) |
| { |
| int new_unusable_mv, new_iavg_ma; |
| int max_percent_change; |
| |
| max_percent_change = max(params->delta_time_s |
| / TIME_PER_PERCENT_UUC, 1); |
| |
| if (chip->first_time_calc_uuc || chip->prev_pc_unusable == -EINVAL |
| || abs(chip->prev_pc_unusable - new_pc_unusable) |
| <= max_percent_change) { |
| chip->prev_pc_unusable = new_pc_unusable; |
| return new_uuc_uah; |
| } |
| |
| /* the uuc is trying to change more than 1% restrict it */ |
| if (new_pc_unusable > chip->prev_pc_unusable) |
| chip->prev_pc_unusable += max_percent_change; |
| else |
| chip->prev_pc_unusable -= max_percent_change; |
| |
| new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100; |
| |
| /* also find update the iavg_ma accordingly */ |
| new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut, |
| batt_temp, chip->prev_pc_unusable); |
| if (new_unusable_mv < chip->v_cutoff_uv/1000) |
| new_unusable_mv = chip->v_cutoff_uv/1000; |
| |
| new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv) |
| / params->rbatt_mohm; |
| if (new_iavg_ma == 0) |
| new_iavg_ma = 1; |
| chip->prev_uuc_iavg_ma = new_iavg_ma; |
| pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n", |
| new_uuc_uah, chip->prev_pc_unusable, |
| new_unusable_mv, new_iavg_ma); |
| |
| return new_uuc_uah; |
| } |
| |
| static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp) |
| { |
| int uuc_uah_iavg; |
| int i; |
| int uuc_iavg_ma = params->iavg_ua / 1000; |
| int pc_unusable; |
| |
| /* |
| * if called first time, fill all the samples with |
| * the shutdown_iavg_ma |
| */ |
| if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) { |
| pr_debug("Using shutdown_iavg_ma = %d in all samples\n", |
| chip->shutdown_iavg_ma); |
| for (i = 0; i < IAVG_SAMPLES; i++) |
| chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma; |
| |
| chip->iavg_index = 0; |
| chip->iavg_num_samples = IAVG_SAMPLES; |
| } |
| |
| if (params->delta_time_s >= IAVG_MINIMAL_TIME) { |
| /* |
| * if charging use a nominal avg current to keep |
| * a reasonable UUC while charging |
| */ |
| if (uuc_iavg_ma < MIN_IAVG_MA) |
| uuc_iavg_ma = MIN_IAVG_MA; |
| chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma; |
| chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES; |
| chip->iavg_num_samples++; |
| if (chip->iavg_num_samples >= IAVG_SAMPLES) |
| chip->iavg_num_samples = IAVG_SAMPLES; |
| } |
| |
| /* now that this sample is added calcualte the average */ |
| uuc_iavg_ma = 0; |
| if (chip->iavg_num_samples != 0) { |
| for (i = 0; i < chip->iavg_num_samples; i++) { |
| pr_debug("iavg_samples_ma[%d] = %d\n", i, |
| chip->iavg_samples_ma[i]); |
| uuc_iavg_ma += chip->iavg_samples_ma[i]; |
| } |
| |
| uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma, |
| chip->iavg_num_samples); |
| } |
| |
| /* |
| * if we're in bms reset mode, force uuc to be 3% of fcc |
| */ |
| if (bms_reset) |
| return (params->fcc_uah * 3) / 100; |
| |
| uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp, |
| uuc_iavg_ma, &pc_unusable); |
| pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n", |
| uuc_iavg_ma, uuc_uah_iavg); |
| |
| chip->prev_uuc_iavg_ma = uuc_iavg_ma; |
| /* restrict the uuc such that it can increase only by one percent */ |
| uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable, |
| uuc_uah_iavg, batt_temp); |
| |
| return uuc_uah_iavg; |
| } |
| |
| static s64 find_ocv_charge_for_soc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, int soc) |
| { |
| return div_s64((s64)soc * (params->fcc_uah - params->uuc_uah), |
| 100) + params->cc_uah + params->uuc_uah; |
| } |
| |
| static int find_pc_for_soc(struct qpnp_bms_chip *chip, |
| struct soc_params *params, int soc) |
| { |
| int ocv_charge_uah = find_ocv_charge_for_soc(chip, params, soc); |
| int pc; |
| |
| pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah); |
| pc = clamp(pc, 0, 100); |
| pr_debug("soc = %d, fcc = %d uuc = %d rc = %d pc = %d\n", |
| soc, params->fcc_uah, params->uuc_uah, |
| ocv_charge_uah, pc); |
| return pc; |
| } |
| |
| static int get_current_time(unsigned long *now_tm_sec) |
| { |
| struct rtc_time tm; |
| struct rtc_device *rtc; |
| int rc; |
| |
| rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); |
| if (rtc == NULL) { |
| pr_err("%s: unable to open rtc device (%s)\n", |
| __FILE__, CONFIG_RTC_HCTOSYS_DEVICE); |
| return -EINVAL; |
| } |
| |
| rc = rtc_read_time(rtc, &tm); |
| if (rc) { |
| pr_err("Error reading rtc device (%s) : %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto close_time; |
| } |
| |
| rc = rtc_valid_tm(&tm); |
| if (rc) { |
| pr_err("Invalid RTC time (%s): %d\n", |
| CONFIG_RTC_HCTOSYS_DEVICE, rc); |
| goto close_time; |
| } |
| rtc_tm_to_time(&tm, now_tm_sec); |
| |
| close_time: |
| rtc_class_close(rtc); |
| return rc; |
| } |
| |
| /* Returns estimated battery resistance */ |
| static int get_prop_bms_batt_resistance(struct qpnp_bms_chip *chip) |
| { |
| return chip->rbatt_mohm * 1000; |
| } |
| |
| /* Returns instantaneous current in uA */ |
| static int get_prop_bms_current_now(struct qpnp_bms_chip *chip) |
| { |
| int rc, result_ua; |
| |
| rc = get_battery_current(chip, &result_ua); |
| if (rc) { |
| pr_err("failed to get current: %d\n", rc); |
| return rc; |
| } |
| return result_ua; |
| } |
| |
| /* Returns coulomb counter in uAh */ |
| static int get_prop_bms_charge_counter(struct qpnp_bms_chip *chip) |
| { |
| int64_t cc_raw; |
| |
| mutex_lock(&chip->bms_output_lock); |
| lock_output_data(chip); |
| read_cc_raw(chip, &cc_raw, CC); |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| return calculate_cc(chip, cc_raw, CC, NORESET); |
| } |
| |
| /* Returns shadow coulomb counter in uAh */ |
| static int get_prop_bms_charge_counter_shadow(struct qpnp_bms_chip *chip) |
| { |
| int64_t cc_raw; |
| |
| mutex_lock(&chip->bms_output_lock); |
| lock_output_data(chip); |
| read_cc_raw(chip, &cc_raw, SHDW_CC); |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| |
| return calculate_cc(chip, cc_raw, SHDW_CC, NORESET); |
| } |
| |
| /* Returns full charge design in uAh */ |
| static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip) |
| { |
| return chip->fcc_mah * 1000; |
| } |
| |
| /* Returns the current full charge in uAh */ |
| static int get_prop_bms_charge_full(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| struct qpnp_vadc_result result; |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result); |
| if (rc) { |
| pr_err("Unable to read battery temperature\n"); |
| return rc; |
| } |
| |
| return calculate_fcc(chip, (int)result.physical); |
| } |
| |
| static int calculate_delta_time(unsigned long *time_stamp, int *delta_time_s) |
