blob: 56ca3b6c144459b43ed5560b89185eb67bca1b3e [file] [log] [blame]
<
/**************************************************************************
*
* Copyright 2000-2006 Alacritech, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of Alacritech, Inc.
*
**************************************************************************/
/*
* FILENAME: slicoss.c
*
* The SLICOSS driver for Alacritech's IS-NIC products.
*
* This driver is supposed to support:
*
* Mojave cards (single port PCI Gigabit) both copper and fiber
* Oasis cards (single and dual port PCI-x Gigabit) copper and fiber
* Kalahari cards (dual and quad port PCI-e Gigabit) copper and fiber
*
* The driver was actually tested on Oasis and Kalahari cards.
*
*
* NOTE: This is the standard, non-accelerated version of Alacritech's
* IS-NIC driver.
*/
#define KLUDGE_FOR_4GB_BOUNDARY 1
#define DEBUG_MICROCODE 1
#define DBG 1
#define SLIC_INTERRUPT_PROCESS_LIMIT 1
#define SLIC_OFFLOAD_IP_CHECKSUM 1
#define STATS_TIMER_INTERVAL 2
#define PING_TIMER_INTERVAL 1
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/crc32.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/seq_file.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <asm/unaligned.h>
#include <linux/ethtool.h>
#include <linux/uaccess.h>
#include "slichw.h"
#include "slic.h"
static uint slic_first_init = 1;
static char *slic_banner = "Alacritech SLIC Technology(tm) Server "
"and Storage Accelerator (Non-Accelerated)";
static char *slic_proc_version = "2.0.351 2006/07/14 12:26:00";
static struct base_driver slic_global = { {}, 0, 0, 0, 1, NULL, NULL };
static int intagg_delay = 100;
static u32 dynamic_intagg;
static unsigned int rcv_count;
#define DRV_NAME "slicoss"
#define DRV_VERSION "2.0.1"
#define DRV_AUTHOR "Alacritech, Inc. Engineering"
#define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) "\
"Non-Accelerated Driver"
#define DRV_COPYRIGHT "Copyright 2000-2006 Alacritech, Inc. "\
"All rights reserved."
#define PFX DRV_NAME " "
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_LICENSE("Dual BSD/GPL");
module_param(dynamic_intagg, int, 0);
MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
module_param(intagg_delay, int, 0);
MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
static const struct pci_device_id slic_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH, SLIC_1GB_DEVICE_ID) },
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH, SLIC_2GB_DEVICE_ID) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, slic_pci_tbl);
static inline void slic_reg32_write(void __iomem *reg, u32 value, bool flush)
{
writel(value, reg);
if (flush)
mb();
}
static inline void slic_reg64_write(struct adapter *adapter, void __iomem *reg,
u32 value, void __iomem *regh, u32 paddrh,
bool flush)
{
spin_lock_irqsave(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
if (paddrh != adapter->curaddrupper) {
adapter->curaddrupper = paddrh;
writel(paddrh, regh);
}
writel(value, reg);
if (flush)
mb();
spin_unlock_irqrestore(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
}
static void slic_mcast_set_bit(struct adapter *adapter, char *address)
{
unsigned char crcpoly;
/* Get the CRC polynomial for the mac address */
/* we use bits 1-8 (lsb), bitwise reversed,
* msb (= lsb bit 0 before bitrev) is automatically discarded */
crcpoly = (ether_crc(ETH_ALEN, address)>>23);
/* We only have space on the SLIC for 64 entries. Lop
* off the top two bits. (2^6 = 64)
*/
crcpoly &= 0x3F;
/* OR in the new bit into our 64 bit mask. */
adapter->mcastmask |= (u64) 1 << crcpoly;
}
static void slic_mcast_set_mask(struct adapter *adapter)
{
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
if (adapter->macopts & (MAC_ALLMCAST | MAC_PROMISC)) {
/* Turn on all multicast addresses. We have to do this for
* promiscuous mode as well as ALLMCAST mode. It saves the
* Microcode from having to keep state about the MAC
* configuration.
*/
slic_reg32_write(&slic_regs->slic_mcastlow, 0xFFFFFFFF, FLUSH);
slic_reg32_write(&slic_regs->slic_mcasthigh, 0xFFFFFFFF,
FLUSH);
} else {
/* Commit our multicast mast to the SLIC by writing to the
* multicast address mask registers
*/
slic_reg32_write(&slic_regs->slic_mcastlow,
(u32)(adapter->mcastmask & 0xFFFFFFFF), FLUSH);
slic_reg32_write(&slic_regs->slic_mcasthigh,
(u32)((adapter->mcastmask >> 32) & 0xFFFFFFFF), FLUSH);
}
}
static void slic_timer_ping(ulong dev)
{
struct adapter *adapter;
struct sliccard *card;
adapter = netdev_priv((struct net_device *)dev);
card = adapter->card;
adapter->pingtimer.expires = jiffies + (PING_TIMER_INTERVAL * HZ);
add_timer(&adapter->pingtimer);
}
static void slic_unmap_mmio_space(struct adapter *adapter)
{
if (adapter->slic_regs)
iounmap(adapter->slic_regs);
adapter->slic_regs = NULL;
}
/*
* slic_link_config
*
* Write phy control to configure link duplex/speed
*
*/
static void slic_link_config(struct adapter *adapter,
u32 linkspeed, u32 linkduplex)
{
u32 __iomem *wphy;
u32 speed;
u32 duplex;
u32 phy_config;
u32 phy_advreg;
u32 phy_gctlreg;
if (adapter->state != ADAPT_UP)
return;
if (linkspeed > LINK_1000MB)
linkspeed = LINK_AUTOSPEED;
if (linkduplex > LINK_AUTOD)
linkduplex = LINK_AUTOD;
wphy = &adapter->slic_regs->slic_wphy;
if ((linkspeed == LINK_AUTOSPEED) || (linkspeed == LINK_1000MB)) {
if (adapter->flags & ADAPT_FLAGS_FIBERMEDIA) {
/* We've got a fiber gigabit interface, and register
* 4 is different in fiber mode than in copper mode
*/
/* advertise FD only @1000 Mb */
phy_advreg = (MIICR_REG_4 | (PAR_ADV1000XFD));
/* enable PAUSE frames */
phy_advreg |= PAR_ASYMPAUSE_FIBER;
slic_reg32_write(wphy, phy_advreg, FLUSH);
if (linkspeed == LINK_AUTOSPEED) {
/* reset phy, enable auto-neg */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_AUTONEG |
PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* forced 1000 Mb FD*/
/* power down phy to break link
this may not work) */
phy_config = (MIICR_REG_PCR | PCR_POWERDOWN);
slic_reg32_write(wphy, phy_config, FLUSH);
/* wait, Marvell says 1 sec,
try to get away with 10 ms */
mdelay(10);
/* disable auto-neg, set speed/duplex,
soft reset phy, powerup */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_SPEED_1000 |
PCR_DUPLEX_FULL));
slic_reg32_write(wphy, phy_config, FLUSH);
}
} else { /* copper gigabit */
/* Auto-Negotiate or 1000 Mb must be auto negotiated
* We've got a copper gigabit interface, and
* register 4 is different in copper mode than
* in fiber mode
*/
if (linkspeed == LINK_AUTOSPEED) {
/* advertise 10/100 Mb modes */
phy_advreg =
(MIICR_REG_4 |
(PAR_ADV100FD | PAR_ADV100HD | PAR_ADV10FD
