blob: 91c1f6f2ec69a734c96341af6e9483afcb9e1557 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2019, The Linux Foundation. All rights reserved.
*/
#include "msm_vidc_bus.h"
#include "msm_vidc_internal.h"
struct lut const *__lut(int width, int height, int fps)
{
int frame_size = height * width, c = 0;
do {
if (LUT[c].frame_size >= frame_size && LUT[c].frame_rate >= fps)
return &LUT[c];
} while (++c < ARRAY_SIZE(LUT));
return &LUT[ARRAY_SIZE(LUT) - 1];
}
fp_t __compression_ratio(struct lut const *entry, int bpp)
{
int c = 0;
for (c = 0; c < COMPRESSION_RATIO_MAX; ++c) {
if (entry->compression_ratio[c].bpp == bpp)
return entry->compression_ratio[c].ratio;
}
WARN(true, "Shouldn't be here, LUT possibly corrupted?\n");
return FP_ZERO; /* impossible */
}
void __dump(struct dump dump[], int len, u32 sid)
{
int c = 0;
for (c = 0; c < len; ++c) {
char format_line[128] = "", formatted_line[128] = "";
if (dump[c].val == DUMP_HEADER_MAGIC) {
snprintf(formatted_line, sizeof(formatted_line), "%s\n",
dump[c].key);
} else {
bool fp_format = !strcmp(dump[c].format, DUMP_FP_FMT);
if (!fp_format) {
snprintf(format_line, sizeof(format_line),
" %-35s: %s\n", dump[c].key,
dump[c].format);
snprintf(formatted_line, sizeof(formatted_line),
format_line, dump[c].val);
} else {
size_t integer_part, fractional_part;
integer_part = fp_int(dump[c].val);
fractional_part = fp_frac(dump[c].val);
snprintf(formatted_line, sizeof(formatted_line),
" %-35s: %zd + %zd/%zd\n",
dump[c].key, integer_part,
fractional_part,
fp_frac_base());
}
}
s_vpr_b(sid, "%s", formatted_line);
}
}
static unsigned long __calculate_vpe(struct vidc_bus_vote_data *d)
{
return 0;
}
static unsigned long __calculate_cvp(struct vidc_bus_vote_data *d)
{
return 0;
}
static unsigned long __calculate_decoder(struct vidc_bus_vote_data *d)
{
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Decoder parameters */
int width, height, lcu_size, fps, dpb_bpp;
bool unified_dpb_opb, dpb_compression_enabled = true,
opb_compression_enabled = false,
llc_ref_read_l2_cache_enabled = false,
llc_top_line_buf_enabled = false;
fp_t dpb_read_compression_factor, dpb_opb_scaling_ratio,
dpb_write_compression_factor, opb_write_compression_factor,
qsmmu_bw_overhead_factor;
bool is_h264_category = true;
/* Derived parameters */
int lcu_per_frame, collocated_bytes_per_lcu, tnbr_per_lcu;
unsigned long bitrate;
fp_t bins_to_bit_factor, vsp_read_factor, vsp_write_factor,
dpb_factor, dpb_write_factor,
y_bw_no_ubwc_8bpp, y_bw_no_ubwc_10bpp, y_bw_10bpp_p010,
motion_vector_complexity = 0;
fp_t dpb_total = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
dpb_read, dpb_write, opb_read, opb_write,
line_buffer_read, line_buffer_write,
total;
} ddr = {0};
struct {
fp_t dpb_read, line_buffer_read, line_buffer_write, total;
} llc = {0};
unsigned long ret = 0;
unsigned int integer_part, frac_part;
width = max(d->input_width, BASELINE_DIMENSIONS.width);
height = max(d->input_height, BASELINE_DIMENSIONS.height);
fps = d->fps;
lcu_size = d->lcu_size;
dpb_bpp = d->num_formats >= 1 ?
__bpp(d->color_formats[0], d->sid) : INT_MAX;
unified_dpb_opb = d->num_formats == 1;
dpb_opb_scaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
opb_compression_enabled = d->num_formats >= 2 &&
__ubwc(d->color_formats[1]);
/*
* convert q16 number into integer and fractional part upto 2 places.