| { |
| unsigned long now_tm_sec = 0; |
| |
| /* default to delta time = 0 if anything fails */ |
| *delta_time_s = 0; |
| |
| if (get_current_time(&now_tm_sec)) { |
| pr_err("RTC read failed\n"); |
| return 0; |
| } |
| |
| *delta_time_s = (now_tm_sec - *time_stamp); |
| |
| /* remember this time */ |
| *time_stamp = now_tm_sec; |
| return 0; |
| } |
| |
| static void calculate_soc_params(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| struct soc_params *params, |
| int batt_temp) |
| { |
| int soc_rbatt, shdw_cc_uah; |
| |
| calculate_delta_time(&chip->tm_sec, ¶ms->delta_time_s); |
| pr_debug("tm_sec = %ld, delta_s = %d\n", |
| chip->tm_sec, params->delta_time_s); |
| params->fcc_uah = calculate_fcc(chip, batt_temp); |
| pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp); |
| |
| /* calculate remainging charge */ |
| params->ocv_charge_uah = calculate_ocv_charge( |
| chip, raw, |
| params->fcc_uah); |
| pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah); |
| |
| /* calculate cc micro_volt_hour */ |
| params->cc_uah = calculate_cc(chip, raw->cc, CC, RESET); |
| shdw_cc_uah = calculate_cc(chip, raw->shdw_cc, SHDW_CC, RESET); |
| pr_debug("cc_uah = %duAh raw->cc = %llx, shdw_cc_uah = %duAh raw->shdw_cc = %llx\n", |
| params->cc_uah, raw->cc, |
| shdw_cc_uah, raw->shdw_cc); |
| |
| soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100) |
| / params->fcc_uah; |
| if (soc_rbatt < 0) |
| soc_rbatt = 0; |
| params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp); |
| pr_debug("rbatt_mohm = %d\n", params->rbatt_mohm); |
| |
| if (params->rbatt_mohm != chip->rbatt_mohm) { |
| chip->rbatt_mohm = params->rbatt_mohm; |
| if (chip->bms_psy_registered) |
| power_supply_changed(&chip->bms_psy); |
| } |
| |
| calculate_iavg(chip, params->cc_uah, ¶ms->iavg_ua, |
| params->delta_time_s); |
| |
| params->uuc_uah = calculate_unusable_charge_uah(chip, params, |
| batt_temp); |
| pr_debug("UUC = %uuAh\n", params->uuc_uah); |
| } |
| |
| static int bound_soc(int soc) |
| { |
| soc = max(0, soc); |
| soc = min(100, soc); |
| return soc; |
| } |
| |
| #define IBAT_TOL_MASK 0x0F |
| #define OCV_TOL_MASK 0xF0 |
| #define IBAT_TOL_DEFAULT 0x03 |
| #define IBAT_TOL_NOCHG 0x0F |
| #define OCV_TOL_DEFAULT 0x20 |
| #define OCV_TOL_NO_OCV 0x00 |
| static int stop_ocv_updates(struct qpnp_bms_chip *chip) |
| { |
| pr_debug("stopping ocv updates\n"); |
| return qpnp_masked_write(chip, BMS1_TOL_CTL, |
| OCV_TOL_MASK, OCV_TOL_NO_OCV); |
| } |
| |
| static int reset_bms_for_test(struct qpnp_bms_chip *chip) |
| { |
| int ibat_ua = 0, vbat_uv = 0, rc; |
| int ocv_est_uv; |
| |
| if (!chip) { |
| pr_err("BMS driver has not been initialized yet!\n"); |
| return -EINVAL; |
| } |
| |
| rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv); |
| |
| /* |
| * Don't include rbatt and rbatt_capacitative since we expect this to |
| * be used with a fake battery which does not have internal resistances |
| */ |
| ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000; |
| pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv); |
| chip->last_ocv_uv = ocv_est_uv; |
| mutex_lock(&chip->last_soc_mutex); |
| chip->last_soc = -EINVAL; |
| chip->last_soc_invalid = true; |
| mutex_unlock(&chip->last_soc_mutex); |
| reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC); |
| chip->software_cc_uah = 0; |
| chip->software_shdw_cc_uah = 0; |
| chip->last_cc_uah = INT_MIN; |
| stop_ocv_updates(chip); |
| |
| pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n", |
| chip->last_ocv_uv, vbat_uv, ibat_ua); |
| |
| return rc; |
| } |
| |
| static int bms_reset_set(const char *val, const struct kernel_param *kp) |
| { |
| int rc; |
| |
| rc = param_set_bool(val, kp); |
| if (rc) { |
| pr_err("Unable to set bms_reset: %d\n", rc); |
| return rc; |
| } |
| |
| if (*(bool *)kp->arg) { |
| struct power_supply *bms_psy = power_supply_get_by_name("bms"); |
| struct qpnp_bms_chip *chip = container_of(bms_psy, |
| struct qpnp_bms_chip, bms_psy); |
| |
| rc = reset_bms_for_test(chip); |
| if (rc) { |
| pr_err("Unable to modify bms_reset: %d\n", rc); |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static struct kernel_param_ops bms_reset_ops = { |
| .set = bms_reset_set, |
| .get = param_get_bool, |
| }; |
| |
| module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644); |
| |
| #define SOC_STORAGE_MASK 0xFE |
| static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp, |
| int soc) |
| { |
| u8 temp; |
| int rc; |
| int iavg_ma = chip->prev_uuc_iavg_ma; |
| |
| if (iavg_ma > MIN_IAVG_MA) |
| temp = (iavg_ma - MIN_IAVG_MA) / IAVG_STEP_SIZE_MA; |
| else |
| temp = 0; |
| |
| rc = qpnp_write_wrapper(chip, &temp, chip->base + IAVG_STORAGE_REG, 1); |
| |
| /* store an invalid soc if temperature is below 5degC */ |
| if (batt_temp > IGNORE_SOC_TEMP_DECIDEG) |
| qpnp_masked_write_base(chip, chip->soc_storage_addr, |
| SOC_STORAGE_MASK, (soc + 1) << 1); |
| else |
| qpnp_masked_write_base(chip, chip->soc_storage_addr, |
| SOC_STORAGE_MASK, SOC_STORAGE_MASK); |
| } |
| |
| static int scale_soc_while_chg(struct qpnp_bms_chip *chip, int chg_time_sec, |
| int catch_up_sec, int new_soc, int prev_soc) |
| { |
| int scaled_soc; |
| int numerator; |
| |
| /* |
| * Don't report a high value immediately slowly scale the |
| * value from prev_soc to the new soc based on a charge time |
| * weighted average |
| */ |
| pr_debug("cts = %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec); |
| if (catch_up_sec == 0) |
| return new_soc; |
| |
| if (chg_time_sec > catch_up_sec) |
| return new_soc; |
| |
| numerator = (catch_up_sec - chg_time_sec) * prev_soc |
| + chg_time_sec * new_soc; |
| scaled_soc = numerator / catch_up_sec; |
| |
| pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n", |
| chg_time_sec, new_soc, prev_soc, scaled_soc); |
| |
| return scaled_soc; |
| } |
| |
| /* |
| * bms_fake_battery is set in setups where a battery emulator is used instead |
| * of a real battery. This makes the bms driver report a different/fake value |
| * regardless of the calculated state of charge. |
| */ |
| static int bms_fake_battery = -EINVAL; |
| module_param(bms_fake_battery, int, 0644); |
| |
| static int report_voltage_based_soc(struct qpnp_bms_chip *chip) |
| { |
| pr_debug("Reported voltage based soc = %d\n", |
| chip->prev_voltage_based_soc); |
| return chip->prev_voltage_based_soc; |
| } |
| |
| #define SOC_CATCHUP_SEC_MAX 600 |
| #define SOC_CATCHUP_SEC_PER_PERCENT 60 |
| #define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX / SOC_CATCHUP_SEC_PER_PERCENT) |
| #define SOC_CHANGE_PER_SEC 5 |