| PAR_ADV10HD));
} else {
/* linkspeed == LINK_1000MB -
don't advertise 10/100 Mb modes */
phy_advreg = MIICR_REG_4;
}
/* enable PAUSE frames */
phy_advreg |= PAR_ASYMPAUSE;
/* required by the Cicada PHY */
phy_advreg |= PAR_802_3;
slic_reg32_write(wphy, phy_advreg, FLUSH);
/* advertise FD only @1000 Mb */
phy_gctlreg = (MIICR_REG_9 | (PGC_ADV1000FD));
slic_reg32_write(wphy, phy_gctlreg, FLUSH);
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
enable auto crossover */
phy_config =
(MIICR_REG_16 | (MRV_REG16_XOVERON));
slic_reg32_write(wphy, phy_config, FLUSH);
/* reset phy, enable auto-neg */
phy_config =
(MIICR_REG_PCR |
(PCR_RESET | PCR_AUTONEG |
PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* it's a Cicada PHY */
/* enable and restart auto-neg (don't reset) */
phy_config =
(MIICR_REG_PCR |
(PCR_AUTONEG | PCR_AUTONEG_RST));
slic_reg32_write(wphy, phy_config, FLUSH);
}
}
} else {
/* Forced 10/100 */
if (linkspeed == LINK_10MB)
speed = 0;
else
speed = PCR_SPEED_100;
if (linkduplex == LINK_HALFD)
duplex = 0;
else
duplex = PCR_DUPLEX_FULL;
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
disable auto crossover */
phy_config = (MIICR_REG_16 | (MRV_REG16_XOVEROFF));
slic_reg32_write(wphy, phy_config, FLUSH);
}
/* power down phy to break link (this may not work) */
phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN | speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
/* wait, Marvell says 1 sec, try to get away with 10 ms */
mdelay(10);
if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) {
/* if a Marvell PHY
disable auto-neg, set speed,
soft reset phy, powerup */
phy_config =
(MIICR_REG_PCR | (PCR_RESET | speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
} else { /* it's a Cicada PHY */
/* disable auto-neg, set speed, powerup */
phy_config = (MIICR_REG_PCR | (speed | duplex));
slic_reg32_write(wphy, phy_config, FLUSH);
}
}
}
static int slic_card_download_gbrcv(struct adapter *adapter)
{
const struct firmware *fw;
const char *file = "";
int ret;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 codeaddr;
u32 instruction;
int index = 0;
u32 rcvucodelen = 0;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
file = "slicoss/oasisrcvucode.sys";
break;
case SLIC_1GB_DEVICE_ID:
file = "slicoss/gbrcvucode.sys";
break;
default:
return -ENOENT;
}
ret = request_firmware(&fw, file, &adapter->pcidev->dev);
if (ret) {
dev_err(&adapter->pcidev->dev,
"Failed to load firmware %s\n", file);
return ret;
}
rcvucodelen = *(u32 *)(fw->data + index);
index += 4;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
if (rcvucodelen != OasisRcvUCodeLen) {
release_firmware(fw);
return -EINVAL;
}
break;
case SLIC_1GB_DEVICE_ID:
if (rcvucodelen != GBRcvUCodeLen) {
release_firmware(fw);
return -EINVAL;
}
break;
}
/* start download */
slic_reg32_write(&slic_regs->slic_rcv_wcs, SLIC_RCVWCS_BEGIN, FLUSH);
/* download the rcv sequencer ucode */
for (codeaddr = 0; codeaddr < rcvucodelen; codeaddr++) {
/* write out instruction address */
slic_reg32_write(&slic_regs->slic_rcv_wcs, codeaddr, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* write out the instruction data low addr */
slic_reg32_write(&slic_regs->slic_rcv_wcs, instruction, FLUSH);
instruction = *(u8 *)(fw->data + index);
index++;
/* write out the instruction data high addr */
slic_reg32_write(&slic_regs->slic_rcv_wcs, (u8)instruction,
FLUSH);
}
/* download finished */
release_firmware(fw);
slic_reg32_write(&slic_regs->slic_rcv_wcs, SLIC_RCVWCS_FINISH, FLUSH);
return 0;
}
MODULE_FIRMWARE("slicoss/oasisrcvucode.sys");
MODULE_FIRMWARE("slicoss/gbrcvucode.sys");
static int slic_card_download(struct adapter *adapter)
{
const struct firmware *fw;
const char *file = "";
int ret;
u32 section;
int thissectionsize;
int codeaddr;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 instruction;
u32 baseaddress;
u32 i;
u32 numsects = 0;
u32 sectsize[3];
u32 sectstart[3];
int ucode_start, index = 0;
switch (adapter->devid) {
case SLIC_2GB_DEVICE_ID:
file = "slicoss/oasisdownload.sys";
break;
case SLIC_1GB_DEVICE_ID:
file = "slicoss/gbdownload.sys";
break;
default:
return -ENOENT;
}
ret = request_firmware(&fw, file, &adapter->pcidev->dev);
if (ret) {
dev_err(&adapter->pcidev->dev,
"Failed to load firmware %s\n", file);
return ret;
}
numsects = *(u32 *)(fw->data + index);
index += 4;
for (i = 0; i < numsects; i++) {
sectsize[i] = *(u32 *)(fw->data + index);
index += 4;
}
for (i = 0; i < numsects; i++) {
sectstart[i] = *(u32 *)(fw->data + index);
index += 4;
}
ucode_start = index;
instruction = *(u32 *)(fw->data + index);
index += 4;
for (section = 0; section < numsects; section++) {
baseaddress = sectstart[section];
thissectionsize = sectsize[section] >> 3;
for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) {
/* Write out instruction address */
slic_reg32_write(&slic_regs->slic_wcs,
baseaddress + codeaddr, FLUSH);
/* Write out instruction to low addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Write out instruction to high addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction, FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
}
}
index = ucode_start;
for (section = 0; section < numsects; section++) {
instruction = *(u32 *)(fw->data + index);
baseaddress = sectstart[section];
if (baseaddress < 0x8000)
continue;
thissectionsize = sectsize[section] >> 3;
for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) {
/* Write out instruction address */
slic_reg32_write(&slic_regs->slic_wcs,
SLIC_WCS_COMPARE | (baseaddress + codeaddr),
FLUSH);
/* Write out instruction to low addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction,
FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Write out instruction to high addr */
slic_reg32_write(&slic_regs->slic_wcs, instruction,
FLUSH);
instruction = *(u32 *)(fw->data + index);
index += 4;
/* Check SRAM location zero. If it is non-zero. Abort.*/
/* failure = readl((u32 __iomem *)&slic_regs->slic_reset);
if (failure) {
release_firmware(fw);
return -EIO;
}*/
}
}
release_firmware(fw);
/* Everything OK, kick off the card */
mdelay(10);
slic_reg32_write(&slic_regs->slic_wcs, SLIC_WCS_START, FLUSH);
/* stall for 20 ms, long enough for ucode to init card
and reach mainloop */
mdelay(20);
return 0;
}
MODULE_FIRMWARE("slicoss/oasisdownload.sys");
MODULE_FIRMWARE("slicoss/gbdownload.sys");
static void slic_adapter_set_hwaddr(struct adapter *adapter)
{
struct sliccard *card = adapter->card;
if ((adapter->card) && (card->config_set)) {
memcpy(adapter->macaddr,