* ex : 105752 / 65536 = 1.61; 1.61 in q16 = 105752;
* integer part = 105752 / 65536 = 1;
* reminder = 105752 - 1 * 65536 = 40216;
* fractional part = 40216 * 100 / 65536 = 61;
* now converto to fp(1, 61, 100) for below code.
*/
integer_part = d->compression_ratio >> 16;
frac_part =
((d->compression_ratio - (integer_part << 16)) * 100) >> 16;
dpb_read_compression_factor = FP(integer_part, frac_part, 100);
integer_part = d->complexity_factor >> 16;
frac_part =
((d->complexity_factor - (integer_part << 16)) * 100) >> 16;
motion_vector_complexity = FP(integer_part, frac_part, 100);
dpb_write_compression_factor = dpb_read_compression_factor;
opb_write_compression_factor = opb_compression_enabled ?
dpb_write_compression_factor : FP_ONE;
if (d->codec == HAL_VIDEO_CODEC_HEVC ||
d->codec == HAL_VIDEO_CODEC_VP9) {
/* H264, VP8, MPEG2 use the same settings */
/* HEVC, VP9 use the same setting */
is_h264_category = false;
}
if (d->use_sys_cache) {
llc_ref_read_l2_cache_enabled = true;
if (is_h264_category)
llc_top_line_buf_enabled = true;
}
/* Derived parameters setup */
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
bitrate = (d->bitrate + 1000000 - 1) / 1000000;
bins_to_bit_factor = FP_INT(4);
vsp_write_factor = bins_to_bit_factor;
vsp_read_factor = bins_to_bit_factor + FP_INT(2);
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
dpb_factor = FP(1, 50, 100);
dpb_write_factor = FP(1, 5, 100);
tnbr_per_lcu = lcu_size == 16 ? 128 :
lcu_size == 32 ? 64 : 128;
/* .... For DDR & LLC ...... */
ddr.vsp_read = fp_div(fp_mult(FP_INT(bitrate),
vsp_read_factor), FP_INT(8));
ddr.vsp_write = fp_div(fp_mult(FP_INT(bitrate),
vsp_write_factor), FP_INT(8));
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
y_bw_no_ubwc_8bpp = fp_div(fp_mult(
FP_INT((int)(width * height)), FP_INT((int)fps)),
FP_INT(1000 * 1000));
y_bw_no_ubwc_10bpp = fp_div(fp_mult(y_bw_no_ubwc_8bpp, FP_INT(256)),
FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
ddr.dpb_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_read = fp_div(fp_mult(ddr.dpb_read,
fp_mult(dpb_factor, motion_vector_complexity)),
dpb_read_compression_factor);
ddr.dpb_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.dpb_write = fp_div(fp_mult(ddr.dpb_write,
fp_mult(dpb_factor, dpb_write_factor)),
dpb_write_compression_factor);
dpb_total = ddr.dpb_read + ddr.dpb_write;
if (llc_ref_read_l2_cache_enabled) {
ddr.dpb_read = fp_div(ddr.dpb_read, is_h264_category ?
FP(1, 30, 100) : FP(1, 15, 100));
llc.dpb_read = dpb_total - ddr.dpb_write - ddr.dpb_read;
}
ddr.opb_read = FP_ZERO;
ddr.opb_write = unified_dpb_opb ? FP_ZERO : (dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : (opb_compression_enabled ?