| #define REPORT_SOC_WAIT_MS 10000 |
| static int report_cc_based_soc(struct qpnp_bms_chip *chip) |
| { |
| int soc, soc_change; |
| int time_since_last_change_sec, charge_time_sec = 0; |
| unsigned long last_change_sec; |
| struct qpnp_vadc_result result; |
| int batt_temp; |
| int rc; |
| bool charging, charging_since_last_report; |
| |
| rc = wait_event_interruptible_timeout(chip->bms_wait_queue, |
| chip->calculated_soc != -EINVAL, |
| round_jiffies_relative(msecs_to_jiffies |
| (REPORT_SOC_WAIT_MS))); |
| |
| if (rc == 0 && chip->calculated_soc == -EINVAL) { |
| pr_debug("calculate soc timed out\n"); |
| } else if (rc == -ERESTARTSYS) { |
| pr_err("Wait for SoC interrupted.\n"); |
| return rc; |
| } |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result); |
| |
| if (rc) { |
| pr_err("error reading adc channel = %d, rc = %d\n", |
| LR_MUX1_BATT_THERM, rc); |
| return rc; |
| } |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_soc_mutex); |
| soc = chip->calculated_soc; |
| |
| last_change_sec = chip->last_soc_change_sec; |
| calculate_delta_time(&last_change_sec, &time_since_last_change_sec); |
| |
| charging = chip->battery_status == POWER_SUPPLY_STATUS_CHARGING; |
| charging_since_last_report = charging || (chip->last_soc_unbound |
| && chip->was_charging_at_sleep); |
| /* |
| * account for charge time - limit it to SOC_CATCHUP_SEC to |
| * avoid overflows when charging continues for extended periods |
| */ |
| if (charging) { |
| if (chip->charge_start_tm_sec == 0) { |
| /* |
| * calculating soc for the first time |
| * after start of chg. Initialize catchup time |
| */ |
| if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC) |
| chip->catch_up_time_sec = |
| (soc - chip->last_soc) |
| * SOC_CATCHUP_SEC_PER_PERCENT; |
| else |
| chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX; |
| |
| if (chip->catch_up_time_sec < 0) |
| chip->catch_up_time_sec = 0; |
| chip->charge_start_tm_sec = last_change_sec; |
| } |
| |
| charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec |
| - chip->charge_start_tm_sec); |
| |
| /* end catchup if calculated soc and last soc are same */ |
| if (chip->last_soc == soc) |
| chip->catch_up_time_sec = 0; |
| } |
| |
| if (chip->last_soc != -EINVAL) { |
| /* |
| * last_soc < soc ... if we have not been charging at all |
| * since the last time this was called, report previous SoC. |
| * Otherwise, scale and catch up. |
| */ |
| if (chip->last_soc < soc && !charging_since_last_report) |
| soc = chip->last_soc; |
| else if (chip->last_soc < soc && soc != 100) |
| soc = scale_soc_while_chg(chip, charge_time_sec, |
| chip->catch_up_time_sec, |
| soc, chip->last_soc); |
| |
| /* if the battery is close to cutoff allow more change */ |
| if (wake_lock_active(&chip->low_voltage_wake_lock)) |
| soc_change = min((int)abs(chip->last_soc - soc), |
| time_since_last_change_sec); |
| else |
| soc_change = min((int)abs(chip->last_soc - soc), |
| time_since_last_change_sec |
| / SOC_CHANGE_PER_SEC); |
| |
| if (chip->last_soc_unbound) { |
| chip->last_soc_unbound = false; |
| } else { |
| /* |
| * if soc have not been unbound by resume, |
| * only change reported SoC by 1. |
| */ |
| soc_change = min(1, soc_change); |
| } |
| |
| if (soc < chip->last_soc && soc != 0) |
| soc = chip->last_soc - soc_change; |
| if (soc > chip->last_soc && soc != 100) |
| soc = chip->last_soc + soc_change; |
| } |
| |
| if (chip->last_soc != soc && !chip->last_soc_unbound) |
| chip->last_soc_change_sec = last_change_sec; |
| |
| pr_debug("last_soc = %d, calculated_soc = %d, soc = %d, time since last change = %d\n", |
| chip->last_soc, chip->calculated_soc, |
| soc, time_since_last_change_sec); |
| chip->last_soc = bound_soc(soc); |
| backup_soc_and_iavg(chip, batt_temp, chip->last_soc); |
| pr_debug("Reported SOC = %d\n", chip->last_soc); |
| mutex_unlock(&chip->last_soc_mutex); |
| |
| return soc; |
| } |
| |
| static int report_state_of_charge(struct qpnp_bms_chip *chip) |
| { |
| if (bms_fake_battery != -EINVAL) { |
| pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery); |
| return bms_fake_battery; |
| } else if (chip->use_voltage_soc) |
| return report_voltage_based_soc(chip); |
| else |
| return report_cc_based_soc(chip); |
| } |
| |
| #define VDD_MAX_ERR 5000 |
| #define VDD_STEP_SIZE 10000 |
| #define MAX_COUNT_BEFORE_RESET_TO_CC 3 |
| static int charging_adjustments(struct qpnp_bms_chip *chip, |
| struct soc_params *params, int soc, |
| int vbat_uv, int ibat_ua, int batt_temp) |
| { |
| int chg_soc, soc_ibat, batt_terminal_uv, weight_ibat, weight_cc; |
| |
| batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000; |
| |
| if (chip->soc_at_cv == -EINVAL) { |
| if (batt_terminal_uv >= chip->max_voltage_uv - VDD_MAX_ERR || |
| chip->in_taper_charge) { |
| chip->soc_at_cv = soc; |
| chip->prev_chg_soc = soc; |
| chip->ibat_at_cv_ua = params->iavg_ua; |
| pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n", |
| ibat_ua, soc); |
| } else { |
| /* In constant current charging return the calc soc */ |
| pr_debug("CC CHG SOC %d\n", soc); |
| } |
| |
| chip->prev_batt_terminal_uv = batt_terminal_uv; |
| chip->system_load_count = 0; |
| return soc; |
| } else if (ibat_ua > 0 && batt_terminal_uv |
| < chip->max_voltage_uv - (VDD_MAX_ERR * 2)) { |
| if (chip->system_load_count > MAX_COUNT_BEFORE_RESET_TO_CC) { |
| chip->soc_at_cv = -EINVAL; |
| pr_debug("Vbat below CV threshold, resetting CC_TO_CV\n"); |
| chip->system_load_count = 0; |
| } else { |
| chip->system_load_count += 1; |
| pr_debug("Vbat below CV threshold, count: %d\n", |
| chip->system_load_count); |
| } |
| return soc; |
| } else if (ibat_ua > 0) { |
| pr_debug("NOT CHARGING SOC %d\n", soc); |
| chip->system_load_count = 0; |
| chip->prev_chg_soc = soc; |
| return soc; |
| } |
| |
| chip->system_load_count = 0; |
| /* |
| * battery is in CV phase - begin linear interpolation of soc based on |
| * battery charge current |
| */ |
| |
| /* |
| * if voltage lessened (possibly because of a system load) |
| * keep reporting the prev chg soc |
| */ |
| if (batt_terminal_uv <= chip->prev_batt_terminal_uv - VDD_STEP_SIZE) { |
| pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n", |
| batt_terminal_uv, chip->prev_batt_terminal_uv, |
| chip->prev_chg_soc); |
| chip->prev_batt_terminal_uv = batt_terminal_uv; |
| return chip->prev_chg_soc; |
| } |
| |
| soc_ibat = bound_soc(linear_interpolate(chip->soc_at_cv, |
| chip->ibat_at_cv_ua, |
| 100, -1 * chip->chg_term_ua, |
| params->iavg_ua)); |
| weight_ibat = bound_soc(linear_interpolate(1, chip->soc_at_cv, |
| 100, 100, chip->prev_chg_soc)); |
| weight_cc = 100 - weight_ibat; |