card->config.MacInfo[adapter->functionnumber].macaddrA,
sizeof(struct slic_config_mac));
if (is_zero_ether_addr(adapter->currmacaddr))
memcpy(adapter->currmacaddr, adapter->macaddr,
ETH_ALEN);
if (adapter->netdev)
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr,
ETH_ALEN);
}
}
static void slic_intagg_set(struct adapter *adapter, u32 value)
{
slic_reg32_write(&adapter->slic_regs->slic_intagg, value, FLUSH);
adapter->card->loadlevel_current = value;
}
static void slic_soft_reset(struct adapter *adapter)
{
if (adapter->card->state == CARD_UP) {
slic_reg32_write(&adapter->slic_regs->slic_quiesce, 0, FLUSH);
mdelay(1);
}
slic_reg32_write(&adapter->slic_regs->slic_reset, SLIC_RESET_MAGIC,
FLUSH);
mdelay(1);
}
static void slic_mac_address_config(struct adapter *adapter)
{
u32 value;
u32 value2;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
value = *(u32 *) &adapter->currmacaddr[2];
value = ntohl(value);
slic_reg32_write(&slic_regs->slic_wraddral, value, FLUSH);
slic_reg32_write(&slic_regs->slic_wraddrbl, value, FLUSH);
value2 = (u32) ((adapter->currmacaddr[0] << 8 |
adapter->currmacaddr[1]) & 0xFFFF);
slic_reg32_write(&slic_regs->slic_wraddrah, value2, FLUSH);
slic_reg32_write(&slic_regs->slic_wraddrbh, value2, FLUSH);
/* Write our multicast mask out to the card. This is done */
/* here in addition to the slic_mcast_addr_set routine */
/* because ALL_MCAST may have been enabled or disabled */
slic_mcast_set_mask(adapter);
}
static void slic_mac_config(struct adapter *adapter)
{
u32 value;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/* Setup GMAC gaps */
if (adapter->linkspeed == LINK_1000MB) {
value = ((GMCR_GAPBB_1000 << GMCR_GAPBB_SHIFT) |
(GMCR_GAPR1_1000 << GMCR_GAPR1_SHIFT) |
(GMCR_GAPR2_1000 << GMCR_GAPR2_SHIFT));
} else {
value = ((GMCR_GAPBB_100 << GMCR_GAPBB_SHIFT) |
(GMCR_GAPR1_100 << GMCR_GAPR1_SHIFT) |
(GMCR_GAPR2_100 << GMCR_GAPR2_SHIFT));
}
/* enable GMII */
if (adapter->linkspeed == LINK_1000MB)
value |= GMCR_GBIT;
/* enable fullduplex */
if ((adapter->linkduplex == LINK_FULLD)
|| (adapter->macopts & MAC_LOOPBACK)) {
value |= GMCR_FULLD;
}
/* write mac config */
slic_reg32_write(&slic_regs->slic_wmcfg, value, FLUSH);
/* setup mac addresses */
slic_mac_address_config(adapter);
}
static void slic_config_set(struct adapter *adapter, bool linkchange)
{
u32 value;
u32 RcrReset;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
if (linkchange) {
/* Setup MAC */
slic_mac_config(adapter);
RcrReset = GRCR_RESET;
} else {
slic_mac_address_config(adapter);
RcrReset = 0;
}
if (adapter->linkduplex == LINK_FULLD) {
/* setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_XMTEN | /* Enable transmit */
GXCR_PAUSEEN); /* Enable pause */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
/* Setup rcvcfg last */
value = (RcrReset | /* Reset, if linkchange */
GRCR_CTLEN | /* Enable CTL frames */
GRCR_ADDRAEN | /* Address A enable */
GRCR_RCVBAD | /* Rcv bad frames */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
} else {
/* setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_XMTEN); /* Enable transmit */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
/* Setup rcvcfg last */
value = (RcrReset | /* Reset, if linkchange */
GRCR_ADDRAEN | /* Address A enable */
GRCR_RCVBAD | /* Rcv bad frames */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
}
if (adapter->state != ADAPT_DOWN) {
/* Only enable receive if we are restarting or running */
value |= GRCR_RCVEN;
}
if (adapter->macopts & MAC_PROMISC)
value |= GRCR_RCVALL;
slic_reg32_write(&slic_regs->slic_wrcfg, value, FLUSH);
}
/*
* Turn off RCV and XMT, power down PHY
*/
static void slic_config_clear(struct adapter *adapter)
{
u32 value;
u32 phy_config;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/* Setup xmtcfg */
value = (GXCR_RESET | /* Always reset */
GXCR_PAUSEEN); /* Enable pause */
slic_reg32_write(&slic_regs->slic_wxcfg, value, FLUSH);
value = (GRCR_RESET | /* Always reset */
GRCR_CTLEN | /* Enable CTL frames */
GRCR_ADDRAEN | /* Address A enable */
(GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT));
slic_reg32_write(&slic_regs->slic_wrcfg, value, FLUSH);
/* power down phy */
phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN));
slic_reg32_write(&slic_regs->slic_wphy, phy_config, FLUSH);
}
static bool slic_mac_filter(struct adapter *adapter,
struct ether_header *ether_frame)
{
struct net_device *netdev = adapter->netdev;
u32 opts = adapter->macopts;
if (opts & MAC_PROMISC)
return true;
if (is_broadcast_ether_addr(ether_frame->ether_dhost)) {
if (opts & MAC_BCAST) {
adapter->rcv_broadcasts++;
return true;
}
return false;
}
if (is_multicast_ether_addr(ether_frame->ether_dhost)) {
if (opts & MAC_ALLMCAST) {
adapter->rcv_multicasts++;
netdev->stats.multicast++;
return true;
}
if (opts & MAC_MCAST) {
struct mcast_address *mcaddr = adapter->mcastaddrs;
while (mcaddr) {
if (ether_addr_equal(mcaddr->address,
ether_frame->ether_dhost)) {
adapter->rcv_multicasts++;
netdev->stats.multicast++;
return true;
}
mcaddr = mcaddr->next;
}
return false;
}
return false;
}
if (opts & MAC_DIRECTED) {
adapter->rcv_unicasts++;
return true;
}
return false;
}
static int slic_mac_set_address(struct net_device *dev, void *ptr)
{
struct adapter *adapter = netdev_priv(dev);
struct sockaddr *addr = ptr;
if (netif_running(dev))
return -EBUSY;
if (!adapter)
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
slic_config_set(adapter, true);
return 0;
}
static void slic_timer_load_check(ulong cardaddr)
{
struct sliccard *card = (struct sliccard *)cardaddr;
struct adapter *adapter = card->master;
u32 __iomem *intagg;
u32 load = card->events;
u32 level = 0;
if ((adapter) && (adapter->state == ADAPT_UP) &&
(card->state == CARD_UP) && (slic_global.dynamic_intagg)) {
intagg = &adapter->slic_regs->slic_intagg;
if (adapter->devid == SLIC_1GB_DEVICE_ID) {
if (adapter->linkspeed == LINK_1000MB)
level = 100;
else {
if (load > SLIC_LOAD_5)
level = SLIC_INTAGG_5;
else if (load > SLIC_LOAD_4)
level = SLIC_INTAGG_4;
else if (load > SLIC_LOAD_3)
level = SLIC_INTAGG_3;
else if (load > SLIC_LOAD_2)
level = SLIC_INTAGG_2;
else if (load > SLIC_LOAD_1)
level = SLIC_INTAGG_1;
else
level = SLIC_INTAGG_0;
}
if (card->loadlevel_current != level) {
card->loadlevel_current = level;
slic_reg32_write(intagg, level, FLUSH);
}
} else {
if (load > SLIC_LOAD_5)
level = SLIC_INTAGG_5;
else if (load > SLIC_LOAD_4)
level = SLIC_INTAGG_4;
else if (load > SLIC_LOAD_3)
level = SLIC_INTAGG_3;
else if (load > SLIC_LOAD_2)
level = SLIC_INTAGG_2;
else if (load > SLIC_LOAD_1)
level = SLIC_INTAGG_1;
