blob: c3eb2ccf6600c37b54a1c0aaf1c96196547e34ed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
/*
*
* (C) COPYRIGHT 2010-2023 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
*/
/**
* DOC: Base kernel memory APIs
*/
#include <linux/dma-buf.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/compat.h>
#include <linux/version.h>
#include <linux/log2.h>
#if IS_ENABLED(CONFIG_OF)
#include <linux/of_platform.h>
#endif
#include <mali_kbase_config.h>
#include <mali_kbase.h>
#include <mali_kbase_reg_track.h>
#include <hw_access/mali_kbase_hw_access_regmap.h>
#include <mali_kbase_cache_policy.h>
#include <mali_kbase_hw.h>
#include <tl/mali_kbase_tracepoints.h>
#include <mali_kbase_native_mgm.h>
#include <mali_kbase_mem_pool_group.h>
#include <mmu/mali_kbase_mmu.h>
#include <mali_kbase_config_defaults.h>
#include <mali_kbase_trace_gpu_mem.h>
#include <linux/version_compat_defs.h>
#define VA_REGION_SLAB_NAME_PREFIX "va-region-slab-"
#define VA_REGION_SLAB_NAME_SIZE (DEVNAME_SIZE + sizeof(VA_REGION_SLAB_NAME_PREFIX) + 1)
#if MALI_JIT_PRESSURE_LIMIT_BASE
/*
* Alignment of objects allocated by the GPU inside a just-in-time memory
* region whose size is given by an end address
*
* This is the alignment of objects allocated by the GPU, but possibly not
* fully written to. When taken into account with
* KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES it gives the maximum number of bytes
* that the JIT memory report size can exceed the actual backed memory size.
*/
#define KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES (128u)
/*
* Maximum size of objects allocated by the GPU inside a just-in-time memory
* region whose size is given by an end address
*
* This is the maximum size of objects allocated by the GPU, but possibly not
* fully written to. When taken into account with
* KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES it gives the maximum number of bytes
* that the JIT memory report size can exceed the actual backed memory size.
*/
#define KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES (512u)
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
/*
* kbase_large_page_state - flag indicating kbase handling of large pages
* @LARGE_PAGE_AUTO: large pages get selected if the GPU hardware supports them
* @LARGE_PAGE_ON: large pages get selected regardless of GPU support
* @LARGE_PAGE_OFF: large pages get disabled regardless of GPU support
*/
enum kbase_large_page_state { LARGE_PAGE_AUTO, LARGE_PAGE_ON, LARGE_PAGE_OFF, LARGE_PAGE_MAX };
static enum kbase_large_page_state large_page_conf =
IS_ENABLED(CONFIG_LARGE_PAGE_SUPPORT) ? LARGE_PAGE_AUTO : LARGE_PAGE_OFF;
static int set_large_page_conf(const char *val, const struct kernel_param *kp)
{
char *user_input = strstrip((char *)val);
if (!IS_ENABLED(CONFIG_LARGE_PAGE_SUPPORT))
return 0;
if (!strcmp(user_input, "auto"))
large_page_conf = LARGE_PAGE_AUTO;
else if (!strcmp(user_input, "on"))
large_page_conf = LARGE_PAGE_ON;
else if (!strcmp(user_input, "off"))
large_page_conf = LARGE_PAGE_OFF;
return 0;
}
static int get_large_page_conf(char *buffer, const struct kernel_param *kp)
{
char *out;
switch (large_page_conf) {
case LARGE_PAGE_AUTO:
out = "auto";
break;
case LARGE_PAGE_ON:
out = "on";
break;
case LARGE_PAGE_OFF:
out = "off";
break;
default:
out = "default";
break;
}
return scnprintf(buffer, PAGE_SIZE, "%s\n", out);
}
static const struct kernel_param_ops large_page_config_params = {
.set = set_large_page_conf,
.get = get_large_page_conf,
};
module_param_cb(large_page_conf, &large_page_config_params, NULL, 0444);
__MODULE_PARM_TYPE(large_page_conf, "charp");
MODULE_PARM_DESC(large_page_conf, "User override for large page usage on supporting platforms.");
/**
* kbasep_mem_page_size_init - Initialize kbase device for 2MB page.
* @kbdev: Pointer to the device.
*
* This function must be called only when a kbase device is initialized.
*/
static void kbasep_mem_page_size_init(struct kbase_device *kbdev)
{
if (!IS_ENABLED(CONFIG_LARGE_PAGE_SUPPORT)) {
kbdev->pagesize_2mb = false;
dev_info(kbdev->dev, "Large page support was disabled at compile-time!");
return;
}
switch (large_page_conf) {
case LARGE_PAGE_AUTO: {
kbdev->pagesize_2mb = kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_LARGE_PAGE_ALLOC);
dev_info(kbdev->dev, "Large page allocation set to %s after hardware feature check",
kbdev->pagesize_2mb ? "true" : "false");
break;
}
case LARGE_PAGE_ON: {
kbdev->pagesize_2mb = true;
if (!kbase_hw_has_feature(kbdev, BASE_HW_FEATURE_LARGE_PAGE_ALLOC))
dev_warn(kbdev->dev,
"Enabling large page allocations on unsupporting GPU!");
else
dev_info(kbdev->dev, "Large page allocation override: turned on\n");
break;
}
case LARGE_PAGE_OFF: {
kbdev->pagesize_2mb = false;
dev_info(kbdev->dev, "Large page allocation override: turned off\n");
break;
}
default: {
kbdev->pagesize_2mb = false;
dev_info(kbdev->dev, "Invalid large page override, turning off large pages\n");
break;
}
}
/* We want the final state of the setup to be reflected in the module parameter,
* so that userspace could read it to figure out the state of the configuration
* if necessary.
*/
if (kbdev->pagesize_2mb)
large_page_conf = LARGE_PAGE_ON;
else
large_page_conf = LARGE_PAGE_OFF;
}
int kbase_mem_init(struct kbase_device *kbdev)
{
int err = 0;
struct kbasep_mem_device *memdev;
char va_region_slab_name[VA_REGION_SLAB_NAME_SIZE];
#if IS_ENABLED(CONFIG_OF)
struct device_node *mgm_node = NULL;
#endif
KBASE_DEBUG_ASSERT(kbdev);
memdev = &kbdev->memdev;
kbasep_mem_page_size_init(kbdev);
scnprintf(va_region_slab_name, VA_REGION_SLAB_NAME_SIZE, VA_REGION_SLAB_NAME_PREFIX "%s",
kbdev->devname);
/* Initialize slab cache for kbase_va_regions */
kbdev->va_region_slab =
kmem_cache_create(va_region_slab_name, sizeof(struct kbase_va_region), 0, 0, NULL);
if (kbdev->va_region_slab == NULL) {
dev_err(kbdev->dev, "Failed to create va_region_slab\n");
return -ENOMEM;
}
kbase_mem_migrate_init(kbdev);
kbase_mem_pool_group_config_set_max_size(&kbdev->mem_pool_defaults,
KBASE_MEM_POOL_MAX_SIZE_KCTX);
spin_lock_init(&kbdev->gpu_mem_usage_lock);
kbdev->total_gpu_pages = 0;
kbdev->dma_buf_pages = 0;
kbdev->process_root = RB_ROOT;
kbdev->dma_buf_root = RB_ROOT;
mutex_init(&kbdev->dma_buf_lock);
#ifdef IR_THRESHOLD
atomic_set(&memdev->ir_threshold, IR_THRESHOLD);
#else
atomic_set(&memdev->ir_threshold, DEFAULT_IR_THRESHOLD);
#endif
kbdev->mgm_dev = &kbase_native_mgm_dev;
#if IS_ENABLED(CONFIG_OF)
/* Check to see whether or not a platform-specific memory group manager
* is configured and available.
*/
mgm_node = of_parse_phandle(kbdev->dev->of_node, "physical-memory-group-manager", 0);
if (!mgm_node) {
dev_info(kbdev->dev, "No memory group manager is configured\n");
} else {
struct platform_device *const pdev = of_find_device_by_node(mgm_node);
if (!pdev) {
dev_err(kbdev->dev, "The configured memory group manager was not found\n");
} else {
kbdev->mgm_dev = platform_get_drvdata(pdev);
if (!kbdev->mgm_dev) {
dev_info(kbdev->dev, "Memory group manager is not ready\n");
err = -EPROBE_DEFER;
} else if (!try_module_get(kbdev->mgm_dev->owner)) {
dev_err(kbdev->dev, "Failed to get memory group manger module\n");
err = -ENODEV;
kbdev->mgm_dev = NULL;
} else {
dev_info(kbdev->dev, "Memory group manager successfully loaded\n");
}
}
of_node_put(mgm_node);
}
#endif
if (likely(!err)) {
struct kbase_mem_pool_group_config mem_pool_defaults;
kbase_mem_pool_group_config_set_max_size(&mem_pool_defaults,
KBASE_MEM_POOL_MAX_SIZE_KBDEV);
err = kbase_mem_pool_group_init(&kbdev->mem_pools, kbdev, &mem_pool_defaults, NULL);
}
return err;
}
void kbase_mem_halt(struct kbase_device *kbdev)
{
CSTD_UNUSED(kbdev);
}
void kbase_mem_term(struct kbase_device *kbdev)
{
struct kbasep_mem_device *memdev;
int pages;
KBASE_DEBUG_ASSERT(kbdev);
memdev = &kbdev->memdev;
pages = atomic_read(&memdev->used_pages);
if (pages != 0)
dev_warn(kbdev->dev, "%s: %d pages in use!\n", __func__, pages);
kbase_mem_pool_group_term(&kbdev->mem_pools);
kbase_mem_migrate_term(kbdev);
kmem_cache_destroy(kbdev->va_region_slab);
kbdev->va_region_slab = NULL;
WARN_ON(kbdev->total_gpu_pages);
WARN_ON(!RB_EMPTY_ROOT(&kbdev->process_root));
WARN_ON(!RB_EMPTY_ROOT(&kbdev->dma_buf_root));
mutex_destroy(&kbdev->dma_buf_lock);
if (kbdev->mgm_dev)
module_put(kbdev->mgm_dev->owner);
}
KBASE_EXPORT_TEST_API(kbase_mem_term);
int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr,
size_t nr_pages, size_t align, enum kbase_caller_mmu_sync_info mmu_sync_info)
{
int err;
size_t i = 0;
unsigned long attr;
unsigned long mask = ~KBASE_REG_MEMATTR_MASK;
unsigned long gwt_mask = ~0UL;
int group_id;
struct kbase_mem_phy_alloc *alloc;
#ifdef CONFIG_MALI_CINSTR_GWT
if (kctx->gwt_enabled)
gwt_mask = ~KBASE_REG_GPU_WR;
#endif
if ((kctx->kbdev->system_coherency == COHERENCY_ACE) && (reg->flags & KBASE_REG_SHARE_BOTH))
attr = KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_OUTER_WA);
else
attr = KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_WRITE_ALLOC);
KBASE_DEBUG_ASSERT(kctx != NULL);
KBASE_DEBUG_ASSERT(reg != NULL);
err = kbase_add_va_region(kctx, reg, addr, nr_pages, align);
if (err)
return err;
alloc = reg->gpu_alloc;
group_id = alloc->group_id;
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_ALIAS) {
u64 const stride = alloc->imported.alias.stride;
KBASE_DEBUG_ASSERT(alloc->imported.alias.aliased);
for (i = 0; i < alloc->imported.alias.nents; i++) {
if (alloc->imported.alias.aliased[i].alloc) {
err = kbase_mmu_insert_aliased_pages(
kctx->kbdev, &kctx->mmu, reg->start_pfn + (i * stride),
alloc->imported.alias.aliased[i].alloc->pages +
alloc->imported.alias.aliased[i].offset,
alloc->imported.alias.aliased[i].length,
reg->flags & gwt_mask, kctx->as_nr, group_id, mmu_sync_info,
NULL);
if (err)
goto bad_aliased_insert;
/* Note: mapping count is tracked at alias
* creation time
*/
} else {
err = kbase_mmu_insert_single_aliased_page(
kctx, reg->start_pfn + i * stride, kctx->aliasing_sink_page,
alloc->imported.alias.aliased[i].length,
(reg->flags & mask & gwt_mask) | attr, group_id,
mmu_sync_info);
if (err)
goto bad_aliased_insert;
}
}
} else {
/* Imported user buffers have dedicated state transitions.
* The intended outcome is still the same: creating a GPU mapping,
* but only if the user buffer has already advanced to the expected
* state and has acquired enough resources.
*/
if (reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) {
/* The region is always supposed to be EMPTY at this stage.
* If the region is coherent with the CPU then all resources are
* acquired, including physical pages and DMA addresses, and a
* GPU mapping is created.