| chg_soc = bound_soc(DIV_ROUND_CLOSEST(soc_ibat * weight_ibat |
| + weight_cc * soc, 100)); |
| |
| pr_debug("weight_ibat = %d, weight_cc = %d, soc_ibat = %d, soc_cc = %d\n", |
| weight_ibat, weight_cc, soc_ibat, soc); |
| |
| /* always report a higher soc */ |
| if (chg_soc > chip->prev_chg_soc) { |
| chip->prev_chg_soc = chg_soc; |
| |
| chip->charging_adjusted_ocv = find_ocv_for_pc(chip, batt_temp, |
| find_pc_for_soc(chip, params, chg_soc)); |
| pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n", |
| chip->charging_adjusted_ocv, |
| chip->prev_chg_soc); |
| } |
| |
| pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc); |
| chip->prev_batt_terminal_uv = batt_terminal_uv; |
| return chip->prev_chg_soc; |
| } |
| |
| static void very_low_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv) |
| { |
| /* |
| * if battery is very low (v_cutoff voltage + 20mv) hold |
| * a wakelock untill soc = 0% |
| */ |
| if (vbat_uv <= chip->low_voltage_threshold |
| && !wake_lock_active(&chip->low_voltage_wake_lock)) { |
| pr_debug("voltage = %d low holding wakelock\n", vbat_uv); |
| wake_lock(&chip->low_voltage_wake_lock); |
| } else if (vbat_uv > chip->low_voltage_threshold |
| && wake_lock_active(&chip->low_voltage_wake_lock)) { |
| pr_debug("voltage = %d releasing wakelock\n", vbat_uv); |
| wake_unlock(&chip->low_voltage_wake_lock); |
| } |
| } |
| |
| #define VBATT_ERROR_MARGIN 20000 |
| static void cv_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv) |
| { |
| /* |
| * if battery is very low (v_cutoff voltage + 20mv) hold |
| * a wakelock untill soc = 0% |
| */ |
| if (wake_lock_active(&chip->cv_wake_lock)) { |
| if (chip->soc_at_cv != -EINVAL) { |
| pr_debug("hit CV, releasing cv wakelock\n"); |
| wake_unlock(&chip->cv_wake_lock); |
| } else if (!is_battery_charging(chip)) { |
| pr_debug("charging stopped, releasing cv wakelock\n"); |
| wake_unlock(&chip->cv_wake_lock); |
| } |
| } else if (vbat_uv > chip->max_voltage_uv - VBATT_ERROR_MARGIN |
| && chip->soc_at_cv == -EINVAL |
| && is_battery_charging(chip) |
| && !wake_lock_active(&chip->cv_wake_lock)) { |
| pr_debug("voltage = %d holding cv wakelock\n", vbat_uv); |
| wake_lock(&chip->cv_wake_lock); |
| } |
| } |
| |
| #define NO_ADJUST_HIGH_SOC_THRESHOLD 98 |
| static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params, |
| int soc, int batt_temp) |
| { |
| int ibat_ua = 0, vbat_uv = 0; |
| int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0; |
| int delta_ocv_uv = 0; |
| int n = 0; |
| int rc_new_uah = 0; |
| int pc_new = 0; |
| int soc_new = 0; |
| int slope = 0; |
| int rc = 0; |
| int delta_ocv_uv_limit = 0; |
| int correction_limit_uv = 0; |
| |
| rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv); |
| if (rc < 0) { |
| pr_err("simultaneous vbat ibat failed err = %d\n", rc); |
| goto out; |
| } |
| |
| very_low_voltage_check(chip, vbat_uv); |
| cv_voltage_check(chip, vbat_uv); |
| |
| delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000); |
| |
| ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000; |
| |
| pc_est = calculate_pc(chip, ocv_est_uv, batt_temp); |
| soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100, |
| (s64)params->fcc_uah - params->uuc_uah); |
| soc_est = bound_soc(soc_est); |
| |
| /* never adjust during bms reset mode */ |
| if (bms_reset) { |
| pr_debug("bms reset mode, SOC adjustment skipped\n"); |
| goto out; |
| } |
| |
| if (is_battery_charging(chip)) { |
| soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua, |
| batt_temp); |
| /* Skip adjustments if we are in CV or ibat is negative */ |
| if (chip->soc_at_cv != -EINVAL || ibat_ua < 0) |
| goto out; |
| } |
| |
| /* |
| * do not adjust |
| * if soc_est is same as what bms calculated |
| * OR if soc_est > adjust_soc_low_threshold |
| * OR if soc is above 90 |
| * because we might pull it low |
| * and cause a bad user experience |
| */ |
| if (!wake_lock_active(&chip->low_voltage_wake_lock) && |
| (soc_est == soc |
| || soc_est > chip->adjust_soc_low_threshold |
| || soc >= NO_ADJUST_HIGH_SOC_THRESHOLD)) |
| goto out; |
| |
| if (chip->last_soc_est == -EINVAL) |
| chip->last_soc_est = soc; |
| |
| n = min(200, max(1 , soc + soc_est + chip->last_soc_est)); |
| chip->last_soc_est = soc_est; |
| |
| pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp); |
| if (pc > 0) { |
| pc_new = calculate_pc(chip, |
| chip->last_ocv_uv - (++slope * 1000), |
| chip->last_ocv_temp); |
| while (pc_new == pc) { |
| /* start taking 10mV steps */ |
| slope = slope + 10; |
| pc_new = calculate_pc(chip, |
| chip->last_ocv_uv - (slope * 1000), |
| chip->last_ocv_temp); |
| } |
| } else { |
| /* |
| * pc is already at the lowest point, |
| * assume 1 millivolt translates to 1% pc |
| */ |
| pc = 1; |
| pc_new = 0; |
| slope = 1; |
| } |
| |
| delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000, |
| n * (pc - pc_new)); |
| |
| if (abs(delta_ocv_uv) > delta_ocv_uv_limit) { |
| pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv, |
| delta_ocv_uv_limit); |
| |
| if (delta_ocv_uv > 0) |
| delta_ocv_uv = delta_ocv_uv_limit; |
| else |
| delta_ocv_uv = -1 * delta_ocv_uv_limit; |
| pr_debug("new delta ocv = %d\n", delta_ocv_uv); |
| } |
| |
| if (wake_lock_active(&chip->low_voltage_wake_lock)) { |
| /* when in the cutoff region, do not correct upwards */ |
| delta_ocv_uv = max(0, delta_ocv_uv); |
| goto skip_limits; |
| } |
| |
| if (chip->last_ocv_uv > chip->flat_ocv_threshold_uv) |
| correction_limit_uv = chip->high_ocv_correction_limit_uv; |
| else |
| correction_limit_uv = chip->low_ocv_correction_limit_uv; |
| |
| if (abs(delta_ocv_uv) > correction_limit_uv) { |
| pr_debug("limiting delta ocv %d limit = %d\n", |
| delta_ocv_uv, correction_limit_uv); |
| if (delta_ocv_uv > 0) |
| delta_ocv_uv = correction_limit_uv; |
| else |
| delta_ocv_uv = -correction_limit_uv; |
| pr_debug("new delta ocv = %d\n", delta_ocv_uv); |
| } |
| |
| skip_limits: |
| |
| chip->last_ocv_uv -= delta_ocv_uv; |
| |
| if (chip->last_ocv_uv >= chip->max_voltage_uv) |
| chip->last_ocv_uv = chip->max_voltage_uv; |
| |
| /* calculate the soc based on this new ocv */ |
| pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp); |
| rc_new_uah = (params->fcc_uah * pc_new) / 100; |
| soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100 |
| / (params->fcc_uah - params->uuc_uah); |
| |
| /* |
| * if soc_new is ZERO force it higher so that phone doesnt report soc=0 |
| * soc = 0 should happen only when soc_est is above a set value |
| */ |
| if (soc_new == 0 && soc_est >= chip->hold_soc_est) |
| soc_new = 1; |
| |
| soc = soc_new; |
| |
| out: |
| pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n", |