y_bw_no_ubwc_10bpp : y_bw_10bpp_p010));
ddr.opb_write = fp_div(fp_mult(dpb_factor, ddr.opb_write),
fp_mult(dpb_opb_scaling_ratio, opb_write_compression_factor));
ddr.line_buffer_read = FP_INT(tnbr_per_lcu *
lcu_per_frame * fps / bps(1));
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer_read = ddr.line_buffer_read;
llc.line_buffer_write = ddr.line_buffer_write;
ddr.line_buffer_write = ddr.line_buffer_read = FP_ZERO;
}
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.dpb_read + ddr.dpb_write +
ddr.opb_read + ddr.opb_write +
ddr.line_buffer_read + ddr.line_buffer_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.dpb_read + llc.line_buffer_read +
llc.line_buffer_write + ddr.total;
/* Dump all the variables for easier debugging */
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"DECODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"dpb bitdepth", "%d", dpb_bpp},
{"frame rate", "%d", fps},
{"dpb/opb unified", "%d", unified_dpb_opb},
{"dpb/opb downscaling ratio", DUMP_FP_FMT,
dpb_opb_scaling_ratio},
{"dpb compression", "%d", dpb_compression_enabled},
{"opb compression", "%d", opb_compression_enabled},
{"dpb read compression factor", DUMP_FP_FMT,
dpb_read_compression_factor},
{"dpb write compression factor", DUMP_FP_FMT,
dpb_write_compression_factor},
{"frame width", "%d", width},
{"frame height", "%d", height},
{"llc ref read l2 cache enabled", "%d",
llc_ref_read_l2_cache_enabled},
{"llc top line buf enabled", "%d",
llc_top_line_buf_enabled},
{"DERIVED PARAMETERS (1)", "", DUMP_HEADER_MAGIC},
{"lcus/frame", "%d", lcu_per_frame},
{"bitrate (Mbit/sec)", "%d", bitrate},
{"bins to bit factor", DUMP_FP_FMT, bins_to_bit_factor},
{"dpb write factor", DUMP_FP_FMT, dpb_write_factor},
{"vsp read factor", DUMP_FP_FMT, vsp_read_factor},
{"vsp write factor", DUMP_FP_FMT, vsp_write_factor},
{"tnbr/lcu", "%d", tnbr_per_lcu},
{"collocated bytes/LCU", "%d", collocated_bytes_per_lcu},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"DERIVED PARAMETERS (2)", "", DUMP_HEADER_MAGIC},
{"mv complexity", DUMP_FP_FMT, motion_vector_complexity},
{"qsmmu_bw_overhead_factor", DUMP_FP_FMT,
qsmmu_bw_overhead_factor},
{"INTERMEDIATE DDR B/W", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"opb read", DUMP_FP_FMT, ddr.opb_read},
{"opb write", DUMP_FP_FMT, ddr.opb_write},
{"dpb read", DUMP_FP_FMT, ddr.dpb_read},
{"dpb write", DUMP_FP_FMT, ddr.dpb_write},
{"dpb total", DUMP_FP_FMT, dpb_total},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc dpb read", DUMP_FP_FMT, llc.dpb_read},
{"llc line buffer read", DUMP_FP_FMT, llc.line_buffer_read},
{"llc line buffer write", DUMP_FP_FMT, llc.line_buffer_write},
};
__dump(dump, ARRAY_SIZE(dump), d->sid);
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static unsigned long __calculate_encoder(struct vidc_bus_vote_data *d)
{
/*
* XXX: Don't fool around with any of the hardcoded numbers unless you
* know /exactly/ what you're doing. Many of these numbers are
* measured heuristics and hardcoded numbers taken from the firmware.
*/
/* Encoder Parameters */
int width, height, fps, lcu_size, bitrate, lcu_per_frame,
collocated_bytes_per_lcu, tnbr_per_lcu, dpb_bpp,
original_color_format, vertical_tile_width;
bool work_mode_1, original_compression_enabled,
low_power, rotation, cropping_or_scaling,
b_frames_enabled = false,
llc_ref_chroma_cache_enabled = false,
llc_top_line_buf_enabled = false,
llc_vpss_rot_line_buf_enabled = false;
fp_t bins_to_bit_factor, dpb_compression_factor,
original_compression_factor,
original_compression_factor_y,
y_bw_no_ubwc_8bpp, y_bw_no_ubwc_10bpp, y_bw_10bpp_p010,
input_compression_factor,
downscaling_ratio,
ref_y_read_bw_factor, ref_cbcr_read_bw_factor,
recon_write_bw_factor, mese_read_factor,
total_ref_read_crcb,