*/
switch (alloc->imported.user_buf.state) {
case KBASE_USER_BUF_STATE_EMPTY: {
if (reg->flags & KBASE_REG_SHARE_BOTH) {
err = kbase_user_buf_from_empty_to_gpu_mapped(kctx, reg);
reg->gpu_alloc->imported.user_buf
.current_mapping_usage_count++;
}
break;
}
default: {
WARN(1, "Unexpected state %d for imported user buffer\n",
alloc->imported.user_buf.state);
break;
}
}
} else if (reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
err = kbase_mmu_insert_pages_skip_status_update(
kctx->kbdev, &kctx->mmu, reg->start_pfn,
kbase_get_gpu_phy_pages(reg), kbase_reg_current_backed_size(reg),
reg->flags & gwt_mask, kctx->as_nr, group_id, mmu_sync_info, reg);
} else {
err = kbase_mmu_insert_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
kbase_get_gpu_phy_pages(reg),
kbase_reg_current_backed_size(reg),
reg->flags & gwt_mask, kctx->as_nr, group_id,
mmu_sync_info, reg);
}
if (err)
goto bad_insert;
kbase_mem_phy_alloc_gpu_mapped(alloc);
}
if (reg->flags & KBASE_REG_IMPORT_PAD && !WARN_ON(reg->nr_pages < reg->gpu_alloc->nents) &&
reg->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM &&
reg->gpu_alloc->imported.umm.current_mapping_usage_count) {
/* For padded imported dma-buf or user-buf memory, map the dummy
* aliasing page from the end of the imported pages, to the end of
* the region using a read only mapping.
*
* Only map when it's imported dma-buf memory that is currently
* mapped.
*
* Assume reg->gpu_alloc->nents is the number of actual pages
* in the dma-buf memory.
*/
err = kbase_mmu_insert_single_imported_page(
kctx, reg->start_pfn + reg->gpu_alloc->nents, kctx->aliasing_sink_page,
reg->nr_pages - reg->gpu_alloc->nents,
(reg->flags | KBASE_REG_GPU_RD) & ~KBASE_REG_GPU_WR, KBASE_MEM_GROUP_SINK,
mmu_sync_info);
if (err)
goto bad_insert;
}
return err;
bad_aliased_insert:
while (i-- > 0) {
struct tagged_addr *phys_alloc = NULL;
u64 const stride = alloc->imported.alias.stride;
if (alloc->imported.alias.aliased[i].alloc != NULL)
phys_alloc = alloc->imported.alias.aliased[i].alloc->pages +
alloc->imported.alias.aliased[i].offset;
kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn + (i * stride),
phys_alloc, alloc->imported.alias.aliased[i].length,
alloc->imported.alias.aliased[i].length, kctx->as_nr);
}
bad_insert:
kbase_remove_va_region(kctx->kbdev, reg);
return err;
}
KBASE_EXPORT_TEST_API(kbase_gpu_mmap);
static void kbase_user_buf_unmap(struct kbase_context *kctx, struct kbase_va_region *reg);
int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg)
{
int err = 0;
struct kbase_mem_phy_alloc *alloc;
if (reg->start_pfn == 0)
return 0;
if (!reg->gpu_alloc)
return -EINVAL;
alloc = reg->gpu_alloc;
/* Tear down GPU page tables, depending on memory type. */
switch (alloc->type) {
case KBASE_MEM_TYPE_ALIAS: {
size_t i = 0;
/* Due to the way the number of valid PTEs and ATEs are tracked
* currently, only the GPU virtual range that is backed & mapped
* should be passed to the page teardown function, hence individual
* aliased regions needs to be unmapped separately.
*/
for (i = 0; i < alloc->imported.alias.nents; i++) {
struct tagged_addr *phys_alloc = NULL;
int err_loop;
if (alloc->imported.alias.aliased[i].alloc != NULL)
phys_alloc = alloc->imported.alias.aliased[i].alloc->pages +
alloc->imported.alias.aliased[i].offset;
err_loop = kbase_mmu_teardown_pages(
kctx->kbdev, &kctx->mmu,
reg->start_pfn + (i * alloc->imported.alias.stride), phys_alloc,
alloc->imported.alias.aliased[i].length,
alloc->imported.alias.aliased[i].length, kctx->as_nr);
if (WARN_ON_ONCE(err_loop))
err = err_loop;
}
} break;
case KBASE_MEM_TYPE_IMPORTED_UMM: {
size_t nr_phys_pages = reg->nr_pages;
size_t nr_virt_pages = reg->nr_pages;
/* If the region has import padding and falls under the threshold for
* issuing a partial GPU cache flush, we want to reduce the number of
* physical pages that get flushed.
* This is symmetric with case of mapping the memory, which first maps
* each imported physical page to a separate virtual page, and then
* maps the single aliasing sink page to each of the virtual padding
* pages.
*/
if (reg->flags & KBASE_REG_IMPORT_PAD)
nr_phys_pages = alloc->nents + 1;
err = kbase_mmu_teardown_imported_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
alloc->pages, nr_phys_pages, nr_virt_pages,
kctx->as_nr);
} break;
case KBASE_MEM_TYPE_IMPORTED_USER_BUF: {
/* Progress through all stages to destroy the GPU mapping and release
* all resources.
*/
switch (alloc->imported.user_buf.state) {
case KBASE_USER_BUF_STATE_GPU_MAPPED: {
alloc->imported.user_buf.current_mapping_usage_count = 0;
kbase_mem_phy_alloc_ref_read(alloc) ?
kbase_user_buf_from_gpu_mapped_to_pinned(kctx, reg) :
kbase_user_buf_from_gpu_mapped_to_empty(kctx, reg);
break;
}
case KBASE_USER_BUF_STATE_DMA_MAPPED: {
kbase_mem_phy_alloc_ref_read(alloc) ?
kbase_user_buf_from_dma_mapped_to_pinned(kctx, reg) :
kbase_user_buf_from_dma_mapped_to_empty(kctx, reg);
break;
}
case KBASE_USER_BUF_STATE_PINNED: {
if (!kbase_mem_phy_alloc_ref_read(alloc))
kbase_user_buf_from_pinned_to_empty(kctx, reg);
break;
}
case KBASE_USER_BUF_STATE_EMPTY: {
/* Nothing to do. This is a legal possibility, because an imported
* memory handle can be destroyed just after creation without being
* used.
*/
break;
}
default: {
WARN(1, "Unexpected state %d for imported user buffer\n",
alloc->imported.user_buf.state);
break;
}
}
break;
}
default: {
size_t nr_reg_pages = kbase_reg_current_backed_size(reg);
err = kbase_mmu_teardown_pages(kctx->kbdev, &kctx->mmu, reg->start_pfn,
alloc->pages, nr_reg_pages, nr_reg_pages,
kctx->as_nr);
} break;
}
if (alloc->type != KBASE_MEM_TYPE_ALIAS)
kbase_mem_phy_alloc_gpu_unmapped(reg->gpu_alloc);
return err;
}
static struct kbase_cpu_mapping *kbasep_find_enclosing_cpu_mapping(struct kbase_context *kctx,
unsigned long uaddr, size_t size,
u64 *offset)
{
struct vm_area_struct *vma;
struct kbase_cpu_mapping *map;
unsigned long vm_pgoff_in_region;
unsigned long vm_off_in_region;
unsigned long map_start;
size_t map_size;
lockdep_assert_held(kbase_mem_get_process_mmap_lock());
if ((uintptr_t)uaddr + size < (uintptr_t)uaddr) /* overflow check */
return NULL;
vma = find_vma_intersection(current->mm, uaddr, uaddr + size);
if (!vma || vma->vm_start > uaddr)
return NULL;
if (vma->vm_ops != &kbase_vm_ops)
/* Not ours! */
return NULL;
map = vma->vm_private_data;
if (map->kctx != kctx)
/* Not from this context! */
return NULL;
vm_pgoff_in_region = vma->vm_pgoff - map->region->start_pfn;
vm_off_in_region = vm_pgoff_in_region << PAGE_SHIFT;
map_start = vma->vm_start - vm_off_in_region;
map_size = map->region->nr_pages << PAGE_SHIFT;
if ((uaddr + size) > (map_start + map_size))
/* Not within the CPU mapping */
return NULL;
*offset = (uaddr - vma->vm_start) + vm_off_in_region;
return map;
}
int kbasep_find_enclosing_cpu_mapping_offset(struct kbase_context *kctx, unsigned long uaddr,
size_t size, u64 *offset)
{
struct kbase_cpu_mapping *map;
kbase_os_mem_map_lock(kctx);
map = kbasep_find_enclosing_cpu_mapping(kctx, uaddr, size, offset);
kbase_os_mem_map_unlock(kctx);
if (!map)
return -EINVAL;
return 0;
}
KBASE_EXPORT_TEST_API(kbasep_find_enclosing_cpu_mapping_offset);
int kbasep_find_enclosing_gpu_mapping_start_and_offset(struct kbase_context *kctx, u64 gpu_addr,
size_t size, u64 *start, u64 *offset)
{
struct kbase_va_region *region;
kbase_gpu_vm_lock(kctx);
region = kbase_region_tracker_find_region_enclosing_address(kctx, gpu_addr);
if (!region) {
kbase_gpu_vm_unlock(kctx);
return -EINVAL;
}
*start = region->start_pfn << PAGE_SHIFT;
*offset = gpu_addr - *start;
if (((region->start_pfn + region->nr_pages) << PAGE_SHIFT) < (gpu_addr + size)) {
kbase_gpu_vm_unlock(kctx);
return -EINVAL;
}
kbase_gpu_vm_unlock(kctx);
return 0;
}
KBASE_EXPORT_TEST_API(kbasep_find_enclosing_gpu_mapping_start_and_offset);
void kbase_sync_single(struct kbase_context *kctx, struct tagged_addr t_cpu_pa,
struct tagged_addr t_gpu_pa, off_t offset, size_t size,
enum kbase_sync_type sync_fn)
{
struct page *cpu_page;
phys_addr_t cpu_pa = as_phys_addr_t(t_cpu_pa);
phys_addr_t gpu_pa = as_phys_addr_t(t_gpu_pa);
cpu_page = pfn_to_page(PFN_DOWN(cpu_pa));
if (likely(cpu_pa == gpu_pa)) {
dma_addr_t dma_addr;
WARN_ON(!cpu_page);
WARN_ON((size_t)offset + size > PAGE_SIZE);
dma_addr = kbase_dma_addr_from_tagged(t_cpu_pa) + (dma_addr_t)offset;
if (sync_fn == KBASE_SYNC_TO_CPU)
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr, size,
DMA_BIDIRECTIONAL);
else if (sync_fn == KBASE_SYNC_TO_DEVICE)
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr, size,
DMA_BIDIRECTIONAL);
} else {
void *src = NULL;
void *dst = NULL;
struct page *gpu_page;
dma_addr_t dma_addr;
if (WARN(!gpu_pa, "No GPU PA found for infinite cache op"))
return;
gpu_page = pfn_to_page(PFN_DOWN(gpu_pa));
dma_addr = kbase_dma_addr_from_tagged(t_gpu_pa) + (dma_addr_t)offset;
if (sync_fn == KBASE_SYNC_TO_DEVICE) {
src = ((unsigned char *)kbase_kmap(cpu_page)) + offset;
dst = ((unsigned char *)kbase_kmap(gpu_page)) + offset;
} else if (sync_fn == KBASE_SYNC_TO_CPU) {
dma_sync_single_for_cpu(kctx->kbdev->dev, dma_addr, size,
DMA_BIDIRECTIONAL);
src = ((unsigned char *)kbase_kmap(gpu_page)) + offset;
dst = ((unsigned char *)kbase_kmap(cpu_page)) + offset;
}
memcpy(dst, src, size);
kbase_kunmap(gpu_page, src);
kbase_kunmap(cpu_page, dst);
if (sync_fn == KBASE_SYNC_TO_DEVICE)
dma_sync_single_for_device(kctx->kbdev->dev, dma_addr, size,
DMA_BIDIRECTIONAL);
}
}
static int kbase_do_syncset(struct kbase_context *kctx, struct basep_syncset *sset,
enum kbase_sync_type sync_fn)
{
int err = 0;
struct kbase_va_region *reg;
struct kbase_cpu_mapping *map;
unsigned long start;
size_t size;
struct tagged_addr *cpu_pa;
struct tagged_addr *gpu_pa;
u64 page_off, page_count;
u64 i;
u64 offset;
size_t sz;
kbase_os_mem_map_lock(kctx);
kbase_gpu_vm_lock(kctx);
/* find the region where the virtual address is contained */
reg = kbase_region_tracker_find_region_enclosing_address(kctx,
sset->mem_handle.basep.handle);
if (kbase_is_region_invalid_or_free(reg)) {
dev_warn(kctx->kbdev->dev, "Can't find a valid region at VA 0x%016llX",
sset->mem_handle.basep.handle);
err = -EINVAL;
goto out_unlock;
}
/*
* Handle imported memory before checking for KBASE_REG_CPU_CACHED. The
* CPU mapping cacheability is defined by the owner of the imported
* memory, and not by kbase, therefore we must assume that any imported
* memory may be cached.