else
level = SLIC_INTAGG_0;
if (card->loadlevel_current != level) {
card->loadlevel_current = level;
slic_reg32_write(intagg, level, FLUSH);
}
}
}
card->events = 0;
card->loadtimer.expires = jiffies + (SLIC_LOADTIMER_PERIOD * HZ);
add_timer(&card->loadtimer);
}
static int slic_upr_queue_request(struct adapter *adapter,
u32 upr_request,
u32 upr_data,
u32 upr_data_h,
u32 upr_buffer, u32 upr_buffer_h)
{
struct slic_upr *upr;
struct slic_upr *uprqueue;
upr = kmalloc(sizeof(struct slic_upr), GFP_ATOMIC);
if (!upr)
return -ENOMEM;
upr->adapter = adapter->port;
upr->upr_request = upr_request;
upr->upr_data = upr_data;
upr->upr_buffer = upr_buffer;
upr->upr_data_h = upr_data_h;
upr->upr_buffer_h = upr_buffer_h;
upr->next = NULL;
if (adapter->upr_list) {
uprqueue = adapter->upr_list;
while (uprqueue->next)
uprqueue = uprqueue->next;
uprqueue->next = upr;
} else {
adapter->upr_list = upr;
}
return 0;
}
static void slic_upr_start(struct adapter *adapter)
{
struct slic_upr *upr;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
/*
char * ptr1;
char * ptr2;
uint cmdoffset;
*/
upr = adapter->upr_list;
if (!upr)
return;
if (adapter->upr_busy)
return;
adapter->upr_busy = 1;
switch (upr->upr_request) {
case SLIC_UPR_STATS:
if (upr->upr_data_h == 0) {
slic_reg32_write(&slic_regs->slic_stats, upr->upr_data,
FLUSH);
} else {
slic_reg64_write(adapter, &slic_regs->slic_stats64,
upr->upr_data,
&slic_regs->slic_addr_upper,
upr->upr_data_h, FLUSH);
}
break;
case SLIC_UPR_RLSR:
slic_reg64_write(adapter, &slic_regs->slic_rlsr, upr->upr_data,
&slic_regs->slic_addr_upper, upr->upr_data_h,
FLUSH);
break;
case SLIC_UPR_RCONFIG:
slic_reg64_write(adapter, &slic_regs->slic_rconfig,
upr->upr_data, &slic_regs->slic_addr_upper,
upr->upr_data_h, FLUSH);
break;
case SLIC_UPR_PING:
slic_reg32_write(&slic_regs->slic_ping, 1, FLUSH);
break;
}
}
static int slic_upr_request(struct adapter *adapter,
u32 upr_request,
u32 upr_data,
u32 upr_data_h,
u32 upr_buffer, u32 upr_buffer_h)
{
int rc;
spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags);
rc = slic_upr_queue_request(adapter,
upr_request,
upr_data,
upr_data_h, upr_buffer, upr_buffer_h);
if (rc)
goto err_unlock_irq;
slic_upr_start(adapter);
err_unlock_irq:
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
return rc;
}
static void slic_link_upr_complete(struct adapter *adapter, u32 isr)
{
u32 linkstatus = adapter->pshmem->linkstatus;
uint linkup;
unsigned char linkspeed;
unsigned char linkduplex;
if ((isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) {
struct slic_shmem *pshmem;
pshmem = (struct slic_shmem *)(unsigned long)
adapter->phys_shmem;
#if BITS_PER_LONG == 64
slic_upr_queue_request(adapter,
SLIC_UPR_RLSR,
SLIC_GET_ADDR_LOW(&pshmem->linkstatus),
SLIC_GET_ADDR_HIGH(&pshmem->linkstatus),
0, 0);
#else
slic_upr_queue_request(adapter,
SLIC_UPR_RLSR,
(u32) &pshmem->linkstatus,
SLIC_GET_ADDR_HIGH(pshmem), 0, 0);
#endif
return;
}
if (adapter->state != ADAPT_UP)
return;
linkup = linkstatus & GIG_LINKUP ? LINK_UP : LINK_DOWN;
if (linkstatus & GIG_SPEED_1000)
linkspeed = LINK_1000MB;
else if (linkstatus & GIG_SPEED_100)
linkspeed = LINK_100MB;
else
linkspeed = LINK_10MB;
if (linkstatus & GIG_FULLDUPLEX)
linkduplex = LINK_FULLD;
else
linkduplex = LINK_HALFD;
if ((adapter->linkstate == LINK_DOWN) && (linkup == LINK_DOWN))
return;
/* link up event, but nothing has changed */
if ((adapter->linkstate == LINK_UP) &&
(linkup == LINK_UP) &&
(adapter->linkspeed == linkspeed) &&
(adapter->linkduplex == linkduplex))
return;
/* link has changed at this point */
/* link has gone from up to down */
if (linkup == LINK_DOWN) {
adapter->linkstate = LINK_DOWN;
return;
}
/* link has gone from down to up */
adapter->linkspeed = linkspeed;
adapter->linkduplex = linkduplex;
if (adapter->linkstate != LINK_UP) {
/* setup the mac */
slic_config_set(adapter, true);
adapter->linkstate = LINK_UP;
netif_start_queue(adapter->netdev);
}
}
static void slic_upr_request_complete(struct adapter *adapter, u32 isr)
{
struct sliccard *card = adapter->card;
struct slic_upr *upr;
spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags);
upr = adapter->upr_list;
if (!upr) {
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
return;
}
adapter->upr_list = upr->next;
upr->next = NULL;
adapter->upr_busy = 0;
switch (upr->upr_request) {
case SLIC_UPR_STATS:
{
struct slic_stats *slicstats =
(struct slic_stats *) &adapter->pshmem->inicstats;
struct slic_stats *newstats = slicstats;
struct slic_stats *old = &adapter->inicstats_prev;
struct slicnet_stats *stst = &adapter->slic_stats;
if (isr & ISR_UPCERR) {
dev_err(&adapter->netdev->dev,
"SLIC_UPR_STATS command failed isr[%x]\n",
isr);
break;
}
UPDATE_STATS_GB(stst->tcp.xmit_tcp_segs,
newstats->xmit_tcp_segs_gb,
old->xmit_tcp_segs_gb);
UPDATE_STATS_GB(stst->tcp.xmit_tcp_bytes,
newstats->xmit_tcp_bytes_gb,
old->xmit_tcp_bytes_gb);
UPDATE_STATS_GB(stst->tcp.rcv_tcp_segs,
newstats->rcv_tcp_segs_gb,
old->rcv_tcp_segs_gb);
UPDATE_STATS_GB(stst->tcp.rcv_tcp_bytes,
newstats->rcv_tcp_bytes_gb,
old->rcv_tcp_bytes_gb);
UPDATE_STATS_GB(stst->iface.xmt_bytes,
newstats->xmit_bytes_gb,
old->xmit_bytes_gb);
UPDATE_STATS_GB(stst->iface.xmt_ucast,
newstats->xmit_unicasts_gb,
old->xmit_unicasts_gb);
UPDATE_STATS_GB(stst->iface.rcv_bytes,
newstats->rcv_bytes_gb,
old->rcv_bytes_gb);
UPDATE_STATS_GB(stst->iface.rcv_ucast,
newstats->rcv_unicasts_gb,
old->rcv_unicasts_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_collisions_gb,
old->xmit_collisions_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_excess_collisions_gb,
old->xmit_excess_collisions_gb);
UPDATE_STATS_GB(stst->iface.xmt_errors,
newstats->xmit_other_error_gb,
old->xmit_other_error_gb);
UPDATE_STATS_GB(stst->iface.rcv_errors,
newstats->rcv_other_error_gb,
old->rcv_other_error_gb);
UPDATE_STATS_GB(stst->iface.rcv_discards,
newstats->rcv_drops_gb,
old->rcv_drops_gb);
if (newstats->rcv_drops_gb > old->rcv_drops_gb) {
adapter->rcv_drops +=
(newstats->rcv_drops_gb -
old->rcv_drops_gb);
}
memcpy(old, newstats, sizeof(struct slic_stats));
break;
}
case SLIC_UPR_RLSR:
slic_link_upr_complete(adapter, isr);
break;
case SLIC_UPR_RCONFIG:
break;
case SLIC_UPR_PING:
card->pingstatus |= (isr & ISR_PINGDSMASK);
break;
}
kfree(upr);
slic_upr_start(adapter);
spin_unlock_irqrestore(&adapter->upr_lock.lock,
adapter->upr_lock.flags);
}
static int slic_config_get(struct adapter *adapter, u32 config, u32 config_h)
{
return slic_upr_request(adapter, SLIC_UPR_RCONFIG, config, config_h,
0, 0);
}
/*
* Compute a checksum of the EEPROM according to RFC 1071.