qsmmu_bw_overhead_factor;
fp_t integer_part, frac_part;
unsigned long ret = 0;
/* Output parameters */
struct {
fp_t vsp_read, vsp_write, collocated_read, collocated_write,
ref_read_y, ref_read_crcb, ref_write,
ref_write_overlap, orig_read,
line_buffer_read, line_buffer_write,
mese_read, mese_write,
total;
} ddr = {0};
struct {
fp_t ref_read_crcb, line_buffer, total;
} llc = {0};
/* Encoder Parameters setup */
rotation = d->rotation;
cropping_or_scaling = false;
vertical_tile_width = 960;
recon_write_bw_factor = FP(1, 8, 100);
ref_y_read_bw_factor = FP(1, 30, 100);
ref_cbcr_read_bw_factor = FP(1, 50, 100);
/* Derived Parameters */
fps = d->fps;
width = max(d->output_width, BASELINE_DIMENSIONS.width);
height = max(d->output_height, BASELINE_DIMENSIONS.height);
downscaling_ratio = fp_div(FP_INT(d->input_width * d->input_height),
FP_INT(d->output_width * d->output_height));
downscaling_ratio = max(downscaling_ratio, FP_ONE);
bitrate = d->bitrate > 0 ? (d->bitrate + 1000000 - 1) / 1000000 :
__lut(width, height, fps)->bitrate;
lcu_size = d->lcu_size;
lcu_per_frame = DIV_ROUND_UP(width, lcu_size) *
DIV_ROUND_UP(height, lcu_size);
tnbr_per_lcu = 16;
y_bw_no_ubwc_8bpp = fp_div(fp_mult(
FP_INT((int)(width * height)), FP_INT(fps)),
FP_INT(1000 * 1000));
y_bw_no_ubwc_10bpp = fp_div(fp_mult(y_bw_no_ubwc_8bpp,
FP_INT(256)), FP_INT(192));
y_bw_10bpp_p010 = y_bw_no_ubwc_8bpp * 2;
b_frames_enabled = d->b_frames_enabled;
original_color_format = d->num_formats >= 1 ?
d->color_formats[0] : HAL_UNUSED_COLOR;
dpb_bpp = d->num_formats >= 1 ?
__bpp(d->color_formats[0], d->sid) : INT_MAX;
original_compression_enabled = __ubwc(original_color_format);
work_mode_1 = d->work_mode == HFI_WORKMODE_1;
low_power = d->power_mode == VIDC_POWER_LOW;
bins_to_bit_factor = FP_INT(4);
if (d->use_sys_cache) {
llc_ref_chroma_cache_enabled = true;
llc_top_line_buf_enabled = true,
llc_vpss_rot_line_buf_enabled = true;
}
/*
* Convert Q16 number into Integer and Fractional part upto 2 places.
* Ex : 105752 / 65536 = 1.61; 1.61 in Q16 = 105752;
* Integer part = 105752 / 65536 = 1;
* Reminder = 105752 - 1 * 65536 = 40216;
* Fractional part = 40216 * 100 / 65536 = 61;
* Now converto to FP(1, 61, 100) for below code.
*/
integer_part = d->compression_ratio >> 16;
frac_part =
((d->compression_ratio - (integer_part * 65536)) * 100) >> 16;
dpb_compression_factor = FP(integer_part, frac_part, 100);
integer_part = d->input_cr >> 16;
frac_part =
((d->input_cr - (integer_part * 65536)) * 100) >> 16;
input_compression_factor = FP(integer_part, frac_part, 100);
original_compression_factor = original_compression_factor_y =
!original_compression_enabled ? FP_ONE :
__compression_ratio(__lut(width, height, fps), dpb_bpp);
/* use input cr if it is valid (not 1), otherwise use lut */
if (original_compression_enabled &&
input_compression_factor != FP_ONE) {
original_compression_factor = input_compression_factor;
/* Luma usually has lower compression factor than Chroma,
* input cf is overall cf, add 1.08 factor for Luma cf
*/
original_compression_factor_y =
input_compression_factor > FP(1, 8, 100) ?
fp_div(input_compression_factor, FP(1, 8, 100)) :
input_compression_factor;
}
mese_read_factor = fp_div(FP_INT((width * height * fps)/4),
original_compression_factor_y);
mese_read_factor = fp_div(fp_mult(mese_read_factor, FP(2, 53, 100)),
FP_INT(1000 * 1000));
ddr.vsp_read = fp_div(fp_mult(FP_INT(bitrate), bins_to_bit_factor),
FP_INT(8));
ddr.vsp_write = ddr.vsp_read + fp_div(FP_INT(bitrate), FP_INT(8));
collocated_bytes_per_lcu = lcu_size == 16 ? 16 :
lcu_size == 32 ? 64 : 256;
ddr.collocated_read = fp_div(FP_INT(lcu_per_frame *
collocated_bytes_per_lcu * fps), FP_INT(bps(1)));
ddr.collocated_write = ddr.collocated_read;
ddr.ref_read_y = ddr.ref_read_crcb = dpb_bpp == 8 ?