*/
if (kbase_mem_is_imported(reg->gpu_alloc->type)) {
err = kbase_mem_do_sync_imported(kctx, reg, sync_fn);
goto out_unlock;
}
if (!(reg->flags & KBASE_REG_CPU_CACHED))
goto out_unlock;
start = (uintptr_t)sset->user_addr;
size = (size_t)sset->size;
map = kbasep_find_enclosing_cpu_mapping(kctx, start, size, &offset);
if (!map) {
dev_warn(kctx->kbdev->dev, "Can't find CPU mapping 0x%016lX for VA 0x%016llX",
start, sset->mem_handle.basep.handle);
err = -EINVAL;
goto out_unlock;
}
page_off = offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
page_count = (size + offset + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
cpu_pa = kbase_get_cpu_phy_pages(reg);
gpu_pa = kbase_get_gpu_phy_pages(reg);
if (page_off > reg->nr_pages || page_off + page_count > reg->nr_pages) {
/* Sync overflows the region */
err = -EINVAL;
goto out_unlock;
}
if (page_off >= reg->gpu_alloc->nents) {
/* Start of sync range is outside the physically backed region
* so nothing to do
*/
goto out_unlock;
}
/* Sync first page */
sz = MIN(((size_t)PAGE_SIZE - offset), size);
kbase_sync_single(kctx, cpu_pa[page_off], gpu_pa[page_off], (off_t)offset, sz, sync_fn);
/* Calculate the size for last page */
sz = ((start + size - 1) & ~PAGE_MASK) + 1;
/* Limit the sync range to the physically backed region */
if (page_off + page_count > reg->gpu_alloc->nents) {
page_count = reg->gpu_alloc->nents - page_off;
/* Since we limit the pages then size for last page
* is the whole page
*/
sz = PAGE_SIZE;
}
/* Sync middle pages (if any) */
for (i = 1; page_count > 2 && i < page_count - 1; i++) {
kbase_sync_single(kctx, cpu_pa[page_off + i], gpu_pa[page_off + i], 0, PAGE_SIZE,
sync_fn);
}
/* Sync last page (if any) */
if (page_count > 1) {
kbase_sync_single(kctx, cpu_pa[page_off + page_count - 1],
gpu_pa[page_off + page_count - 1], 0, sz, sync_fn);
}
out_unlock:
kbase_gpu_vm_unlock(kctx);
kbase_os_mem_map_unlock(kctx);
return err;
}
int kbase_sync_now(struct kbase_context *kctx, struct basep_syncset *sset)
{
int err = -EINVAL;
KBASE_DEBUG_ASSERT(kctx != NULL);
KBASE_DEBUG_ASSERT(sset != NULL);
if (sset->mem_handle.basep.handle & ~PAGE_MASK) {
dev_warn(kctx->kbdev->dev, "mem_handle: passed parameter is invalid");
return -EINVAL;
}
switch (sset->type) {
case BASE_SYNCSET_OP_MSYNC:
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_DEVICE);
break;
case BASE_SYNCSET_OP_CSYNC:
err = kbase_do_syncset(kctx, sset, KBASE_SYNC_TO_CPU);
break;
default:
dev_warn(kctx->kbdev->dev, "Unknown msync op %d\n", sset->type);
break;
}
return err;
}
KBASE_EXPORT_TEST_API(kbase_sync_now);
/* vm lock must be held */
int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg)
{
int err;
KBASE_DEBUG_ASSERT(kctx != NULL);
KBASE_DEBUG_ASSERT(reg != NULL);
dev_dbg(kctx->kbdev->dev, "%s %pK in kctx %pK\n", __func__, (void *)reg, (void *)kctx);
lockdep_assert_held(&kctx->reg_lock);
if (kbase_va_region_is_no_user_free(reg)) {
dev_warn(kctx->kbdev->dev,
"Attempt to free GPU memory whose freeing by user space is forbidden!\n");
return -EINVAL;
}
/* If a region has been made evictable then we must unmake it
* before trying to free it.
* If the memory hasn't been reclaimed it will be unmapped and freed
* below, if it has been reclaimed then the operations below are no-ops.
*/
if (reg->flags & KBASE_REG_DONT_NEED) {
WARN_ON(reg->cpu_alloc->type != KBASE_MEM_TYPE_NATIVE);
mutex_lock(&kctx->jit_evict_lock);
/* Unlink the physical allocation before unmaking it evictable so
* that the allocation isn't grown back to its last backed size
* as we're going to unmap it anyway.
*/
reg->cpu_alloc->reg = NULL;
if (reg->cpu_alloc != reg->gpu_alloc)
reg->gpu_alloc->reg = NULL;
mutex_unlock(&kctx->jit_evict_lock);
kbase_mem_evictable_unmake(reg->gpu_alloc);
}
err = kbase_gpu_munmap(kctx, reg);
if (err) {
dev_warn(kctx->kbdev->dev, "Could not unmap from the GPU...\n");
goto out;
}
#if MALI_USE_CSF
if (((kbase_bits_to_zone(reg->flags)) == FIXED_VA_ZONE) ||
((kbase_bits_to_zone(reg->flags)) == EXEC_FIXED_VA_ZONE)) {
if (reg->flags & KBASE_REG_FIXED_ADDRESS)
atomic64_dec(&kctx->num_fixed_allocs);
else
atomic64_dec(&kctx->num_fixable_allocs);
}
#endif
/* This will also free the physical pages */
kbase_free_alloced_region(reg);
out:
return err;
}
KBASE_EXPORT_TEST_API(kbase_mem_free_region);
/**
* kbase_mem_free - Free the region from the GPU and unregister it.
*
* @kctx: KBase context
* @gpu_addr: GPU address to free
*
* This function implements the free operation on a memory segment.
* It will loudly fail if called with outstanding mappings.
*
* Return: 0 on success.
*/
int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr)
{
int err = 0;
struct kbase_va_region *reg;
KBASE_DEBUG_ASSERT(kctx != NULL);
dev_dbg(kctx->kbdev->dev, "%s 0x%llx in kctx %pK\n", __func__, gpu_addr, (void *)kctx);
if ((gpu_addr & ~PAGE_MASK) && (gpu_addr >= PAGE_SIZE)) {
dev_warn(kctx->kbdev->dev, "%s: gpu_addr parameter is invalid", __func__);
return -EINVAL;
}
if (gpu_addr == 0) {
dev_warn(
kctx->kbdev->dev,
"gpu_addr 0 is reserved for the ringbuffer and it's an error to try to free it using %s\n",
__func__);
return -EINVAL;
}
kbase_gpu_vm_lock_with_pmode_sync(kctx);
if (gpu_addr >= BASE_MEM_COOKIE_BASE && gpu_addr < BASE_MEM_FIRST_FREE_ADDRESS) {
unsigned int cookie = PFN_DOWN(gpu_addr - BASE_MEM_COOKIE_BASE);
reg = kctx->pending_regions[cookie];
if (!reg) {
err = -EINVAL;
goto out_unlock;
}
/* ask to unlink the cookie as we'll free it */
kctx->pending_regions[cookie] = NULL;
bitmap_set(kctx->cookies, cookie, 1);
kbase_free_alloced_region(reg);
} else {
/* A real GPU va */
/* Validate the region */
reg = kbase_region_tracker_find_region_base_address(kctx, gpu_addr);
if (kbase_is_region_invalid_or_free(reg)) {
dev_warn(kctx->kbdev->dev, "%s called with nonexistent gpu_addr 0x%llX",
__func__, gpu_addr);
err = -EINVAL;
goto out_unlock;
}
if ((kbase_bits_to_zone(reg->flags)) == SAME_VA_ZONE) {
/* SAME_VA must be freed through munmap */
dev_warn(kctx->kbdev->dev, "%s called on SAME_VA memory 0x%llX", __func__,
gpu_addr);
err = -EINVAL;
goto out_unlock;
}
err = kbase_mem_free_region(kctx, reg);
}
out_unlock:
kbase_gpu_vm_unlock_with_pmode_sync(kctx);
return err;
}
KBASE_EXPORT_TEST_API(kbase_mem_free);
int kbase_update_region_flags(struct kbase_context *kctx, struct kbase_va_region *reg,
unsigned long flags)
{
KBASE_DEBUG_ASSERT(reg != NULL);
KBASE_DEBUG_ASSERT((flags & ~((1ul << BASE_MEM_FLAGS_NR_BITS) - 1)) == 0);
reg->flags |= kbase_cache_enabled(flags, reg->nr_pages);
/* all memory is now growable */
reg->flags |= KBASE_REG_GROWABLE;
if (flags & BASE_MEM_GROW_ON_GPF)
reg->flags |= KBASE_REG_PF_GROW;
if (flags & BASE_MEM_PROT_CPU_WR)
reg->flags |= KBASE_REG_CPU_WR;
if (flags & BASE_MEM_PROT_CPU_RD)
reg->flags |= KBASE_REG_CPU_RD;
if (flags & BASE_MEM_PROT_GPU_WR)
reg->flags |= KBASE_REG_GPU_WR;
if (flags & BASE_MEM_PROT_GPU_RD)
reg->flags |= KBASE_REG_GPU_RD;
if (0 == (flags & BASE_MEM_PROT_GPU_EX))
reg->flags |= KBASE_REG_GPU_NX;
if (!kbase_device_is_cpu_coherent(kctx->kbdev)) {
if (flags & BASE_MEM_COHERENT_SYSTEM_REQUIRED && !(flags & BASE_MEM_UNCACHED_GPU))
return -EINVAL;
} else if (flags & (BASE_MEM_COHERENT_SYSTEM | BASE_MEM_COHERENT_SYSTEM_REQUIRED)) {
reg->flags |= KBASE_REG_SHARE_BOTH;
}
if (!(reg->flags & KBASE_REG_SHARE_BOTH) && flags & BASE_MEM_COHERENT_LOCAL) {
reg->flags |= KBASE_REG_SHARE_IN;
}
#if !MALI_USE_CSF
if (flags & BASE_MEM_TILER_ALIGN_TOP)
reg->flags |= KBASE_REG_TILER_ALIGN_TOP;
#endif /* !MALI_USE_CSF */
#if MALI_USE_CSF
if (flags & BASE_MEM_CSF_EVENT) {
reg->flags |= KBASE_REG_CSF_EVENT;
reg->flags |= KBASE_REG_PERMANENT_KERNEL_MAPPING;
if (!(reg->flags & KBASE_REG_SHARE_BOTH)) {
/* On non coherent platforms need to map as uncached on
* both sides.
*/
reg->flags &= ~KBASE_REG_CPU_CACHED;
reg->flags &= ~KBASE_REG_GPU_CACHED;
}
}
#endif
/* Set up default MEMATTR usage */
if (!(reg->flags & KBASE_REG_GPU_CACHED)) {
if (kctx->kbdev->mmu_mode->flags & KBASE_MMU_MODE_HAS_NON_CACHEABLE) {
/* Override shareability, and MEMATTR for uncached */
reg->flags &= ~(KBASE_REG_SHARE_IN | KBASE_REG_SHARE_BOTH);
reg->flags |= KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_NON_CACHEABLE);
} else {
dev_warn(kctx->kbdev->dev,
"Can't allocate GPU uncached memory due to MMU in Legacy Mode\n");
return -EINVAL;
}
#if MALI_USE_CSF
} else if (reg->flags & KBASE_REG_CSF_EVENT) {
WARN_ON(!(reg->flags & KBASE_REG_SHARE_BOTH));
reg->flags |= KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_SHARED);
#endif
} else if (kctx->kbdev->system_coherency == COHERENCY_ACE &&
(reg->flags & KBASE_REG_SHARE_BOTH)) {
reg->flags |= KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_DEFAULT_ACE);
} else {
reg->flags |= KBASE_REG_MEMATTR_INDEX(KBASE_MEMATTR_INDEX_DEFAULT);
}
if (flags & BASEP_MEM_PERMANENT_KERNEL_MAPPING)
reg->flags |= KBASE_REG_PERMANENT_KERNEL_MAPPING;
if (flags & BASEP_MEM_NO_USER_FREE) {
kbase_gpu_vm_lock(kctx);
kbase_va_region_no_user_free_inc(reg);
kbase_gpu_vm_unlock(kctx);
}
if (flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE)
reg->flags |= KBASE_REG_GPU_VA_SAME_4GB_PAGE;
#if MALI_USE_CSF
if (flags & BASE_MEM_FIXED)
reg->flags |= KBASE_REG_FIXED_ADDRESS;
#endif
return 0;
}
static int mem_account_inc(struct kbase_context *kctx, int nr_pages_inc)
{
int new_page_count = atomic_add_return(nr_pages_inc, &kctx->used_pages);
atomic_add(nr_pages_inc, &kctx->kbdev->memdev.used_pages);
kbase_process_page_usage_inc(kctx, nr_pages_inc);
kbase_trace_gpu_mem_usage_inc(kctx->kbdev, kctx, nr_pages_inc);
return new_page_count;
}
static int mem_account_dec(struct kbase_context *kctx, int nr_pages_dec)
{
int new_page_count = atomic_sub_return(nr_pages_dec, &kctx->used_pages);
atomic_sub(nr_pages_dec, &kctx->kbdev->memdev.used_pages);
kbase_process_page_usage_dec(kctx, nr_pages_dec);
kbase_trace_gpu_mem_usage_dec(kctx->kbdev, kctx, nr_pages_dec);
return new_page_count;
}
int kbase_alloc_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_requested)
{
int new_page_count __maybe_unused;
size_t nr_left = nr_pages_requested;
int res;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct tagged_addr *tp;
/* The number of pages to account represents the total amount of memory
* actually allocated. If large pages are used, they are taken into account
* in full, even if only a fraction of them is used for sub-allocation
* to satisfy the memory allocation request.