*/
static u16 slic_eeprom_cksum(void *eeprom, unsigned len)
{
u16 *wp = eeprom;
u32 checksum = 0;
while (len > 1) {
checksum += *(wp++);
len -= 2;
}
if (len > 0)
checksum += *(u8 *) wp;
while (checksum >> 16)
checksum = (checksum & 0xFFFF) + ((checksum >> 16) & 0xFFFF);
return ~checksum;
}
static void slic_rspqueue_free(struct adapter *adapter)
{
int i;
struct slic_rspqueue *rspq = &adapter->rspqueue;
for (i = 0; i < rspq->num_pages; i++) {
if (rspq->vaddr[i]) {
pci_free_consistent(adapter->pcidev, PAGE_SIZE,
rspq->vaddr[i], rspq->paddr[i]);
}
rspq->vaddr[i] = NULL;
rspq->paddr[i] = 0;
}
rspq->offset = 0;
rspq->pageindex = 0;
rspq->rspbuf = NULL;
}
static int slic_rspqueue_init(struct adapter *adapter)
{
int i;
struct slic_rspqueue *rspq = &adapter->rspqueue;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
u32 paddrh = 0;
memset(rspq, 0, sizeof(struct slic_rspqueue));
rspq->num_pages = SLIC_RSPQ_PAGES_GB;
for (i = 0; i < rspq->num_pages; i++) {
rspq->vaddr[i] = pci_zalloc_consistent(adapter->pcidev,
PAGE_SIZE,
&rspq->paddr[i]);
if (!rspq->vaddr[i]) {
dev_err(&adapter->pcidev->dev,
"pci_alloc_consistent failed\n");
slic_rspqueue_free(adapter);
return -ENOMEM;
}
if (paddrh == 0) {
slic_reg32_write(&slic_regs->slic_rbar,
(rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE),
DONT_FLUSH);
} else {
slic_reg64_write(adapter, &slic_regs->slic_rbar64,
(rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE),
&slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
}
rspq->offset = 0;
rspq->pageindex = 0;
rspq->rspbuf = (struct slic_rspbuf *)rspq->vaddr[0];
return 0;
}
static struct slic_rspbuf *slic_rspqueue_getnext(struct adapter *adapter)
{
struct slic_rspqueue *rspq = &adapter->rspqueue;
struct slic_rspbuf *buf;
if (!(rspq->rspbuf->status))
return NULL;
buf = rspq->rspbuf;
if (++rspq->offset < SLIC_RSPQ_BUFSINPAGE) {
rspq->rspbuf++;
} else {
slic_reg64_write(adapter, &adapter->slic_regs->slic_rbar64,
(rspq->paddr[rspq->pageindex] | SLIC_RSPQ_BUFSINPAGE),
&adapter->slic_regs->slic_addr_upper, 0, DONT_FLUSH);
rspq->pageindex = (rspq->pageindex + 1) % rspq->num_pages;
rspq->offset = 0;
rspq->rspbuf = (struct slic_rspbuf *)
rspq->vaddr[rspq->pageindex];
}
return buf;
}
static void slic_cmdqmem_free(struct adapter *adapter)
{
struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem;
int i;
for (i = 0; i < SLIC_CMDQ_MAXPAGES; i++) {
if (cmdqmem->pages[i]) {
pci_free_consistent(adapter->pcidev,
PAGE_SIZE,
(void *) cmdqmem->pages[i],
cmdqmem->dma_pages[i]);
}
}
memset(cmdqmem, 0, sizeof(struct slic_cmdqmem));
}
static u32 *slic_cmdqmem_addpage(struct adapter *adapter)
{
struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem;
u32 *pageaddr;
if (cmdqmem->pagecnt >= SLIC_CMDQ_MAXPAGES)
return NULL;
pageaddr = pci_alloc_consistent(adapter->pcidev,
PAGE_SIZE,
&cmdqmem->dma_pages[cmdqmem->pagecnt]);
if (!pageaddr)
return NULL;
cmdqmem->pages[cmdqmem->pagecnt] = pageaddr;
cmdqmem->pagecnt++;
return pageaddr;
}
static void slic_cmdq_free(struct adapter *adapter)
{
struct slic_hostcmd *cmd;
cmd = adapter->cmdq_all.head;
while (cmd) {
if (cmd->busy) {
struct sk_buff *tempskb;
tempskb = cmd->skb;
if (tempskb) {
cmd->skb = NULL;
dev_kfree_skb_irq(tempskb);
}
}
cmd = cmd->next_all;
}
memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue));
slic_cmdqmem_free(adapter);
}
static void slic_cmdq_addcmdpage(struct adapter *adapter, u32 *page)
{
struct slic_hostcmd *cmd;
struct slic_hostcmd *prev;
struct slic_hostcmd *tail;
struct slic_cmdqueue *cmdq;
int cmdcnt;
void *cmdaddr;
ulong phys_addr;
u32 phys_addrl;
u32 phys_addrh;
struct slic_handle *pslic_handle;
cmdaddr = page;
cmd = (struct slic_hostcmd *)cmdaddr;
cmdcnt = 0;
phys_addr = virt_to_bus((void *)page);
phys_addrl = SLIC_GET_ADDR_LOW(phys_addr);
phys_addrh = SLIC_GET_ADDR_HIGH(phys_addr);
prev = NULL;
tail = cmd;
while ((cmdcnt < SLIC_CMDQ_CMDSINPAGE) &&
(adapter->slic_handle_ix < 256)) {
/* Allocate and initialize a SLIC_HANDLE for this command */
spin_lock_irqsave(&adapter->handle_lock.lock,
adapter->handle_lock.flags);
pslic_handle = adapter->pfree_slic_handles;
adapter->pfree_slic_handles = pslic_handle->next;
spin_unlock_irqrestore(&adapter->handle_lock.lock,
adapter->handle_lock.flags);
pslic_handle->type = SLIC_HANDLE_CMD;
pslic_handle->address = (void *) cmd;
pslic_handle->offset = (ushort) adapter->slic_handle_ix++;
pslic_handle->other_handle = NULL;
pslic_handle->next = NULL;
cmd->pslic_handle = pslic_handle;
cmd->cmd64.hosthandle = pslic_handle->token.handle_token;
cmd->busy = false;
cmd->paddrl = phys_addrl;
cmd->paddrh = phys_addrh;
cmd->next_all = prev;
cmd->next = prev;
prev = cmd;
phys_addrl += SLIC_HOSTCMD_SIZE;
cmdaddr += SLIC_HOSTCMD_SIZE;
cmd = (struct slic_hostcmd *)cmdaddr;
cmdcnt++;
}
cmdq = &adapter->cmdq_all;
cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */
tail->next_all = cmdq->head;
cmdq->head = prev;
cmdq = &adapter->cmdq_free;
spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags);
cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */
tail->next = cmdq->head;
cmdq->head = prev;
spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags);
}
static int slic_cmdq_init(struct adapter *adapter)
{
int i;
u32 *pageaddr;
memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue));
memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue));
spin_lock_init(&adapter->cmdq_all.lock.lock);
spin_lock_init(&adapter->cmdq_free.lock.lock);
spin_lock_init(&adapter->cmdq_done.lock.lock);
memset(&adapter->cmdqmem, 0, sizeof(struct slic_cmdqmem));
adapter->slic_handle_ix = 1;
for (i = 0; i < SLIC_CMDQ_INITPAGES; i++) {
pageaddr = slic_cmdqmem_addpage(adapter);
if (!pageaddr) {
slic_cmdq_free(adapter);
return -ENOMEM;
}
slic_cmdq_addcmdpage(adapter, pageaddr);
}
adapter->slic_handle_ix = 1;
return 0;
}
static void slic_cmdq_reset(struct adapter *adapter)
{
struct slic_hostcmd *hcmd;
struct sk_buff *skb;
u32 outstanding;
spin_lock_irqsave(&adapter->cmdq_free.lock.lock,
adapter->cmdq_free.lock.flags);
spin_lock_irqsave(&adapter->cmdq_done.lock.lock,
adapter->cmdq_done.lock.flags);
outstanding = adapter->cmdq_all.count - adapter->cmdq_done.count;
outstanding -= adapter->cmdq_free.count;
hcmd = adapter->cmdq_all.head;
while (hcmd) {
if (hcmd->busy) {
skb = hcmd->skb;
hcmd->busy = 0;
hcmd->skb = NULL;
dev_kfree_skb_irq(skb);
}
hcmd = hcmd->next_all;
}
adapter->cmdq_free.count = 0;
adapter->cmdq_free.head = NULL;
adapter->cmdq_free.tail = NULL;
adapter->cmdq_done.count = 0;
adapter->cmdq_done.head = NULL;
adapter->cmdq_done.tail = NULL;