y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
if (width != vertical_tile_width) {
ddr.ref_read_y = fp_mult(ddr.ref_read_y,
ref_y_read_bw_factor);
}
ddr.ref_read_y = fp_div(ddr.ref_read_y, dpb_compression_factor);
if (b_frames_enabled)
ddr.ref_read_y = fp_mult(ddr.ref_read_y, FP_INT(2));
ddr.ref_read_crcb = fp_mult(ddr.ref_read_crcb, FP(0, 50, 100));
ddr.ref_read_crcb = fp_div(ddr.ref_read_crcb, dpb_compression_factor);
if (b_frames_enabled)
ddr.ref_read_crcb = fp_mult(ddr.ref_read_crcb, FP_INT(2));
if (llc_ref_chroma_cache_enabled) {
total_ref_read_crcb = ddr.ref_read_crcb;
ddr.ref_read_crcb = fp_div(ddr.ref_read_crcb,
ref_cbcr_read_bw_factor);
llc.ref_read_crcb = total_ref_read_crcb - ddr.ref_read_crcb;
}
ddr.ref_write = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.ref_write = fp_mult(ddr.ref_write,
(fp_div(FP(1, 50, 100), dpb_compression_factor)));
ddr.ref_write_overlap = fp_div(fp_mult(ddr.ref_write,
(recon_write_bw_factor - FP_ONE)),
recon_write_bw_factor);
ddr.orig_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp :
(original_compression_enabled ? y_bw_no_ubwc_10bpp :
y_bw_10bpp_p010);
ddr.orig_read = fp_div(fp_mult(fp_mult(ddr.orig_read, FP(1, 50, 100)),
downscaling_ratio), original_compression_factor);
if (rotation == 90 || rotation == 270)
ddr.orig_read *= lcu_size == 32 ? (dpb_bpp == 8 ? 1 : 3) : 2;
ddr.line_buffer_read = FP_INT(tnbr_per_lcu * lcu_per_frame *
fps / bps(1));
ddr.line_buffer_write = ddr.line_buffer_read;
if (llc_top_line_buf_enabled) {
llc.line_buffer = ddr.line_buffer_read + ddr.line_buffer_write;
ddr.line_buffer_read = ddr.line_buffer_write = FP_ZERO;
}
ddr.mese_read = dpb_bpp == 8 ? y_bw_no_ubwc_8bpp : y_bw_no_ubwc_10bpp;
ddr.mese_read = fp_div(fp_mult(ddr.mese_read, FP(1, 37, 100)),
original_compression_factor_y) + mese_read_factor;
ddr.mese_write = FP_INT((width * height)/512) +
fp_div(FP_INT((width * height)/4),
original_compression_factor_y) +
FP_INT((width * height)/128);
ddr.mese_write = fp_div(fp_mult(ddr.mese_write, FP_INT(fps)),
FP_INT(1000 * 1000));
ddr.total = ddr.vsp_read + ddr.vsp_write +
ddr.collocated_read + ddr.collocated_write +
ddr.ref_read_y + ddr.ref_read_crcb +
ddr.ref_write + ddr.ref_write_overlap +
ddr.orig_read +
ddr.line_buffer_read + ddr.line_buffer_write +
ddr.mese_read + ddr.mese_write;
qsmmu_bw_overhead_factor = FP(1, 3, 100);
ddr.total = fp_mult(ddr.total, qsmmu_bw_overhead_factor);
llc.total = llc.ref_read_crcb + llc.line_buffer + ddr.total;
if (msm_vidc_debug & VIDC_BUS) {
struct dump dump[] = {
{"ENCODER PARAMETERS", "", DUMP_HEADER_MAGIC},
{"width", "%d", width},
{"height", "%d", height},
{"fps", "%d", fps},
{"dpb bitdepth", "%d", dpb_bpp},
{"input downscaling ratio", DUMP_FP_FMT, downscaling_ratio},
{"rotation", "%d", rotation},