*/
size_t nr_pages_to_account = 0;
if (WARN_ON(alloc->type != KBASE_MEM_TYPE_NATIVE) ||
WARN_ON(alloc->imported.native.kctx == NULL) ||
WARN_ON(alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS)) {
return -EINVAL;
}
if (alloc->reg) {
if (nr_pages_requested > alloc->reg->nr_pages - alloc->nents)
goto invalid_request;
}
kctx = alloc->imported.native.kctx;
kbdev = kctx->kbdev;
if (nr_pages_requested == 0)
goto done; /*nothing to do*/
/* Increase mm counters before we allocate pages so that this
* allocation is visible to the OOM killer. The actual count
* of pages will be amended later, if necessary, but for the
* moment it is safe to account for the amount initially
* requested.
*/
new_page_count = mem_account_inc(kctx, nr_pages_requested);
tp = alloc->pages + alloc->nents;
/* Check if we have enough pages requested so we can allocate a large
* page (512 * 4KB = 2MB )
*/
if (kbdev->pagesize_2mb && nr_left >= NUM_PAGES_IN_2MB_LARGE_PAGE) {
size_t nr_lp = nr_left / NUM_PAGES_IN_2MB_LARGE_PAGE;
res = kbase_mem_pool_alloc_pages(&kctx->mem_pools.large[alloc->group_id],
nr_lp * NUM_PAGES_IN_2MB_LARGE_PAGE, tp, true,
kctx->task);
if (res > 0) {
nr_left -= (size_t)res;
tp += res;
nr_pages_to_account += res;
}
if (nr_left) {
struct kbase_sub_alloc *sa, *temp_sa;
spin_lock(&kctx->mem_partials_lock);
list_for_each_entry_safe(sa, temp_sa, &kctx->mem_partials, link) {
unsigned int pidx = 0;
while (nr_left) {
pidx = find_next_zero_bit(
sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE, pidx);
bitmap_set(sa->sub_pages, pidx, 1);
*tp++ = as_tagged_tag(page_to_phys(sa->page + pidx),
FROM_PARTIAL);
nr_left--;
if (bitmap_full(sa->sub_pages,
NUM_PAGES_IN_2MB_LARGE_PAGE)) {
/* unlink from partial list when full */
list_del_init(&sa->link);
break;
}
}
}
spin_unlock(&kctx->mem_partials_lock);
}
/* only if we actually have a chunk left <512. If more it indicates
* that we couldn't allocate a 2MB above, so no point to retry here.
*/
if (nr_left > 0 && nr_left < NUM_PAGES_IN_2MB_LARGE_PAGE) {
/* create a new partial and suballocate the rest from it */
struct page *np = NULL;
do {
int err;
np = kbase_mem_pool_alloc(&kctx->mem_pools.large[alloc->group_id]);
if (np)
break;
err = kbase_mem_pool_grow(&kctx->mem_pools.large[alloc->group_id],
1, kctx->task);
if (err)
break;
} while (1);
if (np) {
size_t i;
struct kbase_sub_alloc *sa;
struct page *p;
sa = kmalloc(sizeof(*sa), GFP_KERNEL);
if (!sa) {
kbase_mem_pool_free(&kctx->mem_pools.large[alloc->group_id],
np, false);
goto no_new_partial;
}
/* store pointers back to the control struct */
np->lru.next = (void *)sa;
for (p = np; p < np + NUM_PAGES_IN_2MB_LARGE_PAGE; p++)
p->lru.prev = (void *)np;
INIT_LIST_HEAD(&sa->link);
bitmap_zero(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE);
sa->page = np;
for (i = 0; i < nr_left; i++)
*tp++ = as_tagged_tag(page_to_phys(np + i), FROM_PARTIAL);
bitmap_set(sa->sub_pages, 0, nr_left);
nr_left = 0;
/* A large page has been used for a sub-allocation: account
* for the whole of the large page, and not just for the
* sub-pages that have been used.
*/
nr_pages_to_account += NUM_PAGES_IN_2MB_LARGE_PAGE;
/* expose for later use */
spin_lock(&kctx->mem_partials_lock);
list_add(&sa->link, &kctx->mem_partials);
spin_unlock(&kctx->mem_partials_lock);
}
}
}
no_new_partial:
if (nr_left) {
res = kbase_mem_pool_alloc_pages(&kctx->mem_pools.small[alloc->group_id], nr_left,
tp, false, kctx->task);
if (res <= 0)
goto alloc_failed;
nr_pages_to_account += res;
}
alloc->nents += nr_pages_requested;
/* Amend the page count with the number of pages actually used. */
if (nr_pages_to_account > nr_pages_requested)
new_page_count = mem_account_inc(kctx, nr_pages_to_account - nr_pages_requested);
else if (nr_pages_to_account < nr_pages_requested)
new_page_count = mem_account_dec(kctx, nr_pages_requested - nr_pages_to_account);
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, kctx->id, (u64)new_page_count);
done:
return 0;
alloc_failed:
/* The first step of error recovery is freeing any allocation that
* might have succeeded. The function can be in this condition only
* in one case: it tried to allocate a combination of 2 MB and small
* pages but only the former step succeeded. In this case, calculate
* the number of 2 MB pages to release and free them.
*/
if (nr_left != nr_pages_requested) {
size_t nr_pages_to_free = nr_pages_requested - nr_left;
alloc->nents += nr_pages_to_free;
kbase_free_phy_pages_helper(alloc, nr_pages_to_free);
}
/* Undo the preliminary memory accounting that was done early on
* in the function. If only small pages are used: nr_left is equal
* to nr_pages_requested. If a combination of 2 MB and small pages was
* attempted: nr_pages_requested is equal to the sum of nr_left
* and nr_pages_to_free, and the latter has already been freed above.
*
* Also notice that there's no need to update the page count
* because memory allocation was rolled back.
*/
mem_account_dec(kctx, nr_left);
invalid_request:
return -ENOMEM;
}
static size_t free_partial_locked(struct kbase_context *kctx, struct kbase_mem_pool *pool,
struct tagged_addr tp)
{
struct page *p, *head_page;
struct kbase_sub_alloc *sa;
size_t nr_pages_to_account = 0;
lockdep_assert_held(&pool->pool_lock);
lockdep_assert_held(&kctx->mem_partials_lock);
p = as_page(tp);
head_page = (struct page *)p->lru.prev;
sa = (struct kbase_sub_alloc *)head_page->lru.next;
clear_bit(p - head_page, sa->sub_pages);
if (bitmap_empty(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE)) {
list_del(&sa->link);
kbase_mem_pool_free_locked(pool, head_page, true);
kfree(sa);
nr_pages_to_account = NUM_PAGES_IN_2MB_LARGE_PAGE;
} else if (bitmap_weight(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE) ==
NUM_PAGES_IN_2MB_LARGE_PAGE - 1) {
/* expose the partial again */
list_add(&sa->link, &kctx->mem_partials);
}
return nr_pages_to_account;
}
struct tagged_addr *kbase_alloc_phy_pages_helper_locked(struct kbase_mem_phy_alloc *alloc,
struct kbase_mem_pool *pool,
size_t nr_pages_requested,
struct kbase_sub_alloc **prealloc_sa)
{
int new_page_count __maybe_unused;
size_t nr_left = nr_pages_requested;
int res;
struct kbase_context *kctx;
struct kbase_device *kbdev;
struct tagged_addr *tp;
struct tagged_addr *new_pages = NULL;
/* The number of pages to account represents the total amount of memory
* actually allocated. If large pages are used, they are taken into account
* in full, even if only a fraction of them is used for sub-allocation
* to satisfy the memory allocation request.
*/
size_t nr_pages_to_account = 0;
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
KBASE_DEBUG_ASSERT(alloc->imported.native.kctx);
lockdep_assert_held(&pool->pool_lock);
kctx = alloc->imported.native.kctx;
kbdev = kctx->kbdev;
if (!kbdev->pagesize_2mb)
WARN_ON(pool->order);
if (alloc->reg) {
if (nr_pages_requested > alloc->reg->nr_pages - alloc->nents)
goto invalid_request;
}
lockdep_assert_held(&kctx->mem_partials_lock);
if (nr_pages_requested == 0)
goto done; /*nothing to do*/
/* Increase mm counters before we allocate pages so that this
* allocation is visible to the OOM killer. The actual count
* of pages will be amended later, if necessary, but for the
* moment it is safe to account for the amount initially
* requested.
*/
new_page_count = mem_account_inc(kctx, nr_pages_requested);
tp = alloc->pages + alloc->nents;
new_pages = tp;
if (kbdev->pagesize_2mb && pool->order) {
size_t nr_lp = nr_left / NUM_PAGES_IN_2MB_LARGE_PAGE;
res = kbase_mem_pool_alloc_pages_locked(pool, nr_lp * NUM_PAGES_IN_2MB_LARGE_PAGE,
tp);
if (res > 0) {
nr_left -= (size_t)res;
tp += res;
nr_pages_to_account += res;
}
if (nr_left) {
struct kbase_sub_alloc *sa, *temp_sa;
list_for_each_entry_safe(sa, temp_sa, &kctx->mem_partials, link) {
unsigned int pidx = 0;
while (nr_left) {
pidx = find_next_zero_bit(
sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE, pidx);
bitmap_set(sa->sub_pages, pidx, 1);
*tp++ = as_tagged_tag(page_to_phys(sa->page + pidx),
FROM_PARTIAL);
nr_left--;
if (bitmap_full(sa->sub_pages,
NUM_PAGES_IN_2MB_LARGE_PAGE)) {
/* unlink from partial list when
* full
*/
list_del_init(&sa->link);
break;
}
}
}
}
/* only if we actually have a chunk left <512. If more it
* indicates that we couldn't allocate a 2MB above, so no point
* to retry here.
*/
if (nr_left > 0 && nr_left < NUM_PAGES_IN_2MB_LARGE_PAGE) {
/* create a new partial and suballocate the rest from it
*/
struct page *np = NULL;
np = kbase_mem_pool_alloc_locked(pool);
if (np) {
size_t i;
struct kbase_sub_alloc *const sa = *prealloc_sa;
struct page *p;
/* store pointers back to the control struct */
np->lru.next = (void *)sa;
for (p = np; p < np + NUM_PAGES_IN_2MB_LARGE_PAGE; p++)
p->lru.prev = (void *)np;
INIT_LIST_HEAD(&sa->link);
bitmap_zero(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE);
sa->page = np;
for (i = 0; i < nr_left; i++)
*tp++ = as_tagged_tag(page_to_phys(np + i), FROM_PARTIAL);
bitmap_set(sa->sub_pages, 0, nr_left);
nr_left = 0;
/* A large page has been used for sub-allocation: account
* for the whole of the large page, and not just for the
* sub-pages that have been used.
*/
nr_pages_to_account += NUM_PAGES_IN_2MB_LARGE_PAGE;
/* Indicate to user that we'll free this memory
* later.
*/
*prealloc_sa = NULL;
/* expose for later use */
list_add(&sa->link, &kctx->mem_partials);
}
}
if (nr_left)
goto alloc_failed;
} else {
res = kbase_mem_pool_alloc_pages_locked(pool, nr_left, tp);
if (res <= 0)
goto alloc_failed;
nr_pages_to_account += res;
}
/* Amend the page count with the number of pages actually used. */
if (nr_pages_to_account > nr_pages_requested)
new_page_count = mem_account_inc(kctx, nr_pages_to_account - nr_pages_requested);
else if (nr_pages_to_account < nr_pages_requested)
new_page_count = mem_account_dec(kctx, nr_pages_requested - nr_pages_to_account);
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, kctx->id, (u64)new_page_count);
alloc->nents += nr_pages_requested;
done:
return new_pages;
alloc_failed:
/* The first step of error recovery is freeing any allocation that
* might have succeeded. The function can be in this condition only
* in one case: it tried to allocate a combination of 2 MB and small
* pages but only the former step succeeded. In this case, calculate
* the number of 2 MB pages to release and free them.
*/
if (nr_left != nr_pages_requested) {
size_t nr_pages_to_free = nr_pages_requested - nr_left;
struct tagged_addr *start_free = alloc->pages + alloc->nents;
if (kbdev->pagesize_2mb && pool->order) {
while (nr_pages_to_free) {
if (is_huge_head(*start_free)) {
kbase_mem_pool_free_pages_locked(
pool, NUM_PAGES_IN_2MB_LARGE_PAGE, start_free,
false, /* not dirty */
true); /* return to pool */
nr_pages_to_free -= NUM_PAGES_IN_2MB_LARGE_PAGE;
start_free += NUM_PAGES_IN_2MB_LARGE_PAGE;
} else if (is_partial(*start_free)) {
free_partial_locked(kctx, pool, *start_free);
nr_pages_to_free--;
start_free++;
}
}
} else {
kbase_mem_pool_free_pages_locked(pool, nr_pages_to_free, start_free,
false, /* not dirty */
true); /* return to pool */
}
}
/* Undo the preliminary memory accounting that was done early on
* in the function. The code above doesn't undo memory accounting
* so this is the only point where the function has to undo all
* of the pages accounted for at the top of the function.