adapter->cmdq_free.head = adapter->cmdq_all.head;
hcmd = adapter->cmdq_all.head;
while (hcmd) {
adapter->cmdq_free.count++;
hcmd->next = hcmd->next_all;
hcmd = hcmd->next_all;
}
if (adapter->cmdq_free.count != adapter->cmdq_all.count) {
dev_err(&adapter->netdev->dev,
"free_count %d != all count %d\n",
adapter->cmdq_free.count, adapter->cmdq_all.count);
}
spin_unlock_irqrestore(&adapter->cmdq_done.lock.lock,
adapter->cmdq_done.lock.flags);
spin_unlock_irqrestore(&adapter->cmdq_free.lock.lock,
adapter->cmdq_free.lock.flags);
}
static void slic_cmdq_getdone(struct adapter *adapter)
{
struct slic_cmdqueue *done_cmdq = &adapter->cmdq_done;
struct slic_cmdqueue *free_cmdq = &adapter->cmdq_free;
spin_lock_irqsave(&done_cmdq->lock.lock, done_cmdq->lock.flags);
free_cmdq->head = done_cmdq->head;
free_cmdq->count = done_cmdq->count;
done_cmdq->head = NULL;
done_cmdq->tail = NULL;
done_cmdq->count = 0;
spin_unlock_irqrestore(&done_cmdq->lock.lock, done_cmdq->lock.flags);
}
static struct slic_hostcmd *slic_cmdq_getfree(struct adapter *adapter)
{
struct slic_cmdqueue *cmdq = &adapter->cmdq_free;
struct slic_hostcmd *cmd = NULL;
lock_and_retry:
spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags);
retry:
cmd = cmdq->head;
if (cmd) {
cmdq->head = cmd->next;
cmdq->count--;
spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags);
} else {
slic_cmdq_getdone(adapter);
cmd = cmdq->head;
if (cmd) {
goto retry;
} else {
u32 *pageaddr;
spin_unlock_irqrestore(&cmdq->lock.lock,
cmdq->lock.flags);
pageaddr = slic_cmdqmem_addpage(adapter);
if (pageaddr) {
slic_cmdq_addcmdpage(adapter, pageaddr);
goto lock_and_retry;
}
}
}
return cmd;
}
static void slic_cmdq_putdone_irq(struct adapter *adapter,
struct slic_hostcmd *cmd)
{
struct slic_cmdqueue *cmdq = &adapter->cmdq_done;
spin_lock(&cmdq->lock.lock);
cmd->busy = 0;
cmd->next = cmdq->head;
cmdq->head = cmd;
cmdq->count++;
if ((adapter->xmitq_full) && (cmdq->count > 10))
netif_wake_queue(adapter->netdev);
spin_unlock(&cmdq->lock.lock);
}
static int slic_rcvqueue_fill(struct adapter *adapter)
{
void *paddr;
u32 paddrl;
u32 paddrh;
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
int i = 0;
struct device *dev = &adapter->netdev->dev;
while (i < SLIC_RCVQ_FILLENTRIES) {
struct slic_rcvbuf *rcvbuf;
struct sk_buff *skb;
#ifdef KLUDGE_FOR_4GB_BOUNDARY
retry_rcvqfill:
#endif
skb = alloc_skb(SLIC_RCVQ_RCVBUFSIZE, GFP_ATOMIC);
if (skb) {
paddr = (void *)(unsigned long)
pci_map_single(adapter->pcidev,
skb->data,
SLIC_RCVQ_RCVBUFSIZE,
PCI_DMA_FROMDEVICE);
paddrl = SLIC_GET_ADDR_LOW(paddr);
paddrh = SLIC_GET_ADDR_HIGH(paddr);
skb->len = SLIC_RCVBUF_HEADSIZE;
rcvbuf = (struct slic_rcvbuf *)skb->head;
rcvbuf->status = 0;
skb->next = NULL;
#ifdef KLUDGE_FOR_4GB_BOUNDARY
if (paddrl == 0) {
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
dev_err(dev, "SKIP THIS SKB!!!!!!!!\n");
goto retry_rcvqfill;
}
#else
if (paddrl == 0) {
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
dev_err(dev, "GIVE TO CARD ANYWAY\n");
}
#endif
if (paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_hbar,
(u32)paddrl, DONT_FLUSH);
} else {
slic_reg64_write(adapter,
&adapter->slic_regs->slic_hbar64,
paddrl,
&adapter->slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
if (rcvq->head)
rcvq->tail->next = skb;
else
rcvq->head = skb;
rcvq->tail = skb;
rcvq->count++;
i++;
} else {
dev_err(&adapter->netdev->dev,
"slic_rcvqueue_fill could only get [%d] skbuffs\n",
i);
break;
}
}
return i;
}
static void slic_rcvqueue_free(struct adapter *adapter)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
struct sk_buff *skb;
while (rcvq->head) {
skb = rcvq->head;
rcvq->head = rcvq->head->next;
dev_kfree_skb(skb);
}
rcvq->tail = NULL;
rcvq->head = NULL;
rcvq->count = 0;
}
static int slic_rcvqueue_init(struct adapter *adapter)
{
int i, count;
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
rcvq->tail = NULL;
rcvq->head = NULL;
rcvq->size = SLIC_RCVQ_ENTRIES;
rcvq->errors = 0;
rcvq->count = 0;
i = (SLIC_RCVQ_ENTRIES / SLIC_RCVQ_FILLENTRIES);
count = 0;
while (i) {
count += slic_rcvqueue_fill(adapter);
i--;
}
if (rcvq->count < SLIC_RCVQ_MINENTRIES) {
slic_rcvqueue_free(adapter);
return -ENOMEM;
}
return 0;
}
static struct sk_buff *slic_rcvqueue_getnext(struct adapter *adapter)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
struct sk_buff *skb;
struct slic_rcvbuf *rcvbuf;
int count;
if (rcvq->count) {
skb = rcvq->head;
rcvbuf = (struct slic_rcvbuf *)skb->head;
if (rcvbuf->status & IRHDDR_SVALID) {
rcvq->head = rcvq->head->next;
skb->next = NULL;
rcvq->count--;
} else {
skb = NULL;
}
} else {
dev_err(&adapter->netdev->dev,
"RcvQ Empty!! rcvq[%p] count[%x]\n", rcvq, rcvq->count);
skb = NULL;
}
while (rcvq->count < SLIC_RCVQ_FILLTHRESH) {
count = slic_rcvqueue_fill(adapter);
if (!count)
break;
}
if (skb)
rcvq->errors = 0;
return skb;
}
static u32 slic_rcvqueue_reinsert(struct adapter *adapter, struct sk_buff *skb)
{
struct slic_rcvqueue *rcvq = &adapter->rcvqueue;
void *paddr;
u32 paddrl;
u32 paddrh;
struct slic_rcvbuf *rcvbuf = (struct slic_rcvbuf *)skb->head;
struct device *dev;
paddr = (void *)(unsigned long)
pci_map_single(adapter->pcidev, skb->head,
SLIC_RCVQ_RCVBUFSIZE, PCI_DMA_FROMDEVICE);
rcvbuf->status = 0;
skb->next = NULL;
paddrl = SLIC_GET_ADDR_LOW(paddr);
paddrh = SLIC_GET_ADDR_HIGH(paddr);
if (paddrl == 0) {
dev = &adapter->netdev->dev;
dev_err(dev, "%s: LOW 32bits PHYSICAL ADDRESS == 0\n",
__func__);
dev_err(dev, "skb[%p] PROBLEM\n", skb);
dev_err(dev, " skbdata[%p]\n", skb->data);
dev_err(dev, " skblen[%x]\n", skb->len);
dev_err(dev, " paddr[%p]\n", paddr);
dev_err(dev, " paddrl[%x]\n", paddrl);
dev_err(dev, " paddrh[%x]\n", paddrh);
dev_err(dev, " rcvq->head[%p]\n", rcvq->head);
dev_err(dev, " rcvq->tail[%p]\n", rcvq->tail);
dev_err(dev, " rcvq->count[%x]\n", rcvq->count);
}
if (paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_hbar, (u32)paddrl,
DONT_FLUSH);
} else {
slic_reg64_write(adapter, &adapter->slic_regs->slic_hbar64,
paddrl, &adapter->slic_regs->slic_addr_upper,
paddrh, DONT_FLUSH);
}
if (rcvq->head)
rcvq->tail->next = skb;
else
rcvq->head = skb;
rcvq->tail = skb;
rcvq->count++;
return rcvq->count;
}
/*
* slic_link_event_handler -
*
* Initiate a link configuration sequence. The link configuration begins
* by issuing a READ_LINK_STATUS command to the Utility Processor on the
* SLIC. Since the command finishes asynchronously, the slic_upr_comlete
* routine will follow it up witha UP configuration write command, which
* will also complete asynchronously.