| ibat_ua, vbat_uv, ocv_est_uv, pc_est, |
| soc_est, n, delta_ocv_uv, chip->last_ocv_uv, |
| pc_new, soc_new, params->rbatt_mohm, slope); |
| |
| return soc; |
| } |
| |
| static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc) |
| { |
| int rc, vbat_uv; |
| |
| rc = get_battery_voltage(chip, &vbat_uv); |
| if (rc < 0) { |
| pr_err("adc vbat failed err = %d\n", rc); |
| return soc; |
| } |
| |
| /* only clamp when discharging */ |
| if (is_battery_charging(chip)) |
| return soc; |
| |
| if (soc <= 0 && vbat_uv > chip->v_cutoff_uv) { |
| pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n", |
| vbat_uv, chip->v_cutoff_uv); |
| return 1; |
| } else { |
| pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n", |
| soc, vbat_uv, chip->v_cutoff_uv); |
| return soc; |
| } |
| } |
| |
| static int64_t convert_cc_uah_to_raw(struct qpnp_bms_chip *chip, int64_t cc_uah) |
| { |
| int64_t cc_uv, cc_pvh, cc_raw; |
| |
| cc_pvh = cc_uah * chip->r_sense_uohm; |
| cc_uv = div_s64(cc_pvh * SLEEP_CLK_HZ * SECONDS_PER_HOUR, |
| CC_READING_TICKS * 1000000LL); |
| cc_raw = div_s64(cc_uv * CC_READING_RESOLUTION_D, |
| CC_READING_RESOLUTION_N); |
| return cc_raw; |
| } |
| |
| #define CC_STEP_INCREMENT_UAH 1500 |
| #define OCV_STEP_INCREMENT 0x10 |
| static void configure_soc_wakeup(struct qpnp_bms_chip *chip, |
| struct soc_params *params, |
| int batt_temp, int target_soc) |
| { |
| int target_ocv_uv; |
| int64_t target_cc_uah, cc_raw_64, current_shdw_cc_raw_64; |
| int64_t current_shdw_cc_uah, iadc_comp_factor; |
| uint64_t cc_raw, current_shdw_cc_raw; |
| int16_t ocv_raw, current_ocv_raw; |
| |
| current_shdw_cc_raw = 0; |
| mutex_lock(&chip->bms_output_lock); |
| lock_output_data(chip); |
| qpnp_read_wrapper(chip, (u8 *)¤t_ocv_raw, |
| chip->base + BMS1_OCV_FOR_SOC_DATA0, 2); |
| unlock_output_data(chip); |
| mutex_unlock(&chip->bms_output_lock); |
| current_shdw_cc_uah = get_prop_bms_charge_counter_shadow(chip); |
| current_shdw_cc_raw_64 = convert_cc_uah_to_raw(chip, |
| current_shdw_cc_uah); |
| |
| /* |
| * Calculate the target shadow coulomb counter threshold for when |
| * the SoC changes. |
| * |
| * Since the BMS driver resets the shadow coulomb counter every |
| * 20 seconds when the device is awake, calculate the threshold as |
| * a delta from the current shadow coulomb count. |
| */ |
| target_cc_uah = (100 - target_soc) |
| * (params->fcc_uah - params->uuc_uah) |
| / 100 - current_shdw_cc_uah; |
| if (target_cc_uah < 0) { |
| /* |
| * If the target cc is below 0, that means we have already |
| * passed the point where SoC should have fallen. |
| * Set a wakeup in a few more mAh and check back again |
| */ |
| target_cc_uah = CC_STEP_INCREMENT_UAH; |
| } |
| iadc_comp_factor = 100000; |
| qpnp_iadc_comp_result(chip->iadc_dev, &iadc_comp_factor); |
| target_cc_uah = div64_s64(target_cc_uah * 100000, iadc_comp_factor); |
| target_cc_uah = cc_reverse_adjust_for_gain(chip, target_cc_uah); |
| cc_raw_64 = convert_cc_uah_to_raw(chip, target_cc_uah); |
| cc_raw = convert_s64_to_s36(cc_raw_64); |
| |
| target_ocv_uv = find_ocv_for_pc(chip, batt_temp, |
| find_pc_for_soc(chip, params, target_soc)); |
| ocv_raw = convert_vbatt_uv_to_raw(chip, target_ocv_uv); |
| |
| /* |
| * If the current_ocv_raw was updated since reaching 100% and is lower |
| * than the calculated target ocv threshold, set the new target |
| * threshold 1.5mAh lower in order to check if the SoC changed yet. |
| */ |
| if (current_ocv_raw != chip->ocv_reading_at_100 |
| && current_ocv_raw < ocv_raw) |
| ocv_raw = current_ocv_raw - OCV_STEP_INCREMENT; |
| |
| qpnp_write_wrapper(chip, (u8 *)&cc_raw, |
| chip->base + BMS1_SW_CC_THR0, 5); |
| qpnp_write_wrapper(chip, (u8 *)&ocv_raw, |
| chip->base + BMS1_OCV_THR0, 2); |
| |
| enable_bms_irq(&chip->ocv_thr_irq); |
| enable_bms_irq(&chip->sw_cc_thr_irq); |
| pr_debug("current sw_cc_raw = 0x%llx, current ocv = 0x%hx\n", |
| current_shdw_cc_raw, (uint16_t)current_ocv_raw); |
| pr_debug("target_cc_uah = %lld, raw64 = 0x%llx, raw 36 = 0x%llx, ocv_raw = 0x%hx\n", |
| target_cc_uah, |
| (uint64_t)cc_raw_64, cc_raw, |
| (uint16_t)ocv_raw); |
| } |
| |
| #define BAD_SOC_THRESH -10 |
| static int calculate_raw_soc(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| struct soc_params *params, |
| int batt_temp) |
| { |
| int soc, remaining_usable_charge_uah; |
| |
| /* calculate remaining usable charge */ |
| remaining_usable_charge_uah = params->ocv_charge_uah |
| - params->cc_uah |
| - params->uuc_uah; |
| pr_debug("RUC = %duAh\n", remaining_usable_charge_uah); |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params->fcc_uah - params->uuc_uah)); |
| |
| if (chip->first_time_calc_soc && soc > BAD_SOC_THRESH && soc < 0) { |
| /* |
| * first time calcualtion and the pon ocv is too low resulting |
| * in a bad soc. Adjust ocv to get 0 soc |
| */ |
| pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc); |
| chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp, |
| find_pc_for_soc(chip, params, 0)); |
| params->ocv_charge_uah = find_ocv_charge_for_soc(chip, |
| params, 0); |
| |
| remaining_usable_charge_uah = params->ocv_charge_uah |
| - params->cc_uah |
| - params->uuc_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params->fcc_uah |
| - params->uuc_uah)); |
| pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n", |
| soc, chip->last_ocv_uv); |
| } |
| |
| if (soc > 100) |
| soc = 100; |
| |
| if (soc > BAD_SOC_THRESH && soc < 0) { |
| pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n", |
| remaining_usable_charge_uah, |
| params->ocv_charge_uah, |
| params->cc_uah, params->uuc_uah); |
| |
| pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n", |
| chip->last_ocv_uv, batt_temp, |
| params->fcc_uah, soc); |
| soc = 0; |
| } |
| |
| return soc; |
| } |
| |
| #define SLEEP_RECALC_INTERVAL 3 |
| static int calculate_state_of_charge(struct qpnp_bms_chip *chip, |
| struct raw_soc_params *raw, |
| int batt_temp) |
| { |
| struct soc_params params; |
| int soc, previous_soc, shutdown_soc, new_calculated_soc; |
| int remaining_usable_charge_uah; |
| |
| calculate_soc_params(chip, raw, ¶ms, batt_temp); |
| if (!is_battery_present(chip)) { |
| pr_debug("battery gone, reporting 100\n"); |
| new_calculated_soc = 100; |
| goto done_calculating; |
| } |
| |
| if (params.fcc_uah - params.uuc_uah <= 0) { |
| pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n", |
| params.fcc_uah, |
| params.uuc_uah); |
| new_calculated_soc = 0; |
| goto done_calculating; |
| } |
| |
| soc = calculate_raw_soc(chip, raw, ¶ms, batt_temp); |
| |
| mutex_lock(&chip->soc_invalidation_mutex); |