{"cropping or scaling", "%d", cropping_or_scaling},
{"low power mode", "%d", low_power},
{"work Mode", "%d", work_mode_1},
{"B frame enabled", "%d", b_frames_enabled},
{"original frame format", "%#x", original_color_format},
{"original compression enabled", "%d",
original_compression_enabled},
{"dpb compression factor", DUMP_FP_FMT,
dpb_compression_factor},
{"input compression factor", DUMP_FP_FMT,
input_compression_factor},
{"llc ref chroma cache enabled", DUMP_FP_FMT,
llc_ref_chroma_cache_enabled},
{"llc top line buf enabled", DUMP_FP_FMT,
llc_top_line_buf_enabled},
{"llc vpss rot line buf enabled ", DUMP_FP_FMT,
llc_vpss_rot_line_buf_enabled},
{"DERIVED PARAMETERS", "", DUMP_HEADER_MAGIC},
{"lcu size", "%d", lcu_size},
{"bitrate (Mbit/sec)", "%lu", bitrate},
{"bins to bit factor", DUMP_FP_FMT, bins_to_bit_factor},
{"original compression factor", DUMP_FP_FMT,
original_compression_factor},
{"original compression factor y", DUMP_FP_FMT,
original_compression_factor_y},
{"mese read factor", DUMP_FP_FMT,
mese_read_factor},
{"qsmmu_bw_overhead_factor",
DUMP_FP_FMT, qsmmu_bw_overhead_factor},
{"bw for NV12 8bpc)", DUMP_FP_FMT, y_bw_no_ubwc_8bpp},
{"bw for NV12 10bpc)", DUMP_FP_FMT, y_bw_no_ubwc_10bpp},
{"INTERMEDIATE B/W DDR", "", DUMP_HEADER_MAGIC},
{"vsp read", DUMP_FP_FMT, ddr.vsp_read},
{"vsp write", DUMP_FP_FMT, ddr.vsp_write},
{"collocated read", DUMP_FP_FMT, ddr.collocated_read},
{"collocated write", DUMP_FP_FMT, ddr.collocated_write},
{"ref read y", DUMP_FP_FMT, ddr.ref_read_y},
{"ref read crcb", DUMP_FP_FMT, ddr.ref_read_crcb},
{"ref write", DUMP_FP_FMT, ddr.ref_write},
{"ref write overlap", DUMP_FP_FMT, ddr.ref_write_overlap},
{"original read", DUMP_FP_FMT, ddr.orig_read},
{"line buffer read", DUMP_FP_FMT, ddr.line_buffer_read},
{"line buffer write", DUMP_FP_FMT, ddr.line_buffer_write},
{"mese read", DUMP_FP_FMT, ddr.mese_read},
{"mese write", DUMP_FP_FMT, ddr.mese_write},
{"INTERMEDIATE LLC B/W", "", DUMP_HEADER_MAGIC},
{"llc ref read crcb", DUMP_FP_FMT, llc.ref_read_crcb},
{"llc line buffer", DUMP_FP_FMT, llc.line_buffer},
};
__dump(dump, ARRAY_SIZE(dump), d->sid);
}
d->calc_bw_ddr = kbps(fp_round(ddr.total));
d->calc_bw_llcc = kbps(fp_round(llc.total));
return ret;
}
static unsigned long __calculate(struct vidc_bus_vote_data *d)
{
unsigned long value = 0;
switch (d->domain) {
case HAL_VIDEO_DOMAIN_VPE:
value = __calculate_vpe(d);
break;
case HAL_VIDEO_DOMAIN_ENCODER:
value = __calculate_encoder(d);
break;
case HAL_VIDEO_DOMAIN_DECODER:
value = __calculate_decoder(d);
break;
case HAL_VIDEO_DOMAIN_CVP:
value = __calculate_cvp(d);
break;
default:
s_vpr_e(d->sid, "Unknown Domain %#x", d->domain);
}
return value;
}
int calc_bw_iris1(struct vidc_bus_vote_data *vidc_data)
{
int ret = 0;
if (!vidc_data)
return ret;
ret = __calculate(vidc_data);
return ret;
}