*
*/
static void slic_link_event_handler(struct adapter *adapter)
{
int status;
struct slic_shmem *pshmem;
if (adapter->state != ADAPT_UP) {
/* Adapter is not operational. Ignore. */
return;
}
pshmem = (struct slic_shmem *)(unsigned long)adapter->phys_shmem;
#if BITS_PER_LONG == 64
status = slic_upr_request(adapter,
SLIC_UPR_RLSR,
SLIC_GET_ADDR_LOW(&pshmem->linkstatus),
SLIC_GET_ADDR_HIGH(&pshmem->linkstatus),
0, 0);
#else
status = slic_upr_request(adapter, SLIC_UPR_RLSR,
(u32) &pshmem->linkstatus, /* no 4GB wrap guaranteed */
0, 0, 0);
#endif
}
static void slic_init_cleanup(struct adapter *adapter)
{
if (adapter->intrregistered) {
adapter->intrregistered = 0;
free_irq(adapter->netdev->irq, adapter->netdev);
}
if (adapter->pshmem) {
pci_free_consistent(adapter->pcidev,
sizeof(struct slic_shmem),
adapter->pshmem, adapter->phys_shmem);
adapter->pshmem = NULL;
adapter->phys_shmem = (dma_addr_t)(unsigned long)NULL;
}
if (adapter->pingtimerset) {
adapter->pingtimerset = 0;
del_timer(&adapter->pingtimer);
}
slic_rspqueue_free(adapter);
slic_cmdq_free(adapter);
slic_rcvqueue_free(adapter);
}
/*
* Allocate a mcast_address structure to hold the multicast address.
* Link it in.
*/
static int slic_mcast_add_list(struct adapter *adapter, char *address)
{
struct mcast_address *mcaddr, *mlist;
/* Check to see if it already exists */
mlist = adapter->mcastaddrs;
while (mlist) {
if (ether_addr_equal(mlist->address, address))
return 0;
mlist = mlist->next;
}
/* Doesn't already exist. Allocate a structure to hold it */
mcaddr = kmalloc(sizeof(struct mcast_address), GFP_ATOMIC);
if (mcaddr == NULL)
return 1;
memcpy(mcaddr->address, address, ETH_ALEN);
mcaddr->next = adapter->mcastaddrs;
adapter->mcastaddrs = mcaddr;
return 0;
}
static void slic_mcast_set_list(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
int status = 0;
char *addresses;
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, dev) {
addresses = (char *) &ha->addr;
status = slic_mcast_add_list(adapter, addresses);
if (status != 0)
break;
slic_mcast_set_bit(adapter, addresses);
}
if (adapter->devflags_prev != dev->flags) {
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
if (dev->flags & IFF_BROADCAST)
adapter->macopts |= MAC_BCAST;
if (dev->flags & IFF_PROMISC)
adapter->macopts |= MAC_PROMISC;
if (dev->flags & IFF_ALLMULTI)
adapter->macopts |= MAC_ALLMCAST;
if (dev->flags & IFF_MULTICAST)
adapter->macopts |= MAC_MCAST;
}
adapter->devflags_prev = dev->flags;
slic_config_set(adapter, true);
} else {
if (status == 0)
slic_mcast_set_mask(adapter);
}
}
#define XMIT_FAIL_LINK_STATE 1
#define XMIT_FAIL_ZERO_LENGTH 2
#define XMIT_FAIL_HOSTCMD_FAIL 3
static void slic_xmit_build_request(struct adapter *adapter,
struct slic_hostcmd *hcmd, struct sk_buff *skb)
{
struct slic_host64_cmd *ihcmd;
ulong phys_addr;
ihcmd = &hcmd->cmd64;
ihcmd->flags = (adapter->port << IHFLG_IFSHFT);
ihcmd->command = IHCMD_XMT_REQ;
ihcmd->u.slic_buffers.totlen = skb->len;
phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
PCI_DMA_TODEVICE);
ihcmd->u.slic_buffers.bufs[0].paddrl = SLIC_GET_ADDR_LOW(phys_addr);
ihcmd->u.slic_buffers.bufs[0].paddrh = SLIC_GET_ADDR_HIGH(phys_addr);
ihcmd->u.slic_buffers.bufs[0].length = skb->len;
#if BITS_PER_LONG == 64
hcmd->cmdsize = (u32) ((((u64)&ihcmd->u.slic_buffers.bufs[1] -
(u64) hcmd) + 31) >> 5);
#else
hcmd->cmdsize = ((((u32) &ihcmd->u.slic_buffers.bufs[1] -
(u32) hcmd) + 31) >> 5);
#endif
}
static void slic_xmit_fail(struct adapter *adapter,
struct sk_buff *skb,
void *cmd, u32 skbtype, u32 status)
{
if (adapter->xmitq_full)
netif_stop_queue(adapter->netdev);
if ((cmd == NULL) && (status <= XMIT_FAIL_HOSTCMD_FAIL)) {
switch (status) {
case XMIT_FAIL_LINK_STATE:
dev_err(&adapter->netdev->dev,
"reject xmit skb[%p: %x] linkstate[%s] adapter[%s:%d] card[%s:%d]\n",
skb, skb->pkt_type,
SLIC_LINKSTATE(adapter->linkstate),
SLIC_ADAPTER_STATE(adapter->state),
adapter->state,
SLIC_CARD_STATE(adapter->card->state),
adapter->card->state);
break;
case XMIT_FAIL_ZERO_LENGTH:
dev_err(&adapter->netdev->dev,
"xmit_start skb->len == 0 skb[%p] type[%x]\n",
skb, skb->pkt_type);
break;
case XMIT_FAIL_HOSTCMD_FAIL:
dev_err(&adapter->netdev->dev,
"xmit_start skb[%p] type[%x] No host commands available\n", skb, skb->pkt_type);
break;
}
}
dev_kfree_skb(skb);
adapter->netdev->stats.tx_dropped++;
}
static void slic_rcv_handle_error(struct adapter *adapter,
struct slic_rcvbuf *rcvbuf)
{
struct slic_hddr_wds *hdr = (struct slic_hddr_wds *)rcvbuf->data;
struct net_device *netdev = adapter->netdev;
if (adapter->devid != SLIC_1GB_DEVICE_ID) {
if (hdr->frame_status14 & VRHSTAT_802OE)
adapter->if_events.oflow802++;
if (hdr->frame_status14 & VRHSTAT_TPOFLO)
adapter->if_events.Tprtoflow++;
if (hdr->frame_status_b14 & VRHSTATB_802UE)
adapter->if_events.uflow802++;
if (hdr->frame_status_b14 & VRHSTATB_RCVE) {
adapter->if_events.rcvearly++;
netdev->stats.rx_fifo_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_BUFF) {
adapter->if_events.Bufov++;
netdev->stats.rx_over_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_CARRE) {
adapter->if_events.Carre++;
netdev->stats.tx_carrier_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_LONGE)
adapter->if_events.Longe++;
if (hdr->frame_status_b14 & VRHSTATB_PREA)
adapter->if_events.Invp++;
if (hdr->frame_status_b14 & VRHSTATB_CRC) {
adapter->if_events.Crc++;
netdev->stats.rx_crc_errors++;
}
if (hdr->frame_status_b14 & VRHSTATB_DRBL)
adapter->if_events.Drbl++;
if (hdr->frame_status_b14 & VRHSTATB_CODE)
adapter->if_events.Code++;
if (hdr->frame_status_b14 & VRHSTATB_TPCSUM)
adapter->if_events.TpCsum++;
if (hdr->frame_status_b14 & VRHSTATB_TPHLEN)
adapter->if_events.TpHlen++;
if (hdr->frame_status_b14 & VRHSTATB_IPCSUM)
adapter->if_events.IpCsum++;
if (hdr->frame_status_b14 & VRHSTATB_IPLERR)
adapter->if_events.IpLen++;
if (hdr->frame_status_b14 & VRHSTATB_IPHERR)
adapter->if_events.IpHlen++;
} else {