| shutdown_soc = chip->shutdown_soc; |
| |
| if (chip->first_time_calc_soc && soc != shutdown_soc |
| && !chip->shutdown_soc_invalid) { |
| /* |
| * soc for the first time - use shutdown soc |
| * to adjust pon ocv since it is a small percent away from |
| * the real soc |
| */ |
| pr_debug("soc = %d before forcing shutdown_soc = %d\n", |
| soc, shutdown_soc); |
| chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp, |
| find_pc_for_soc(chip, ¶ms, shutdown_soc)); |
| params.ocv_charge_uah = find_ocv_charge_for_soc(chip, |
| ¶ms, shutdown_soc); |
| |
| remaining_usable_charge_uah = params.ocv_charge_uah |
| - params.cc_uah |
| - params.uuc_uah; |
| |
| soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), |
| (params.fcc_uah |
| - params.uuc_uah)); |
| |
| pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n", |
| shutdown_soc, soc, chip->last_ocv_uv); |
| } |
| mutex_unlock(&chip->soc_invalidation_mutex); |
| |
| if (chip->first_time_calc_soc && !chip->shutdown_soc_invalid) { |
| pr_debug("Skip adjustment when shutdown SOC has been forced\n"); |
| new_calculated_soc = soc; |
| } else { |
| pr_debug("SOC before adjustment = %d\n", soc); |
| new_calculated_soc = adjust_soc(chip, ¶ms, soc, batt_temp); |
| } |
| |
| /* always clamp soc due to BMS hw/sw immaturities */ |
| new_calculated_soc = clamp_soc_based_on_voltage(chip, |
| new_calculated_soc); |
| |
| new_calculated_soc = bound_soc(new_calculated_soc); |
| /* |
| * If the battery is full, configure the cc threshold so the system |
| * wakes up after SoC changes |
| */ |
| if (is_battery_full(chip)) { |
| configure_soc_wakeup(chip, ¶ms, |
| batt_temp, bound_soc(new_calculated_soc - 1)); |
| } else { |
| disable_bms_irq(&chip->ocv_thr_irq); |
| disable_bms_irq(&chip->sw_cc_thr_irq); |
| } |
| done_calculating: |
| mutex_lock(&chip->last_soc_mutex); |
| previous_soc = chip->calculated_soc; |
| chip->calculated_soc = new_calculated_soc; |
| pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc); |
| if (chip->last_soc_invalid) { |
| chip->last_soc_invalid = false; |
| chip->last_soc = -EINVAL; |
| } |
| /* |
| * Check if more than a long time has passed since the last |
| * calculation (more than n times compared to the soc recalculation |
| * rate, where n is defined by SLEEP_RECALC_INTERVAL). If this is true, |
| * then the system must have gone through a long sleep, and SoC can be |
| * allowed to become unbounded by the last reported SoC |
| */ |
| if (params.delta_time_s * 1000 > |
| chip->calculate_soc_ms * SLEEP_RECALC_INTERVAL |
| && !chip->first_time_calc_soc) { |
| chip->last_soc_unbound = true; |
| chip->last_soc_change_sec = chip->last_recalc_time; |
| pr_debug("last_soc unbound because elapsed time = %d\n", |
| params.delta_time_s); |
| } |
| mutex_unlock(&chip->last_soc_mutex); |
| wake_up_interruptible(&chip->bms_wait_queue); |
| |
| if (new_calculated_soc != previous_soc && chip->bms_psy_registered) { |
| power_supply_changed(&chip->bms_psy); |
| pr_debug("power supply changed\n"); |
| } else { |
| /* |
| * Call report state of charge anyways to periodically update |
| * reported SoC. This prevents reported SoC from being stuck |
| * when calculated soc doesn't change. |
| */ |
| report_state_of_charge(chip); |
| } |
| |
| get_current_time(&chip->last_recalc_time); |
| chip->first_time_calc_soc = 0; |
| chip->first_time_calc_uuc = 0; |
| return chip->calculated_soc; |
| } |
| |
| static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip) |
| { |
| int voltage_range_uv, voltage_remaining_uv, voltage_based_soc; |
| int rc, vbat_uv; |
| |
| rc = get_battery_voltage(chip, &vbat_uv); |
| if (rc < 0) { |
| pr_err("adc vbat failed err = %d\n", rc); |
| return rc; |
| } |
| voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv; |
| voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv; |
| voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv; |
| |
| voltage_based_soc = clamp(voltage_based_soc, 0, 100); |
| |
| if (chip->prev_voltage_based_soc != voltage_based_soc |
| && chip->bms_psy_registered) { |
| power_supply_changed(&chip->bms_psy); |
| pr_debug("power supply changed\n"); |
| } |
| chip->prev_voltage_based_soc = voltage_based_soc; |
| |
| pr_debug("vbat used = %duv\n", vbat_uv); |
| pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc); |
| return voltage_based_soc; |
| } |
| |
| static int recalculate_raw_soc(struct qpnp_bms_chip *chip) |
| { |
| int batt_temp, rc, soc; |
| struct qpnp_vadc_result result; |
| struct raw_soc_params raw; |
| struct soc_params params; |
| |
| bms_stay_awake(&chip->soc_wake_source); |
| if (chip->use_voltage_soc) { |
| soc = calculate_soc_from_voltage(chip); |
| } else { |
| if (!chip->batfet_closed) |
| qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false); |
| rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, |
| &result); |
| if (rc) { |
| pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n", |
| LR_MUX1_BATT_THERM, rc); |
| soc = chip->calculated_soc; |
| } else { |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", |
| result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_ocv_uv_mutex); |
| rc = read_soc_params_raw(chip, &raw, batt_temp); |
| if (rc) { |
| pr_err("Unable to read params, rc: %d\n", rc); |
| soc = 0; |
| goto done; |
| } |
| calculate_soc_params(chip, &raw, ¶ms, batt_temp); |
| if (!is_battery_present(chip)) { |
| pr_debug("battery gone\n"); |
| soc = 0; |
| } else if (params.fcc_uah - params.uuc_uah <= 0) { |
| pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n", |
| params.fcc_uah, |
| params.uuc_uah); |
| soc = 0; |
| } else { |
| soc = calculate_raw_soc(chip, &raw, |
| ¶ms, batt_temp); |
| } |
| done: |
| mutex_unlock(&chip->last_ocv_uv_mutex); |
| } |
| } |
| bms_relax(&chip->soc_wake_source); |
| return soc; |
| } |
| |
| static int recalculate_soc(struct qpnp_bms_chip *chip) |
| { |
| int batt_temp, rc, soc; |
| struct qpnp_vadc_result result; |
| struct raw_soc_params raw; |
| |
| bms_stay_awake(&chip->soc_wake_source); |
| mutex_lock(&chip->vbat_monitor_mutex); |
| if (chip->vbat_monitor_params.state_request != |
| ADC_TM_HIGH_LOW_THR_DISABLE) |
| qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| mutex_unlock(&chip->vbat_monitor_mutex); |
| if (chip->use_voltage_soc) { |
| soc = calculate_soc_from_voltage(chip); |
| } else { |
| if (!chip->batfet_closed) |
| qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false); |
| rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, |
| &result); |
| if (rc) { |
| pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n", |
| LR_MUX1_BATT_THERM, rc); |
| soc = chip->calculated_soc; |