*/
mem_account_dec(kctx, nr_pages_requested);
invalid_request:
return NULL;
}
static size_t free_partial(struct kbase_context *kctx, int group_id, struct tagged_addr tp)
{
struct page *p, *head_page;
struct kbase_sub_alloc *sa;
size_t nr_pages_to_account = 0;
p = as_page(tp);
head_page = (struct page *)p->lru.prev;
sa = (struct kbase_sub_alloc *)head_page->lru.next;
spin_lock(&kctx->mem_partials_lock);
clear_bit(p - head_page, sa->sub_pages);
if (bitmap_empty(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE)) {
list_del(&sa->link);
kbase_mem_pool_free(&kctx->mem_pools.large[group_id], head_page, true);
kfree(sa);
nr_pages_to_account = NUM_PAGES_IN_2MB_LARGE_PAGE;
} else if (bitmap_weight(sa->sub_pages, NUM_PAGES_IN_2MB_LARGE_PAGE) ==
NUM_PAGES_IN_2MB_LARGE_PAGE - 1) {
/* expose the partial again */
list_add(&sa->link, &kctx->mem_partials);
}
spin_unlock(&kctx->mem_partials_lock);
return nr_pages_to_account;
}
int kbase_free_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_to_free)
{
struct kbase_context *kctx = alloc->imported.native.kctx;
struct kbase_device *kbdev = kctx->kbdev;
bool syncback;
bool reclaimed = (alloc->evicted != 0);
struct tagged_addr *start_free;
int new_page_count __maybe_unused;
size_t freed = 0;
/* The number of pages to account represents the total amount of memory
* actually freed. If large pages are used, they are taken into account
* in full, even if only a fraction of them is used for sub-allocation
* to satisfy the memory allocation request.
*/
size_t nr_pages_to_account = 0;
if (WARN_ON(alloc->type != KBASE_MEM_TYPE_NATIVE) ||
WARN_ON(alloc->imported.native.kctx == NULL) ||
WARN_ON(alloc->nents < nr_pages_to_free) ||
WARN_ON(alloc->group_id >= MEMORY_GROUP_MANAGER_NR_GROUPS)) {
return -EINVAL;
}
/* early out if nothing to do */
if (nr_pages_to_free == 0)
return 0;
start_free = alloc->pages + alloc->nents - nr_pages_to_free;
syncback = alloc->properties & KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
/* pad start_free to a valid start location */
while (nr_pages_to_free && is_huge(*start_free) && !is_huge_head(*start_free)) {
nr_pages_to_free--;
start_free++;
}
while (nr_pages_to_free) {
if (is_huge_head(*start_free)) {
/* This is a 2MB entry, so free all the 512 pages that
* it points to
*/
kbase_mem_pool_free_pages(&kctx->mem_pools.large[alloc->group_id],
NUM_PAGES_IN_2MB_LARGE_PAGE, start_free, syncback,
reclaimed);
nr_pages_to_free -= NUM_PAGES_IN_2MB_LARGE_PAGE;
start_free += NUM_PAGES_IN_2MB_LARGE_PAGE;
freed += NUM_PAGES_IN_2MB_LARGE_PAGE;
nr_pages_to_account += NUM_PAGES_IN_2MB_LARGE_PAGE;
} else if (is_partial(*start_free)) {
nr_pages_to_account += free_partial(kctx, alloc->group_id, *start_free);
nr_pages_to_free--;
start_free++;
freed++;
} else {
struct tagged_addr *local_end_free;
local_end_free = start_free;
while (nr_pages_to_free && !is_huge(*local_end_free) &&
!is_partial(*local_end_free)) {
local_end_free++;
nr_pages_to_free--;
}
kbase_mem_pool_free_pages(&kctx->mem_pools.small[alloc->group_id],
(size_t)(local_end_free - start_free), start_free,
syncback, reclaimed);
freed += (size_t)(local_end_free - start_free);
nr_pages_to_account += (size_t)(local_end_free - start_free);
start_free += local_end_free - start_free;
}
}
alloc->nents -= freed;
if (!reclaimed) {
/* If the allocation was not reclaimed then all freed pages
* need to be accounted.
*/
new_page_count = mem_account_dec(kctx, nr_pages_to_account);
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, kctx->id, (u64)new_page_count);
} else if (freed != nr_pages_to_account) {
/* If the allocation was reclaimed then alloc->nents pages
* have already been accounted for.
*
* Only update the number of pages to account if there is
* a discrepancy to correct, due to the fact that large pages
* were partially allocated at the origin.
*/
if (freed > nr_pages_to_account)
new_page_count = mem_account_inc(kctx, freed - nr_pages_to_account);
else
new_page_count = mem_account_dec(kctx, nr_pages_to_account - freed);
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, kctx->id, (u64)new_page_count);
}
return 0;
}
void kbase_free_phy_pages_helper_locked(struct kbase_mem_phy_alloc *alloc,
struct kbase_mem_pool *pool, struct tagged_addr *pages,
size_t nr_pages_to_free)
{
struct kbase_context *kctx = alloc->imported.native.kctx;
struct kbase_device *kbdev = kctx->kbdev;
bool syncback;
struct tagged_addr *start_free;
size_t freed = 0;
/* The number of pages to account represents the total amount of memory
* actually freed. If large pages are used, they are taken into account
* in full, even if only a fraction of them is used for sub-allocation
* to satisfy the memory allocation request.
*/
size_t nr_pages_to_account = 0;
int new_page_count;
KBASE_DEBUG_ASSERT(alloc->type == KBASE_MEM_TYPE_NATIVE);
KBASE_DEBUG_ASSERT(alloc->imported.native.kctx);
KBASE_DEBUG_ASSERT(alloc->nents >= nr_pages_to_free);
lockdep_assert_held(&pool->pool_lock);
lockdep_assert_held(&kctx->mem_partials_lock);
/* early out if state is inconsistent. */
if (alloc->evicted) {
dev_err(kbdev->dev, "%s unexpectedly called for evicted region", __func__);
return;
}
/* early out if nothing to do */
if (!nr_pages_to_free)
return;
start_free = pages;
syncback = alloc->properties & KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED;
/* pad start_free to a valid start location */
while (nr_pages_to_free && is_huge(*start_free) && !is_huge_head(*start_free)) {
nr_pages_to_free--;
start_free++;
}
while (nr_pages_to_free) {
if (is_huge_head(*start_free)) {
/* This is a 2MB entry, so free all the 512 pages that
* it points to
*/
WARN_ON(!pool->order);
kbase_mem_pool_free_pages_locked(pool, NUM_PAGES_IN_2MB_LARGE_PAGE,
start_free, syncback, false);
nr_pages_to_free -= NUM_PAGES_IN_2MB_LARGE_PAGE;
start_free += NUM_PAGES_IN_2MB_LARGE_PAGE;
freed += NUM_PAGES_IN_2MB_LARGE_PAGE;
nr_pages_to_account += NUM_PAGES_IN_2MB_LARGE_PAGE;
} else if (is_partial(*start_free)) {
WARN_ON(!pool->order);
nr_pages_to_account += free_partial_locked(kctx, pool, *start_free);
nr_pages_to_free--;
start_free++;
freed++;
} else {
struct tagged_addr *local_end_free;
WARN_ON(pool->order);
local_end_free = start_free;
while (nr_pages_to_free && !is_huge(*local_end_free) &&
!is_partial(*local_end_free)) {
local_end_free++;
nr_pages_to_free--;
}
kbase_mem_pool_free_pages_locked(pool,
(size_t)(local_end_free - start_free),
start_free, syncback, false);
freed += (size_t)(local_end_free - start_free);
nr_pages_to_account += (size_t)(local_end_free - start_free);
start_free += local_end_free - start_free;
}
}
alloc->nents -= freed;
new_page_count = mem_account_dec(kctx, nr_pages_to_account);
KBASE_TLSTREAM_AUX_PAGESALLOC(kbdev, kctx->id, (u64)new_page_count);
}
KBASE_EXPORT_TEST_API(kbase_free_phy_pages_helper_locked);
void kbase_mem_kref_free(struct kref *kref)
{
struct kbase_mem_phy_alloc *alloc;
alloc = container_of(kref, struct kbase_mem_phy_alloc, kref);
switch (alloc->type) {
case KBASE_MEM_TYPE_NATIVE: {
if (!WARN_ON(!alloc->imported.native.kctx)) {
if (alloc->permanent_map)
kbase_phy_alloc_mapping_term(alloc->imported.native.kctx, alloc);
/*
* The physical allocation must have been removed from
* the eviction list before trying to free it.
*/
mutex_lock(&alloc->imported.native.kctx->jit_evict_lock);
WARN_ON(!list_empty(&alloc->evict_node));
mutex_unlock(&alloc->imported.native.kctx->jit_evict_lock);
kbase_process_page_usage_dec(alloc->imported.native.kctx,
alloc->imported.native.nr_struct_pages);
}
kbase_free_phy_pages_helper(alloc, alloc->nents);
break;
}
case KBASE_MEM_TYPE_ALIAS: {
/* just call put on the underlying phy allocs */
size_t i;
struct kbase_aliased *aliased;
aliased = alloc->imported.alias.aliased;
if (aliased) {
for (i = 0; i < alloc->imported.alias.nents; i++)
if (aliased[i].alloc) {
kbase_mem_phy_alloc_gpu_unmapped(aliased[i].alloc);
kbase_mem_phy_alloc_put(aliased[i].alloc);
}
vfree(aliased);
}
break;
}
case KBASE_MEM_TYPE_RAW:
/* raw pages, external cleanup */
break;
case KBASE_MEM_TYPE_IMPORTED_UMM:
if (!IS_ENABLED(CONFIG_MALI_DMA_BUF_MAP_ON_DEMAND)) {
WARN_ONCE(alloc->imported.umm.current_mapping_usage_count != 1,
"WARNING: expected exactly 1 mapping, got %d",
alloc->imported.umm.current_mapping_usage_count);
#if (KERNEL_VERSION(6, 1, 55) <= LINUX_VERSION_CODE)
dma_buf_unmap_attachment_unlocked(alloc->imported.umm.dma_attachment,
alloc->imported.umm.sgt,
DMA_BIDIRECTIONAL);
#else
dma_buf_unmap_attachment(alloc->imported.umm.dma_attachment,
alloc->imported.umm.sgt, DMA_BIDIRECTIONAL);
#endif
kbase_remove_dma_buf_usage(alloc->imported.umm.kctx, alloc);
}
dma_buf_detach(alloc->imported.umm.dma_buf, alloc->imported.umm.dma_attachment);
dma_buf_put(alloc->imported.umm.dma_buf);
break;
case KBASE_MEM_TYPE_IMPORTED_USER_BUF:
switch (alloc->imported.user_buf.state) {
case KBASE_USER_BUF_STATE_PINNED:
case KBASE_USER_BUF_STATE_DMA_MAPPED:
case KBASE_USER_BUF_STATE_GPU_MAPPED: {
/* It's too late to undo all of the operations that might have been
* done on an imported USER_BUFFER handle, as references have been
* lost already.
*
* The only thing that can be done safely and that is crucial for
* the rest of the system is releasing the physical pages that have
* been pinned and that are still referenced by the physical
* allocationl.
*/
kbase_user_buf_unpin_pages(alloc);
alloc->imported.user_buf.state = KBASE_USER_BUF_STATE_EMPTY;
break;
}
case KBASE_USER_BUF_STATE_EMPTY: {
/* Nothing to do. */
break;
}
default: {
WARN(1, "Unexpected free of type %d state %d\n", alloc->type,
alloc->imported.user_buf.state);
break;
}
}
if (alloc->imported.user_buf.mm)
mmdrop(alloc->imported.user_buf.mm);
if (alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
vfree(alloc->imported.user_buf.pages);
else
kfree(alloc->imported.user_buf.pages);
break;
default:
WARN(1, "Unexpected free of type %d\n", alloc->type);
break;
}
/* Free based on allocation type */
if (alloc->properties & KBASE_MEM_PHY_ALLOC_LARGE)
vfree(alloc);
else
kfree(alloc);
}
KBASE_EXPORT_TEST_API(kbase_mem_kref_free);
int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size)
{
KBASE_DEBUG_ASSERT(reg != NULL);
KBASE_DEBUG_ASSERT(vsize > 0);
/* validate user provided arguments */
if (size > vsize || vsize > reg->nr_pages)
goto out_term;
/* Prevent vsize*sizeof from wrapping around.
* For instance, if vsize is 2**29+1, we'll allocate 1 byte and the alloc won't fail.
*/
if ((size_t)vsize > ((size_t)-1 / sizeof(*reg->cpu_alloc->pages)))
goto out_term;
KBASE_DEBUG_ASSERT(vsize != 0);
if (kbase_alloc_phy_pages_helper(reg->cpu_alloc, size) != 0)
goto out_term;
reg->cpu_alloc->reg = reg;
if (reg->cpu_alloc != reg->gpu_alloc) {
if (kbase_alloc_phy_pages_helper(reg->gpu_alloc, size) != 0)
goto out_rollback;
reg->gpu_alloc->reg = reg;
}
return 0;
out_rollback:
kbase_free_phy_pages_helper(reg->cpu_alloc, size);
out_term:
return -1;
}
KBASE_EXPORT_TEST_API(kbase_alloc_phy_pages);
void kbase_set_phy_alloc_page_status(struct kbase_mem_phy_alloc *alloc,
enum kbase_page_status status)
{
u32 i = 0;
for (; i < alloc->nents; i++) {
struct tagged_addr phys = alloc->pages[i];
struct kbase_page_metadata *page_md = kbase_page_private(as_page(phys));
/* Skip the small page that is part of a large page, as the large page is
* excluded from the migration process.