| } else { |
| pr_debug("batt_temp phy = %lld meas = 0x%llx\n", |
| result.physical, |
| result.measurement); |
| batt_temp = (int)result.physical; |
| |
| mutex_lock(&chip->last_ocv_uv_mutex); |
| rc = read_soc_params_raw(chip, &raw, batt_temp); |
| if (rc) { |
| pr_err("Unable to read params, rc: %d\n", rc); |
| soc = chip->calculated_soc; |
| } else { |
| soc = calculate_state_of_charge(chip, |
| &raw, batt_temp); |
| } |
| mutex_unlock(&chip->last_ocv_uv_mutex); |
| } |
| } |
| bms_relax(&chip->soc_wake_source); |
| return soc; |
| } |
| |
| static void recalculate_work(struct work_struct *work) |
| { |
| struct qpnp_bms_chip *chip = container_of(work, |
| struct qpnp_bms_chip, |
| recalc_work); |
| |
| recalculate_soc(chip); |
| } |
| |
| static int get_calculation_delay_ms(struct qpnp_bms_chip *chip) |
| { |
| if (wake_lock_active(&chip->low_voltage_wake_lock)) |
| return chip->low_voltage_calculate_soc_ms; |
| else if (chip->calculated_soc < chip->low_soc_calc_threshold) |
| return chip->low_soc_calculate_soc_ms; |
| else |
| return chip->calculate_soc_ms; |
| } |
| |
| static void calculate_soc_work(struct work_struct *work) |
| { |
| struct qpnp_bms_chip *chip = container_of(work, |
| struct qpnp_bms_chip, |
| calculate_soc_delayed_work.work); |
| |
| recalculate_soc(chip); |
| schedule_delayed_work(&chip->calculate_soc_delayed_work, |
| round_jiffies_relative(msecs_to_jiffies |
| (get_calculation_delay_ms(chip)))); |
| } |
| |
| static void configure_vbat_monitor_low(struct qpnp_bms_chip *chip) |
| { |
| mutex_lock(&chip->vbat_monitor_mutex); |
| if (chip->vbat_monitor_params.state_request |
| == ADC_TM_HIGH_LOW_THR_ENABLE) { |
| /* |
| * Battery is now around or below v_cutoff |
| */ |
| pr_debug("battery entered cutoff range\n"); |
| if (!wake_lock_active(&chip->low_voltage_wake_lock)) { |
| pr_debug("voltage low, holding wakelock\n"); |
| wake_lock(&chip->low_voltage_wake_lock); |
| cancel_delayed_work_sync( |
| &chip->calculate_soc_delayed_work); |
| schedule_delayed_work( |
| &chip->calculate_soc_delayed_work, 0); |
| } |
| chip->vbat_monitor_params.state_request = |
| ADC_TM_HIGH_THR_ENABLE; |
| chip->vbat_monitor_params.high_thr = |
| (chip->low_voltage_threshold + VBATT_ERROR_MARGIN); |
| pr_debug("set low thr to %d and high to %d\n", |
| chip->vbat_monitor_params.low_thr, |
| chip->vbat_monitor_params.high_thr); |
| chip->vbat_monitor_params.low_thr = 0; |
| } else if (chip->vbat_monitor_params.state_request |
| == ADC_TM_LOW_THR_ENABLE) { |
| /* |
| * Battery is in normal operation range. |
| */ |
| pr_debug("battery entered normal range\n"); |
| if (wake_lock_active(&chip->cv_wake_lock)) { |
| wake_unlock(&chip->cv_wake_lock); |
| pr_debug("releasing cv wake lock\n"); |
| } |
| chip->in_cv_range = false; |
| chip->vbat_monitor_params.state_request = |
| ADC_TM_HIGH_LOW_THR_ENABLE; |
| chip->vbat_monitor_params.high_thr = chip->max_voltage_uv |
| - VBATT_ERROR_MARGIN; |
| chip->vbat_monitor_params.low_thr = |
| chip->low_voltage_threshold; |
| pr_debug("set low thr to %d and high to %d\n", |
| chip->vbat_monitor_params.low_thr, |
| chip->vbat_monitor_params.high_thr); |
| } |
| qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| mutex_unlock(&chip->vbat_monitor_mutex); |
| } |
| |
| #define CV_LOW_THRESHOLD_HYST_UV 100000 |
| static void configure_vbat_monitor_high(struct qpnp_bms_chip *chip) |
| { |
| mutex_lock(&chip->vbat_monitor_mutex); |
| if (chip->vbat_monitor_params.state_request |
| == ADC_TM_HIGH_LOW_THR_ENABLE) { |
| /* |
| * Battery is around vddmax |
| */ |
| pr_debug("battery entered vddmax range\n"); |
| chip->in_cv_range = true; |
| if (!wake_lock_active(&chip->cv_wake_lock)) { |
| wake_lock(&chip->cv_wake_lock); |
| pr_debug("holding cv wake lock\n"); |
| } |
| schedule_work(&chip->recalc_work); |
| chip->vbat_monitor_params.state_request = |
| ADC_TM_LOW_THR_ENABLE; |
| chip->vbat_monitor_params.low_thr = |
| (chip->max_voltage_uv - CV_LOW_THRESHOLD_HYST_UV); |
| chip->vbat_monitor_params.high_thr = chip->max_voltage_uv * 2; |
| pr_debug("set low thr to %d and high to %d\n", |
| chip->vbat_monitor_params.low_thr, |
| chip->vbat_monitor_params.high_thr); |
| } else if (chip->vbat_monitor_params.state_request |
| == ADC_TM_HIGH_THR_ENABLE) { |
| /* |
| * Battery is in normal operation range. |
| */ |
| pr_debug("battery entered normal range\n"); |
| if (wake_lock_active(&chip->low_voltage_wake_lock)) { |
| pr_debug("voltage high, releasing wakelock\n"); |
| wake_unlock(&chip->low_voltage_wake_lock); |
| } |
| chip->vbat_monitor_params.state_request = |
| ADC_TM_HIGH_LOW_THR_ENABLE; |
| chip->vbat_monitor_params.high_thr = |
| chip->max_voltage_uv - VBATT_ERROR_MARGIN; |
| chip->vbat_monitor_params.low_thr = |
| chip->low_voltage_threshold; |
| pr_debug("set low thr to %d and high to %d\n", |
| chip->vbat_monitor_params.low_thr, |
| chip->vbat_monitor_params.high_thr); |
| } |
| qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| mutex_unlock(&chip->vbat_monitor_mutex); |
| } |
| |
| static void btm_notify_vbat(enum qpnp_tm_state state, void *ctx) |
| { |
| struct qpnp_bms_chip *chip = ctx; |
| int vbat_uv; |
| struct qpnp_vadc_result result; |
| int rc; |
| |
| rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &result); |
| pr_debug("vbat = %lld, raw = 0x%x\n", result.physical, result.adc_code); |
| |
| get_battery_voltage(chip, &vbat_uv); |
| pr_debug("vbat is at %d, state is at %d\n", vbat_uv, state); |
| |
| if (state == ADC_TM_LOW_STATE) { |
| pr_debug("low voltage btm notification triggered\n"); |
| if (vbat_uv - VBATT_ERROR_MARGIN |
| < chip->vbat_monitor_params.low_thr) { |
| configure_vbat_monitor_low(chip); |
| } else { |
| pr_debug("faulty btm trigger, discarding\n"); |
| qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| } |
| } else if (state == ADC_TM_HIGH_STATE) { |
| pr_debug("high voltage btm notification triggered\n"); |
| if (vbat_uv + VBATT_ERROR_MARGIN |
| > chip->vbat_monitor_params.high_thr) { |
| configure_vbat_monitor_high(chip); |
| } else { |
| pr_debug("faulty btm trigger, discarding\n"); |
| qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| } |
| } else { |
| pr_debug("unknown voltage notification state: %d\n", state); |
| } |
| if (chip->bms_psy_registered) |
| power_supply_changed(&chip->bms_psy); |
| } |
| |
| static int reset_vbat_monitoring(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_DISABLE; |
| |
| rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| if (rc) { |
| pr_err("tm disable failed: %d\n", rc); |
| return rc; |
| } |
| if (wake_lock_active(&chip->low_voltage_wake_lock)) { |