*/
if (is_huge(phys) || is_partial(phys))
continue;
if (!page_md)
continue;
spin_lock(&page_md->migrate_lock);
page_md->status = PAGE_STATUS_SET(page_md->status, (u8)status);
spin_unlock(&page_md->migrate_lock);
}
}
bool kbase_check_alloc_flags(unsigned long flags)
{
/* Only known input flags should be set. */
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
return false;
/* At least one flag should be set */
if (flags == 0)
return false;
/* Either the GPU or CPU must be reading from the allocated memory */
if ((flags & (BASE_MEM_PROT_CPU_RD | BASE_MEM_PROT_GPU_RD)) == 0)
return false;
/* Either the GPU or CPU must be writing to the allocated memory */
if ((flags & (BASE_MEM_PROT_CPU_WR | BASE_MEM_PROT_GPU_WR)) == 0)
return false;
/* GPU executable memory cannot:
* - Be written by the GPU
* - Be grown on GPU page fault
*/
if ((flags & BASE_MEM_PROT_GPU_EX) &&
(flags & (BASE_MEM_PROT_GPU_WR | BASE_MEM_GROW_ON_GPF)))
return false;
#if !MALI_USE_CSF
/* GPU executable memory also cannot have the top of its initial
* commit aligned to 'extension'
*/
if ((flags & BASE_MEM_PROT_GPU_EX) && (flags & BASE_MEM_TILER_ALIGN_TOP))
return false;
#endif /* !MALI_USE_CSF */
/* To have an allocation lie within a 4GB chunk is required only for
* TLS memory, which will never be used to contain executable code.
*/
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) && (flags & BASE_MEM_PROT_GPU_EX))
return false;
#if !MALI_USE_CSF
/* TLS memory should also not be used for tiler heap */
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) && (flags & BASE_MEM_TILER_ALIGN_TOP))
return false;
#endif /* !MALI_USE_CSF */
/* GPU should have at least read or write access otherwise there is no
* reason for allocating.
*/
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
return false;
/* BASE_MEM_IMPORT_SHARED is only valid for imported memory */
if ((flags & BASE_MEM_IMPORT_SHARED) == BASE_MEM_IMPORT_SHARED)
return false;
/* BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP is only valid for imported memory
*/
if ((flags & BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP) == BASE_MEM_IMPORT_SYNC_ON_MAP_UNMAP)
return false;
/* Should not combine BASE_MEM_COHERENT_LOCAL with
* BASE_MEM_COHERENT_SYSTEM
*/
if ((flags & (BASE_MEM_COHERENT_LOCAL | BASE_MEM_COHERENT_SYSTEM)) ==
(BASE_MEM_COHERENT_LOCAL | BASE_MEM_COHERENT_SYSTEM))
return false;
#if MALI_USE_CSF
if ((flags & BASE_MEM_SAME_VA) && (flags & (BASE_MEM_FIXABLE | BASE_MEM_FIXED)))
return false;
if ((flags & BASE_MEM_FIXABLE) && (flags & BASE_MEM_FIXED))
return false;
#endif
return true;
}
bool kbase_check_import_flags(unsigned long flags)
{
/* Only known input flags should be set. */
if (flags & ~BASE_MEM_FLAGS_INPUT_MASK)
return false;
/* At least one flag should be set */
if (flags == 0)
return false;
/* Imported memory cannot be GPU executable */
if (flags & BASE_MEM_PROT_GPU_EX)
return false;
/* Imported memory cannot grow on page fault */
if (flags & BASE_MEM_GROW_ON_GPF)
return false;
#if MALI_USE_CSF
/* Imported memory cannot be fixed */
if ((flags & (BASE_MEM_FIXED | BASE_MEM_FIXABLE)))
return false;
#else
/* Imported memory cannot be aligned to the end of its initial commit */
if (flags & BASE_MEM_TILER_ALIGN_TOP)
return false;
#endif /* !MALI_USE_CSF */
/* GPU should have at least read or write access otherwise there is no
* reason for importing.
*/
if ((flags & (BASE_MEM_PROT_GPU_RD | BASE_MEM_PROT_GPU_WR)) == 0)
return false;
/* Protected memory cannot be read by the CPU */
if ((flags & BASE_MEM_PROTECTED) && (flags & BASE_MEM_PROT_CPU_RD))
return false;
return true;
}
int kbase_check_alloc_sizes(struct kbase_context *kctx, unsigned long flags, u64 va_pages,
u64 commit_pages, u64 large_extension)
{
struct device *dev = kctx->kbdev->dev;
u32 gpu_pc_bits = kctx->kbdev->gpu_props.log2_program_counter_size;
u64 gpu_pc_pages_max = 1ULL << gpu_pc_bits >> PAGE_SHIFT;
struct kbase_va_region test_reg;
/* kbase_va_region's extension member can be of variable size, so check against that type */
test_reg.extension = large_extension;
#define KBASE_MSG_PRE "GPU allocation attempted with "
if (va_pages == 0) {
dev_warn(dev, KBASE_MSG_PRE "0 va_pages!");
return -EINVAL;
}
if (va_pages > KBASE_MEM_ALLOC_MAX_SIZE) {
dev_warn(dev, KBASE_MSG_PRE "va_pages==%lld larger than KBASE_MEM_ALLOC_MAX_SIZE!",
(unsigned long long)va_pages);
return -ENOMEM;
}
/* Note: commit_pages is checked against va_pages during
* kbase_alloc_phy_pages()
*/
/* Limit GPU executable allocs to GPU PC size */
if ((flags & BASE_MEM_PROT_GPU_EX) && (va_pages > gpu_pc_pages_max)) {
dev_warn(dev,
KBASE_MSG_PRE
"BASE_MEM_PROT_GPU_EX and va_pages==%lld larger than GPU PC range %lld",
(unsigned long long)va_pages, (unsigned long long)gpu_pc_pages_max);
return -EINVAL;
}
if ((flags & BASE_MEM_GROW_ON_GPF) && (test_reg.extension == 0)) {
dev_warn(dev, KBASE_MSG_PRE "BASE_MEM_GROW_ON_GPF but extension == 0\n");
return -EINVAL;
}
#if !MALI_USE_CSF
if ((flags & BASE_MEM_TILER_ALIGN_TOP) && (test_reg.extension == 0)) {
dev_warn(dev, KBASE_MSG_PRE "BASE_MEM_TILER_ALIGN_TOP but extension == 0\n");
return -EINVAL;
}
if (!(flags & (BASE_MEM_GROW_ON_GPF | BASE_MEM_TILER_ALIGN_TOP)) &&
test_reg.extension != 0) {
dev_warn(
dev, KBASE_MSG_PRE
"neither BASE_MEM_GROW_ON_GPF nor BASE_MEM_TILER_ALIGN_TOP set but extension != 0\n");
return -EINVAL;
}
#else
if (!(flags & BASE_MEM_GROW_ON_GPF) && test_reg.extension != 0) {
dev_warn(dev, KBASE_MSG_PRE "BASE_MEM_GROW_ON_GPF not set but extension != 0\n");
return -EINVAL;
}
#endif /* !MALI_USE_CSF */
#if !MALI_USE_CSF
/* BASE_MEM_TILER_ALIGN_TOP memory has a number of restrictions */
if (flags & BASE_MEM_TILER_ALIGN_TOP) {
#define KBASE_MSG_PRE_FLAG KBASE_MSG_PRE "BASE_MEM_TILER_ALIGN_TOP and "
unsigned long small_extension;
if (large_extension > BASE_MEM_TILER_ALIGN_TOP_EXTENSION_MAX_PAGES) {
dev_warn(dev, KBASE_MSG_PRE_FLAG "extension==%lld pages exceeds limit %lld",
(unsigned long long)large_extension,
BASE_MEM_TILER_ALIGN_TOP_EXTENSION_MAX_PAGES);
return -EINVAL;
}
/* For use with is_power_of_2, which takes unsigned long, so
* must ensure e.g. on 32-bit kernel it'll fit in that type
*/
small_extension = (unsigned long)large_extension;
if (!is_power_of_2(small_extension)) {
dev_warn(dev, KBASE_MSG_PRE_FLAG "extension==%ld not a non-zero power of 2",
small_extension);
return -EINVAL;
}
if (commit_pages > large_extension) {
dev_warn(dev, KBASE_MSG_PRE_FLAG "commit_pages==%ld exceeds extension==%ld",
(unsigned long)commit_pages, (unsigned long)large_extension);
return -EINVAL;
}
#undef KBASE_MSG_PRE_FLAG
}
#else
CSTD_UNUSED(commit_pages);
#endif /* !MALI_USE_CSF */
if ((flags & BASE_MEM_GPU_VA_SAME_4GB_PAGE) && (va_pages > (BASE_MEM_PFN_MASK_4GB + 1))) {
dev_warn(
dev,
KBASE_MSG_PRE
"BASE_MEM_GPU_VA_SAME_4GB_PAGE and va_pages==%lld greater than that needed for 4GB space",
(unsigned long long)va_pages);
return -EINVAL;
}
return 0;
#undef KBASE_MSG_PRE
}
void kbase_gpu_vm_lock(struct kbase_context *kctx)
{
KBASE_DEBUG_ASSERT(kctx != NULL);
mutex_lock(&kctx->reg_lock);
}
KBASE_EXPORT_TEST_API(kbase_gpu_vm_lock);
void kbase_gpu_vm_lock_with_pmode_sync(struct kbase_context *kctx)
{
#if MALI_USE_CSF
down_read(&kctx->kbdev->csf.pmode_sync_sem);
#endif
kbase_gpu_vm_lock(kctx);
}
void kbase_gpu_vm_unlock(struct kbase_context *kctx)
{
KBASE_DEBUG_ASSERT(kctx != NULL);
mutex_unlock(&kctx->reg_lock);
}
KBASE_EXPORT_TEST_API(kbase_gpu_vm_unlock);
void kbase_gpu_vm_unlock_with_pmode_sync(struct kbase_context *kctx)
{
kbase_gpu_vm_unlock(kctx);
#if MALI_USE_CSF
up_read(&kctx->kbdev->csf.pmode_sync_sem);
#endif
}
#if IS_ENABLED(CONFIG_DEBUG_FS)
struct kbase_jit_debugfs_data {
int (*func)(struct kbase_jit_debugfs_data *data);
struct mutex lock;
struct kbase_context *kctx;
u64 active_value;
u64 pool_value;
u64 destroy_value;
char buffer[50];
};
static int kbase_jit_debugfs_common_open(struct inode *inode, struct file *file,
int (*func)(struct kbase_jit_debugfs_data *))
{
struct kbase_jit_debugfs_data *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->func = func;
mutex_init(&data->lock);
data->kctx = (struct kbase_context *)inode->i_private;
file->private_data = data;
return nonseekable_open(inode, file);
}
static ssize_t kbase_jit_debugfs_common_read(struct file *file, char __user *buf, size_t len,
loff_t *ppos)
{
struct kbase_jit_debugfs_data *data;
size_t size;
int ret;
data = (struct kbase_jit_debugfs_data *)file->private_data;
mutex_lock(&data->lock);
if (*ppos) {
size = strnlen(data->buffer, sizeof(data->buffer));
} else {
if (!data->func) {
ret = -EACCES;
goto out_unlock;
}
if (data->func(data)) {
ret = -EACCES;
goto out_unlock;
}
size = (size_t)scnprintf(data->buffer, sizeof(data->buffer), "%llu,%llu,%llu\n",
data->active_value, data->pool_value, data->destroy_value);
}
ret = simple_read_from_buffer(buf, len, ppos, data->buffer, size);
out_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int kbase_jit_debugfs_common_release(struct inode *inode, struct file *file)
{
CSTD_UNUSED(inode);
kfree(file->private_data);
return 0;
}
#define KBASE_JIT_DEBUGFS_DECLARE(__fops, __func) \
static int __fops##_open(struct inode *inode, struct file *file) \
{ \
return kbase_jit_debugfs_common_open(inode, file, __func); \
} \
static const struct file_operations __fops = { \
.owner = THIS_MODULE, \
.open = __fops##_open, \
.release = kbase_jit_debugfs_common_release, \
.read = kbase_jit_debugfs_common_read, \
.write = NULL, \
.llseek = generic_file_llseek, \
}
static int kbase_jit_debugfs_count_get(struct kbase_jit_debugfs_data *data)
{
struct kbase_context *kctx = data->kctx;
struct list_head *tmp;
mutex_lock(&kctx->jit_evict_lock);
list_for_each(tmp, &kctx->jit_active_head) {
data->active_value++;
}
list_for_each(tmp, &kctx->jit_pool_head) {
data->pool_value++;
}
list_for_each(tmp, &kctx->jit_destroy_head) {
data->destroy_value++;
}
mutex_unlock(&kctx->jit_evict_lock);
return 0;
}
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_count_fops, kbase_jit_debugfs_count_get);
static int kbase_jit_debugfs_vm_get(struct kbase_jit_debugfs_data *data)
{
struct kbase_context *kctx = data->kctx;
struct kbase_va_region *reg;
mutex_lock(&kctx->jit_evict_lock);
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
data->active_value += reg->nr_pages;
}
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
data->pool_value += reg->nr_pages;
}
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
data->destroy_value += reg->nr_pages;
}
mutex_unlock(&kctx->jit_evict_lock);
return 0;
}
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_vm_fops, kbase_jit_debugfs_vm_get);
static int kbase_jit_debugfs_phys_get(struct kbase_jit_debugfs_data *data)
{
struct kbase_context *kctx = data->kctx;
struct kbase_va_region *reg;
mutex_lock(&kctx->jit_evict_lock);
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
data->active_value += reg->gpu_alloc->nents;
}
list_for_each_entry(reg, &kctx->jit_pool_head, jit_node) {
data->pool_value += reg->gpu_alloc->nents;
}
list_for_each_entry(reg, &kctx->jit_destroy_head, jit_node) {
data->destroy_value += reg->gpu_alloc->nents;
}
mutex_unlock(&kctx->jit_evict_lock);
return 0;
}
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_phys_fops, kbase_jit_debugfs_phys_get);
#if MALI_JIT_PRESSURE_LIMIT_BASE
static int kbase_jit_debugfs_used_get(struct kbase_jit_debugfs_data *data)
{
struct kbase_context *kctx = data->kctx;
struct kbase_va_region *reg;
#if !MALI_USE_CSF
rt_mutex_lock(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
mutex_lock(&kctx->jit_evict_lock);
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
data->active_value += reg->used_pages;
}
mutex_unlock(&kctx->jit_evict_lock);
#if !MALI_USE_CSF
rt_mutex_unlock(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
return 0;
}
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_used_fops, kbase_jit_debugfs_used_get);
static int kbase_mem_jit_trim_pages_from_region(struct kbase_context *kctx,
struct kbase_va_region *reg, size_t pages_needed,
size_t *freed, bool shrink);
static int kbase_jit_debugfs_trim_get(struct kbase_jit_debugfs_data *data)
{
struct kbase_context *kctx = data->kctx;
struct kbase_va_region *reg;
#if !MALI_USE_CSF
rt_mutex_lock(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
kbase_gpu_vm_lock(kctx);
mutex_lock(&kctx->jit_evict_lock);
list_for_each_entry(reg, &kctx->jit_active_head, jit_node) {
int err;
size_t freed = 0u;
err = kbase_mem_jit_trim_pages_from_region(kctx, reg, SIZE_MAX, &freed, false);
if (err) {
/* Failed to calculate, try the next region */
continue;
}
data->active_value += freed;
}
mutex_unlock(&kctx->jit_evict_lock);
kbase_gpu_vm_unlock(kctx);
#if !MALI_USE_CSF
rt_mutex_unlock(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
return 0;
}
KBASE_JIT_DEBUGFS_DECLARE(kbase_jit_debugfs_trim_fops, kbase_jit_debugfs_trim_get);
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
void kbase_jit_debugfs_init(struct kbase_context *kctx)
{
/* prevent unprivileged use of debug file system
* in old kernel version
*/
const mode_t mode = 0444;
/* Caller already ensures this, but we keep the pattern for
* maintenance safety.
*/
if (WARN_ON(!kctx) || WARN_ON(IS_ERR_OR_NULL(kctx->kctx_dentry)))
return;
/* Debugfs entry for getting the number of JIT allocations. */
debugfs_create_file("mem_jit_count", mode, kctx->kctx_dentry, kctx,
&kbase_jit_debugfs_count_fops);
/*
* Debugfs entry for getting the total number of virtual pages
* used by JIT allocations.
*/
debugfs_create_file("mem_jit_vm", mode, kctx->kctx_dentry, kctx,
&kbase_jit_debugfs_vm_fops);
/*
* Debugfs entry for getting the number of physical pages used
* by JIT allocations.
*/
debugfs_create_file("mem_jit_phys", mode, kctx->kctx_dentry, kctx,
&kbase_jit_debugfs_phys_fops);
#if MALI_JIT_PRESSURE_LIMIT_BASE
/*
* Debugfs entry for getting the number of pages used
* by JIT allocations for estimating the physical pressure
* limit.
*/
debugfs_create_file("mem_jit_used", mode, kctx->kctx_dentry, kctx,
&kbase_jit_debugfs_used_fops);
/*
* Debugfs entry for getting the number of pages that could
* be trimmed to free space for more JIT allocations.
*/
debugfs_create_file("mem_jit_trim", mode, kctx->kctx_dentry, kctx,
&kbase_jit_debugfs_trim_fops);
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
}
#endif /* CONFIG_DEBUG_FS */
/**
* kbase_jit_destroy_worker - Deferred worker which frees JIT allocations
* @work: Work item
*
* This function does the work of freeing JIT allocations whose physical
* backing has been released.
*/
static void kbase_jit_destroy_worker(struct work_struct *work)
{
struct kbase_context *kctx;
struct kbase_va_region *reg;
kctx = container_of(work, struct kbase_context, jit_work);
do {
mutex_lock(&kctx->jit_evict_lock);
if (list_empty(&kctx->jit_destroy_head)) {
mutex_unlock(&kctx->jit_evict_lock);
break;
}
reg = list_first_entry(&kctx->jit_destroy_head, struct kbase_va_region, jit_node);
list_del(&reg->jit_node);
mutex_unlock(&kctx->jit_evict_lock);
kbase_gpu_vm_lock(kctx);
/*
* Incrementing the refcount is prevented on JIT regions.
* If/when this ever changes we would need to compensate
* by implementing "free on putting the last reference",
* but only for JIT regions.
*/
WARN_ON(atomic64_read(&reg->no_user_free_count) > 1);
kbase_va_region_no_user_free_dec(reg);
kbase_mem_free_region(kctx, reg);
kbase_gpu_vm_unlock(kctx);
} while (1);
}
int kbase_jit_init(struct kbase_context *kctx)
{
mutex_lock(&kctx->jit_evict_lock);
INIT_LIST_HEAD(&kctx->jit_active_head);
INIT_LIST_HEAD(&kctx->jit_pool_head);
INIT_LIST_HEAD(&kctx->jit_destroy_head);
INIT_WORK(&kctx->jit_work, kbase_jit_destroy_worker);
#if MALI_USE_CSF
mutex_init(&kctx->csf.kcpu_queues.jit_lock);
INIT_LIST_HEAD(&kctx->csf.kcpu_queues.jit_cmds_head);
INIT_LIST_HEAD(&kctx->csf.kcpu_queues.jit_blocked_queues);
#else /* !MALI_USE_CSF */
INIT_LIST_HEAD(&kctx->jctx.jit_atoms_head);
INIT_LIST_HEAD(&kctx->jctx.jit_pending_alloc);
#endif /* MALI_USE_CSF */
mutex_unlock(&kctx->jit_evict_lock);
return 0;
}
/* Check if the allocation from JIT pool is of the same size as the new JIT
* allocation and also, if BASE_JIT_ALLOC_MEM_TILER_ALIGN_TOP is set, meets
* the alignment requirements.
*/
static bool meet_size_and_tiler_align_top_requirements(const struct kbase_va_region *walker,
const struct base_jit_alloc_info *info)
{
bool meet_reqs = true;
if (walker->nr_pages != info->va_pages)
meet_reqs = false;
#if !MALI_USE_CSF
if (meet_reqs && (info->flags & BASE_JIT_ALLOC_MEM_TILER_ALIGN_TOP)) {
size_t align = info->extension;
size_t align_mask = align - 1;
if ((walker->start_pfn + info->commit_pages) & align_mask)
meet_reqs = false;
}
#endif /* !MALI_USE_CSF */
return meet_reqs;
}
#if MALI_JIT_PRESSURE_LIMIT_BASE
/* Function will guarantee *@freed will not exceed @pages_needed
*/
static int kbase_mem_jit_trim_pages_from_region(struct kbase_context *kctx,
struct kbase_va_region *reg, size_t pages_needed,
size_t *freed, bool shrink)
{
int err = 0;
size_t available_pages = 0u;
const size_t old_pages = kbase_reg_current_backed_size(reg);
size_t new_pages = old_pages;
size_t to_free = 0u;
size_t max_allowed_pages = old_pages;
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
lockdep_assert_held(&kctx->reg_lock);
/* Is this a JIT allocation that has been reported on? */
if (reg->used_pages == reg->nr_pages)
goto out;
if (!(reg->flags & KBASE_REG_HEAP_INFO_IS_SIZE)) {
/* For address based memory usage calculation, the GPU
* allocates objects of up to size 's', but aligns every object
* to alignment 'a', with a < s.
*
* It also doesn't have to write to all bytes in an object of
* size 's'.
*
* Hence, we can observe the GPU's address for the end of used
* memory being up to (s - a) bytes into the first unallocated
* page.
*
* We allow for this and only warn when it exceeds this bound
* (rounded up to page sized units). Note, this is allowed to
* exceed reg->nr_pages.
*/
max_allowed_pages += PFN_UP(KBASE_GPU_ALLOCATED_OBJECT_MAX_BYTES -
KBASE_GPU_ALLOCATED_OBJECT_ALIGN_BYTES);
} else if (reg->flags & KBASE_REG_TILER_ALIGN_TOP) {
/* The GPU could report being ready to write to the next
* 'extension' sized chunk, but didn't actually write to it, so we
* can report up to 'extension' size pages more than the backed
* size.
*
* Note, this is allowed to exceed reg->nr_pages.
*/
max_allowed_pages += reg->extension;
/* Also note that in these GPUs, the GPU may make a large (>1
* page) initial allocation but not actually write out to all
* of it. Hence it might report that a much higher amount of
* memory was used than actually was written to. This does not
* result in a real warning because on growing this memory we
* round up the size of the allocation up to an 'extension' sized
* chunk, hence automatically bringing the backed size up to
* the reported size.
*/
}
if (old_pages < reg->used_pages) {
/* Prevent overflow on available_pages, but only report the
* problem if it's in a scenario where used_pages should have
* been consistent with the backed size
*
* Note: In case of a size-based report, this legitimately
* happens in common use-cases: we allow for up to this size of
* memory being used, but depending on the content it doesn't
* have to use all of it.
*
* Hence, we're much more quiet about that in the size-based
* report case - it's not indicating a real problem, it's just
* for information
*/
if (max_allowed_pages < reg->used_pages) {
if (!(reg->flags & KBASE_REG_HEAP_INFO_IS_SIZE))
dev_warn(
kctx->kbdev->dev,
"%s: current backed pages %zu < reported used pages %zu (allowed to be up to %zu) on JIT 0x%llx vapages %zu\n",
__func__, old_pages, reg->used_pages, max_allowed_pages,
reg->start_pfn << PAGE_SHIFT, reg->nr_pages);
else
dev_dbg(kctx->kbdev->dev,
"%s: no need to trim, current backed pages %zu < reported used pages %zu on size-report for JIT 0x%llx vapages %zu\n",
__func__, old_pages, reg->used_pages,
reg->start_pfn << PAGE_SHIFT, reg->nr_pages);
}
/* In any case, no error condition to report here, caller can
* try other regions
*/
goto out;
}
available_pages = old_pages - reg->used_pages;
to_free = min(available_pages, pages_needed);
if (shrink) {
new_pages -= to_free;
err = kbase_mem_shrink(kctx, reg, new_pages);
}
out:
trace_mali_jit_trim_from_region(reg, to_free, old_pages, available_pages, new_pages);
*freed = to_free;
return err;
}
/**
* kbase_mem_jit_trim_pages - Trim JIT regions until sufficient pages have been
* freed
* @kctx: Pointer to the kbase context whose active JIT allocations will be
* checked.
* @pages_needed: The maximum number of pages to trim.
*
* This functions checks all active JIT allocations in @kctx for unused pages
* at the end, and trim the backed memory regions of those allocations down to
* the used portion and free the unused pages into the page pool.