| pr_debug("battery removed, releasing wakelock\n"); |
| wake_unlock(&chip->low_voltage_wake_lock); |
| } |
| if (chip->in_cv_range) { |
| pr_debug("battery removed, removing in_cv_range state\n"); |
| chip->in_cv_range = false; |
| } |
| return 0; |
| } |
| |
| static int setup_vbat_monitoring(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| |
| chip->vbat_monitor_params.low_thr = chip->low_voltage_threshold; |
| chip->vbat_monitor_params.high_thr = chip->max_voltage_uv |
| - VBATT_ERROR_MARGIN; |
| chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_ENABLE; |
| chip->vbat_monitor_params.channel = VBAT_SNS; |
| chip->vbat_monitor_params.btm_ctx = (void *)chip; |
| chip->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S; |
| chip->vbat_monitor_params.threshold_notification = &btm_notify_vbat; |
| pr_debug("set low thr to %d and high to %d\n", |
| chip->vbat_monitor_params.low_thr, |
| chip->vbat_monitor_params.high_thr); |
| |
| if (!is_battery_present(chip)) { |
| pr_debug("no battery inserted, do not enable vbat monitoring\n"); |
| chip->vbat_monitor_params.state_request = |
| ADC_TM_HIGH_LOW_THR_DISABLE; |
| } else { |
| rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev, |
| &chip->vbat_monitor_params); |
| if (rc) { |
| pr_err("tm setup failed: %d\n", rc); |
| return rc; |
| } |
| } |
| |
| pr_debug("setup complete\n"); |
| return 0; |
| } |
| |
| static void readjust_fcc_table(struct qpnp_bms_chip *chip) |
| { |
| struct single_row_lut *temp, *old; |
| int i, fcc, ratio; |
| |
| if (!chip->enable_fcc_learning) |
| return; |
| |
| if (!chip->fcc_temp_lut) { |
| pr_err("The static fcc lut table is NULL\n"); |
| return; |
| } |
| |
| temp = devm_kzalloc(chip->dev, sizeof(struct single_row_lut), |
| GFP_KERNEL); |
| if (!temp) { |
| pr_err("Cannot allocate memory for adjusted fcc table\n"); |
| return; |
| } |
| |
| fcc = interpolate_fcc(chip->fcc_temp_lut, chip->fcc_new_batt_temp); |
| |
| temp->cols = chip->fcc_temp_lut->cols; |
| for (i = 0; i < chip->fcc_temp_lut->cols; i++) { |
| temp->x[i] = chip->fcc_temp_lut->x[i]; |
| ratio = div_u64(chip->fcc_temp_lut->y[i] * 1000, fcc); |
| temp->y[i] = (ratio * chip->fcc_new_mah); |
| temp->y[i] /= 1000; |
| } |
| |
| old = chip->adjusted_fcc_temp_lut; |
| chip->adjusted_fcc_temp_lut = temp; |
| devm_kfree(chip->dev, old); |
| } |
| |
| static int read_fcc_data_from_backup(struct qpnp_bms_chip *chip) |
| { |
| int rc, i; |
| u8 fcc = 0, chgcyl = 0; |
| |
| for (i = 0; i < chip->min_fcc_learning_samples; i++) { |
| rc = qpnp_read_wrapper(chip, &fcc, |
| chip->base + BMS_FCC_BASE_REG + i, 1); |
| rc |= qpnp_read_wrapper(chip, &chgcyl, |
| chip->base + BMS_CHGCYL_BASE_REG + i, 1); |
| if (rc) { |
| pr_err("Unable to read FCC data\n"); |
| return rc; |
| } |
| if (fcc == 0 || (fcc == 0xFF && chgcyl == 0xFF)) { |
| /* FCC invalid/not present */ |
| chip->fcc_learning_samples[i].fcc_new = 0; |
| chip->fcc_learning_samples[i].chargecycles = 0; |
| } else { |
| /* valid FCC data */ |
| chip->fcc_sample_count++; |
| chip->fcc_learning_samples[i].fcc_new = |
| fcc * chip->fcc_resolution; |
| chip->fcc_learning_samples[i].chargecycles = |
| chgcyl * CHGCYL_RESOLUTION; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int discard_backup_fcc_data(struct qpnp_bms_chip *chip) |
| { |
| int rc = 0, i; |
| u8 temp_u8 = 0; |
| |
| chip->fcc_sample_count = 0; |
| for (i = 0; i < chip->min_fcc_learning_samples; i++) { |
| rc = qpnp_write_wrapper(chip, &temp_u8, |
| chip->base + BMS_FCC_BASE_REG + i, 1); |
| rc |= qpnp_write_wrapper(chip, &temp_u8, |
| chip->base + BMS_CHGCYL_BASE_REG + i, 1); |
| if (rc) { |
| pr_err("Unable to clear FCC data\n"); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void |
| average_fcc_samples_and_readjust_fcc_table(struct qpnp_bms_chip *chip) |
| { |
| int i, temp_fcc_avg = 0, temp_fcc_delta = 0, new_fcc_avg = 0; |
| struct fcc_sample *ft; |
| |
| for (i = 0; i < chip->min_fcc_learning_samples; i++) |
| temp_fcc_avg += chip->fcc_learning_samples[i].fcc_new; |
| |
| temp_fcc_avg /= chip->min_fcc_learning_samples; |
| temp_fcc_delta = div_u64(temp_fcc_avg * DELTA_FCC_PERCENT, 100); |
| |
| /* fix the fcc if its an outlier i.e. > 5% of the average */ |
| for (i = 0; i < chip->min_fcc_learning_samples; i++) { |
| ft = &chip->fcc_learning_samples[i]; |
| if (abs(ft->fcc_new - temp_fcc_avg) > temp_fcc_delta) |
| new_fcc_avg += temp_fcc_avg; |
| else |
| new_fcc_avg += ft->fcc_new; |
| } |
| new_fcc_avg /= chip->min_fcc_learning_samples; |
| |
| chip->fcc_new_mah = new_fcc_avg; |
| chip->fcc_new_batt_temp = FCC_DEFAULT_TEMP; |
| pr_info("FCC update: New fcc_mah=%d, fcc_batt_temp=%d\n", |
| new_fcc_avg, FCC_DEFAULT_TEMP); |
| readjust_fcc_table(chip); |
| } |
| |
| static void backup_charge_cycle(struct qpnp_bms_chip *chip) |
| { |
| int rc = 0; |
| |
| if (chip->charge_increase >= 0) { |
| rc = qpnp_write_wrapper(chip, &chip->charge_increase, |
| chip->base + CHARGE_INCREASE_STORAGE, 1); |
| if (rc) |
| pr_err("Unable to backup charge_increase\n"); |
| } |
| |
| if (chip->charge_cycles >= 0) { |
| rc = qpnp_write_wrapper(chip, (u8 *)&chip->charge_cycles, |
| chip->base + CHARGE_CYCLE_STORAGE_LSB, 2); |
| if (rc) |
| pr_err("Unable to backup charge_cycles\n"); |
| } |
| } |
| |
| static bool chargecycles_in_range(struct qpnp_bms_chip *chip) |
| { |
| int i, min_cycle, max_cycle, valid_range; |
| |
| /* find the smallest and largest charge cycle */ |
| max_cycle = min_cycle = chip->fcc_learning_samples[0].chargecycles; |
| for (i = 1; i < chip->min_fcc_learning_samples; i++) { |
| if (min_cycle > chip->fcc_learning_samples[i].chargecycles) |
| min_cycle = chip->fcc_learning_samples[i].chargecycles; |
| if (max_cycle < chip->fcc_learning_samples[i].chargecycles) |
| max_cycle = chip->fcc_learning_samples[i].chargecycles; |
| } |
| |
| /* check if chargecyles are in range to continue with FCC update */ |
| valid_range = DIV_ROUND_UP(VALID_FCC_CHGCYL_RANGE, |
| CHGCYL_RESOLUTION) * CHGCYL_RESOLUTION; |
| if (abs(max_cycle - min_cycle) > valid_range) |
| return false; |
| |
| return true; |
| } |
| |
| static int read_chgcycle_data_from_backup(struct qpnp_bms_chip *chip) |
| { |
| int rc; |
| uint16_t temp_u16 = 0; |
| u8 temp_u8 = 0; |
| |
| rc = qpnp_read_wrapper(chip, &temp_u8, |
| chip->base + CHARGE_INCREASE_STORAGE, 1); |
| if (!rc && temp_u8 != 0xFF) |
| chip->charge_increase = temp_u8; |
| |
| rc = qpnp_read_wrapper(chip, (u8 *)&temp_u16, |
| chip->base + CHARGE_CYCLE_STORAGE_LSB, 2); |
| if (!rc && temp_u16 != 0xFFFF) |
| chip->charge_cycles = temp_u16; |
| |
| return rc; |
| } |
| |
| static void |
| attempt_learning_new_fcc(struct qpnp_bms_chip *chip) |
|