*
* Specifying @pages_needed allows us to stop early when there's enough
* physical memory freed to sufficiently bring down the total JIT physical page
* usage (e.g. to below the pressure limit)
*
* Return: Total number of successfully freed pages
*/
static size_t kbase_mem_jit_trim_pages(struct kbase_context *kctx, size_t pages_needed)
{
struct kbase_va_region *reg, *tmp;
size_t total_freed = 0;
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
lockdep_assert_held(&kctx->reg_lock);
lockdep_assert_held(&kctx->jit_evict_lock);
list_for_each_entry_safe(reg, tmp, &kctx->jit_active_head, jit_node) {
int err;
size_t freed = 0u;
err = kbase_mem_jit_trim_pages_from_region(kctx, reg, pages_needed, &freed, true);
if (err) {
/* Failed to trim, try the next region */
continue;
}
total_freed += freed;
WARN_ON(freed > pages_needed);
pages_needed -= freed;
if (!pages_needed)
break;
}
trace_mali_jit_trim(total_freed);
return total_freed;
}
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
static int kbase_jit_grow(struct kbase_context *kctx, const struct base_jit_alloc_info *info,
struct kbase_va_region *reg, struct kbase_sub_alloc **prealloc_sas,
enum kbase_caller_mmu_sync_info mmu_sync_info)
{
size_t delta;
size_t pages_required;
size_t old_size;
struct kbase_mem_pool *pool;
int ret = -ENOMEM;
struct tagged_addr *gpu_pages;
if (info->commit_pages > reg->nr_pages) {
/* Attempted to grow larger than maximum size */
return -EINVAL;
}
lockdep_assert_held(&kctx->reg_lock);
/* Make the physical backing no longer reclaimable */
if (!kbase_mem_evictable_unmake(reg->gpu_alloc))
goto update_failed;
if (reg->gpu_alloc->nents >= info->commit_pages)
goto done;
/* Allocate some more pages */
delta = info->commit_pages - reg->gpu_alloc->nents;
pages_required = delta;
if (kctx->kbdev->pagesize_2mb && pages_required >= NUM_PAGES_IN_2MB_LARGE_PAGE) {
pool = &kctx->mem_pools.large[kctx->jit_group_id];
/* Round up to number of 2 MB pages required */
pages_required += (NUM_PAGES_IN_2MB_LARGE_PAGE - 1);
pages_required /= NUM_PAGES_IN_2MB_LARGE_PAGE;
} else {
pool = &kctx->mem_pools.small[kctx->jit_group_id];
}
if (reg->cpu_alloc != reg->gpu_alloc)
pages_required *= 2;
spin_lock(&kctx->mem_partials_lock);
kbase_mem_pool_lock(pool);
/* As we can not allocate memory from the kernel with the vm_lock held,
* grow the pool to the required size with the lock dropped. We hold the
* pool lock to prevent another thread from allocating from the pool
* between the grow and allocation.
*/
while (kbase_mem_pool_size(pool) < pages_required) {
size_t pool_delta = pages_required - kbase_mem_pool_size(pool);
int ret;
kbase_mem_pool_unlock(pool);
spin_unlock(&kctx->mem_partials_lock);
kbase_gpu_vm_unlock(kctx);
ret = kbase_mem_pool_grow(pool, pool_delta, kctx->task);
kbase_gpu_vm_lock(kctx);
if (ret)
goto update_failed;
spin_lock(&kctx->mem_partials_lock);
kbase_mem_pool_lock(pool);
}
if (reg->gpu_alloc->nents >= info->commit_pages) {
kbase_mem_pool_unlock(pool);
spin_unlock(&kctx->mem_partials_lock);
dev_info(
kctx->kbdev->dev,
"JIT alloc grown beyond the required number of initially required pages, this grow no longer needed.");
goto done;
}
old_size = reg->gpu_alloc->nents;
delta = info->commit_pages - old_size;
gpu_pages =
kbase_alloc_phy_pages_helper_locked(reg->gpu_alloc, pool, delta, &prealloc_sas[0]);
if (!gpu_pages) {
kbase_mem_pool_unlock(pool);
spin_unlock(&kctx->mem_partials_lock);
goto update_failed;
}
if (reg->cpu_alloc != reg->gpu_alloc) {
struct tagged_addr *cpu_pages;
cpu_pages = kbase_alloc_phy_pages_helper_locked(reg->cpu_alloc, pool, delta,
&prealloc_sas[1]);
if (!cpu_pages) {
kbase_free_phy_pages_helper_locked(reg->gpu_alloc, pool, gpu_pages, delta);
kbase_mem_pool_unlock(pool);
spin_unlock(&kctx->mem_partials_lock);
goto update_failed;
}
}
kbase_mem_pool_unlock(pool);
spin_unlock(&kctx->mem_partials_lock);
ret = kbase_mem_grow_gpu_mapping(kctx, reg, info->commit_pages, old_size, mmu_sync_info);
/*
* The grow failed so put the allocation back in the
* pool and return failure.
*/
if (ret)
goto update_failed;
done:
ret = 0;
/* Update attributes of JIT allocation taken from the pool */
reg->initial_commit = info->commit_pages;
reg->extension = info->extension;
update_failed:
return ret;
}
static void trace_jit_stats(struct kbase_context *kctx, u32 bin_id, u32 max_allocations)
{
const u32 alloc_count = kctx->jit_current_allocations_per_bin[bin_id];
struct kbase_device *kbdev = kctx->kbdev;
struct kbase_va_region *walker;
u32 va_pages = 0;
u32 ph_pages = 0;
mutex_lock(&kctx->jit_evict_lock);
list_for_each_entry(walker, &kctx->jit_active_head, jit_node) {
if (walker->jit_bin_id != bin_id)
continue;
va_pages += walker->nr_pages;
ph_pages += walker->gpu_alloc->nents;
}
mutex_unlock(&kctx->jit_evict_lock);
KBASE_TLSTREAM_AUX_JIT_STATS(kbdev, kctx->id, bin_id, max_allocations, alloc_count,
va_pages, ph_pages);
}
#if MALI_JIT_PRESSURE_LIMIT_BASE
/**
* get_jit_phys_backing() - calculate the physical backing of all JIT
* allocations
*
* @kctx: Pointer to the kbase context whose active JIT allocations will be
* checked
*
* Return: number of pages that are committed by JIT allocations
*/
static size_t get_jit_phys_backing(struct kbase_context *kctx)
{
struct kbase_va_region *walker;
size_t backing = 0;
lockdep_assert_held(&kctx->jit_evict_lock);
list_for_each_entry(walker, &kctx->jit_active_head, jit_node) {
backing += kbase_reg_current_backed_size(walker);
}
return backing;
}
void kbase_jit_trim_necessary_pages(struct kbase_context *kctx, size_t needed_pages)
{
size_t jit_backing = 0;
size_t pages_to_trim = 0;
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#endif /* !MALI_USE_CSF */
lockdep_assert_held(&kctx->reg_lock);
lockdep_assert_held(&kctx->jit_evict_lock);
jit_backing = get_jit_phys_backing(kctx);
/* It is possible that this is the case - if this is the first
* allocation after "ignore_pressure_limit" allocation.
*/
if (jit_backing > kctx->jit_phys_pages_limit) {
pages_to_trim += (jit_backing - kctx->jit_phys_pages_limit) + needed_pages;
} else {
size_t backed_diff = kctx->jit_phys_pages_limit - jit_backing;
if (needed_pages > backed_diff)
pages_to_trim += needed_pages - backed_diff;
}
if (pages_to_trim) {
size_t trimmed_pages = kbase_mem_jit_trim_pages(kctx, pages_to_trim);
/* This should never happen - we already asserted that
* we are not violating JIT pressure limit in earlier
* checks, which means that in-flight JIT allocations
* must have enough unused pages to satisfy the new
* allocation
*/
WARN_ON(trimmed_pages < pages_to_trim);
}
}
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
/**
* jit_allow_allocate() - check whether basic conditions are satisfied to allow
* a new JIT allocation
*
* @kctx: Pointer to the kbase context
* @info: Pointer to JIT allocation information for the new allocation
* @ignore_pressure_limit: Flag to indicate whether JIT pressure limit check
* should be ignored
*
* Return: true if allocation can be executed, false otherwise
*/
static bool jit_allow_allocate(struct kbase_context *kctx, const struct base_jit_alloc_info *info,
bool ignore_pressure_limit)
{
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#else /* MALI_USE_CSF */
lockdep_assert_held(&kctx->csf.kcpu_queues.jit_lock);
#endif /* !MALI_USE_CSF */
#if MALI_JIT_PRESSURE_LIMIT_BASE
if (!ignore_pressure_limit &&
((kctx->jit_phys_pages_limit <= kctx->jit_current_phys_pressure) ||
(info->va_pages > (kctx->jit_phys_pages_limit - kctx->jit_current_phys_pressure)))) {
dev_dbg(kctx->kbdev->dev,
"Max JIT page allocations limit reached: active pages %llu, max pages %llu\n",
kctx->jit_current_phys_pressure + info->va_pages,
kctx->jit_phys_pages_limit);
return false;
}
#else
CSTD_UNUSED(ignore_pressure_limit);
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
if (kctx->jit_current_allocations >= kctx->jit_max_allocations) {
/* Too many current allocations */
dev_dbg(kctx->kbdev->dev,
"Max JIT allocations limit reached: active allocations %d, max allocations %d\n",
kctx->jit_current_allocations, kctx->jit_max_allocations);
return false;
}
if (info->max_allocations > 0 &&
kctx->jit_current_allocations_per_bin[info->bin_id] >= info->max_allocations) {
/* Too many current allocations in this bin */
dev_dbg(kctx->kbdev->dev,
"Per bin limit of max JIT allocations reached: bin_id %d, active allocations %d, max allocations %d\n",
info->bin_id, kctx->jit_current_allocations_per_bin[info->bin_id],
info->max_allocations);
return false;
}
return true;
}
static struct kbase_va_region *find_reasonable_region(const struct base_jit_alloc_info *info,
struct list_head *pool_head,
bool ignore_usage_id)
{
struct kbase_va_region *closest_reg = NULL;
struct kbase_va_region *walker;
size_t current_diff = SIZE_MAX;
list_for_each_entry(walker, pool_head, jit_node) {
if ((ignore_usage_id || walker->jit_usage_id == info->usage_id) &&
walker->jit_bin_id == info->bin_id &&
meet_size_and_tiler_align_top_requirements(walker, info)) {
size_t min_size, max_size, diff;
/*
* The JIT allocations VA requirements have been met,
* it's suitable but other allocations might be a
* better fit.
*/
min_size = min_t(size_t, walker->gpu_alloc->nents, info->commit_pages);
max_size = max_t(size_t, walker->gpu_alloc->nents, info->commit_pages);
diff = max_size - min_size;
if (current_diff > diff) {
current_diff = diff;
closest_reg = walker;
}
/* The allocation is an exact match */
if (current_diff == 0)
break;
}
}
return closest_reg;
}
struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx,
const struct base_jit_alloc_info *info,
bool ignore_pressure_limit)
{
struct kbase_va_region *reg = NULL;
struct kbase_sub_alloc *prealloc_sas[2] = { NULL, NULL };
int i;
/* Calls to this function are inherently synchronous, with respect to
* MMU operations.
*/
const enum kbase_caller_mmu_sync_info mmu_sync_info = CALLER_MMU_SYNC;
#if !MALI_USE_CSF
lockdep_assert_held(&kctx->jctx.lock);
#else /* MALI_USE_CSF */
lockdep_assert_held(&kctx->csf.kcpu_queues.jit_lock);
#endif /* !MALI_USE_CSF */
if (!jit_allow_allocate(kctx, info, ignore_pressure_limit))
return NULL;
if (kctx->kbdev->pagesize_2mb) {
/* Preallocate memory for the sub-allocation structs */
for (i = 0; i != ARRAY_SIZE(prealloc_sas); ++i) {
prealloc_sas[i] = kmalloc(sizeof(*prealloc_sas[i]), GFP_KERNEL);
if (!prealloc_sas[i])
goto end;
}
}
kbase_gpu_vm_lock_with_pmode_sync(kctx);
mutex_lock(&kctx->jit_evict_lock);
/*
* Scan the pool for an existing allocation which meets our
* requirements and remove it.
*/
if (info->usage_id != 0)
/* First scan for an allocation with the same usage ID */
reg = find_reasonable_region(info, &kctx->jit_pool_head, false);
if (!reg)
/* No allocation with the same usage ID, or usage IDs not in
* use. Search for an allocation we can reuse.
*/
reg = find_reasonable_region(info, &kctx->jit_pool_head, true);
if (reg) {
#if MALI_JIT_PRESSURE_LIMIT_BASE
size_t needed_pages = 0;
#endif /* MALI_JIT_PRESSURE_LIMIT_BASE */
int ret;
/*
* Remove the found region from the pool and add it to the
* active list.
*/
list_move(&reg->jit_node, &kctx->jit_active_head);
WARN_ON(reg->gpu_alloc->evicted);
/*
* Remove the allocation from the eviction list as it's no
* longer eligible for eviction. This must be done before
* dropping the jit_evict_lock
*/
list_del_init(&reg->gpu_alloc->evict_node);
#if MALI_JIT_PRESSURE_LIMIT_BASE
if (!ignore_pressure_limit) {
if (info->commit_pages > reg->gpu_alloc->nents)
needed_pages = info->commit_pages - reg->gpu_alloc->nents;
/* Update early the recycled JIT region's estimate of
* used_pages to ensure it doesn't get trimmed
* undesirably. This is needed as the recycled JIT
* region has been added to the active list but the
* number of used pages for it would be zero, so it
* could get trimmed instead of other allocations only
* to be regrown later resulting in a breach of the JIT
* physical pressure limit.
* Also that trimming would disturb the accounting of
* physical pages, i.e. the VM stats, as the number of
* backing pages would have changed when the call to
* kbase_mem_evictable_unmark_reclaim is made.
*
* The second call to update pressure at the end of
* this function would effectively be a nop.
*/
kbase_jit_report_update_pressure(kctx, reg, info->va_pages,
KBASE_JIT_REPORT_ON_ALLOC_OR_FREE);
kbase_jit_request_phys_increase_locked(kctx, needed_pages);
}
#endif
mutex_unlock(&kctx->jit_evict_lock);
/* kbase_jit_grow() can release & reacquire 'kctx->reg_lock',
* so any state protected by that lock might need to be
* re-evaluated if more code is added here in future.
*/