if (hdr->frame_statusGB & VGBSTAT_XPERR) {
u32 xerr = hdr->frame_statusGB >> VGBSTAT_XERRSHFT;
if (xerr == VGBSTAT_XCSERR)
adapter->if_events.TpCsum++;
if (xerr == VGBSTAT_XUFLOW)
adapter->if_events.Tprtoflow++;
if (xerr == VGBSTAT_XHLEN)
adapter->if_events.TpHlen++;
}
if (hdr->frame_statusGB & VGBSTAT_NETERR) {
u32 nerr =
(hdr->
frame_statusGB >> VGBSTAT_NERRSHFT) &
VGBSTAT_NERRMSK;
if (nerr == VGBSTAT_NCSERR)
adapter->if_events.IpCsum++;
if (nerr == VGBSTAT_NUFLOW)
adapter->if_events.IpLen++;
if (nerr == VGBSTAT_NHLEN)
adapter->if_events.IpHlen++;
}
if (hdr->frame_statusGB & VGBSTAT_LNKERR) {
u32 lerr = hdr->frame_statusGB & VGBSTAT_LERRMSK;
if (lerr == VGBSTAT_LDEARLY)
adapter->if_events.rcvearly++;
if (lerr == VGBSTAT_LBOFLO)
adapter->if_events.Bufov++;
if (lerr == VGBSTAT_LCODERR)
adapter->if_events.Code++;
if (lerr == VGBSTAT_LDBLNBL)
adapter->if_events.Drbl++;
if (lerr == VGBSTAT_LCRCERR)
adapter->if_events.Crc++;
if (lerr == VGBSTAT_LOFLO)
adapter->if_events.oflow802++;
if (lerr == VGBSTAT_LUFLO)
adapter->if_events.uflow802++;
}
}
}
#define TCP_OFFLOAD_FRAME_PUSHFLAG 0x10000000
#define M_FAST_PATH 0x0040
static void slic_rcv_handler(struct adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct sk_buff *skb;
struct slic_rcvbuf *rcvbuf;
u32 frames = 0;
while ((skb = slic_rcvqueue_getnext(adapter))) {
u32 rx_bytes;
rcvbuf = (struct slic_rcvbuf *)skb->head;
adapter->card->events++;
if (rcvbuf->status & IRHDDR_ERR) {
adapter->rx_errors++;
slic_rcv_handle_error(adapter, rcvbuf);
slic_rcvqueue_reinsert(adapter, skb);
continue;
}
if (!slic_mac_filter(adapter, (struct ether_header *)
rcvbuf->data)) {
slic_rcvqueue_reinsert(adapter, skb);
continue;
}
skb_pull(skb, SLIC_RCVBUF_HEADSIZE);
rx_bytes = (rcvbuf->length & IRHDDR_FLEN_MSK);
skb_put(skb, rx_bytes);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += rx_bytes;
#if SLIC_OFFLOAD_IP_CHECKSUM
skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
skb->dev = adapter->netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx(skb);
++frames;
#if SLIC_INTERRUPT_PROCESS_LIMIT
if (frames >= SLIC_RCVQ_MAX_PROCESS_ISR) {
adapter->rcv_interrupt_yields++;
break;
}
#endif
}
adapter->max_isr_rcvs = max(adapter->max_isr_rcvs, frames);
}
static void slic_xmit_complete(struct adapter *adapter)
{
struct slic_hostcmd *hcmd;
struct slic_rspbuf *rspbuf;
u32 frames = 0;
struct slic_handle_word slic_handle_word;
do {
rspbuf = slic_rspqueue_getnext(adapter);
if (!rspbuf)
break;
adapter->xmit_completes++;
adapter->card->events++;
/*
Get the complete host command buffer
*/
slic_handle_word.handle_token = rspbuf->hosthandle;
hcmd =
(struct slic_hostcmd *)
adapter->slic_handles[slic_handle_word.handle_index].
address;
/* hcmd = (struct slic_hostcmd *) rspbuf->hosthandle; */
if (hcmd->type == SLIC_CMD_DUMB) {
if (hcmd->skb)
dev_kfree_skb_irq(hcmd->skb);
slic_cmdq_putdone_irq(adapter, hcmd);
}
rspbuf->status = 0;
rspbuf->hosthandle = 0;
frames++;
} while (1);
adapter->max_isr_xmits = max(adapter->max_isr_xmits, frames);
}
static void slic_interrupt_card_up(u32 isr, struct adapter *adapter,
struct net_device *dev)
{
if (isr & ~ISR_IO) {
if (isr & ISR_ERR) {
adapter->error_interrupts++;
if (isr & ISR_RMISS) {
int count;
int pre_count;
int errors;
struct slic_rcvqueue *rcvq =
&adapter->rcvqueue;
adapter->error_rmiss_interrupts++;
if (!rcvq->errors)
rcv_count = rcvq->count;
pre_count = rcvq->count;
errors = rcvq->errors;
while (rcvq->count < SLIC_RCVQ_FILLTHRESH) {
count = slic_rcvqueue_fill(adapter);
if (!count)
break;
}
} else if (isr & ISR_XDROP) {
dev_err(&dev->dev,
"isr & ISR_ERR [%x] ISR_XDROP\n", isr);
} else {
dev_err(&dev->dev,
"isr & ISR_ERR [%x]\n",
isr);
}
}
if (isr & ISR_LEVENT) {
adapter->linkevent_interrupts++;
slic_link_event_handler(adapter);
}
if ((isr & ISR_UPC) || (isr & ISR_UPCERR) ||
(isr & ISR_UPCBSY)) {
adapter->upr_interrupts++;
slic_upr_request_complete(adapter, isr);
}
}
if (isr & ISR_RCV) {
adapter->rcv_interrupts++;
slic_rcv_handler(adapter);
}
if (isr & ISR_CMD) {
adapter->xmit_interrupts++;
slic_xmit_complete(adapter);
}
}
static irqreturn_t slic_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct adapter *adapter = netdev_priv(dev);
u32 isr;
if ((adapter->pshmem) && (adapter->pshmem->isr)) {
slic_reg32_write(&adapter->slic_regs->slic_icr,
ICR_INT_MASK, FLUSH);
isr = adapter->isrcopy = adapter->pshmem->isr;
adapter->pshmem->isr = 0;
adapter->num_isrs++;
switch (adapter->card->state) {
case CARD_UP:
slic_interrupt_card_up(isr, adapter, dev);
break;
case CARD_DOWN:
if ((isr & ISR_UPC) ||
(isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) {
adapter->upr_interrupts++;
slic_upr_request_complete(adapter, isr);
}
break;
}
adapter->isrcopy = 0;
adapter->all_reg_writes += 2;
adapter->isr_reg_writes++;
slic_reg32_write(&adapter->slic_regs->slic_isr, 0, FLUSH);
} else {
adapter->false_interrupts++;
}
return IRQ_HANDLED;
}
#define NORMAL_ETHFRAME 0
static netdev_tx_t slic_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct sliccard *card;
struct adapter *adapter = netdev_priv(dev);
struct slic_hostcmd *hcmd = NULL;
u32 status = 0;
void *offloadcmd = NULL;
card = adapter->card;
if ((adapter->linkstate != LINK_UP) ||
(adapter->state != ADAPT_UP) || (card->state != CARD_UP)) {
status = XMIT_FAIL_LINK_STATE;
goto xmit_fail;
} else if (skb->len == 0) {
status = XMIT_FAIL_ZERO_LENGTH;
goto xmit_fail;
}
hcmd = slic_cmdq_getfree(adapter);
if (!hcmd) {
adapter->xmitq_full = 1;
status = XMIT_FAIL_HOSTCMD_FAIL;
goto xmit_fail;
}
hcmd->skb = skb;
hcmd->busy = 1;
hcmd->type = SLIC_CMD_DUMB;
slic_xmit_build_request(adapter, hcmd, skb);
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
#ifdef DEBUG_DUMP
if (adapter->kill_card) {
struct slic_host64_cmd ihcmd;
ihcmd = &hcmd->cmd64;
ihcmd->flags |= 0x40;
adapter->kill_card = 0; /* only do this once */
}
#endif
if (hcmd->paddrh == 0) {
slic_reg32_write(&adapter->slic_regs->slic_cbar,
(hcmd->paddrl | hcmd->cmdsize), DONT_FLUSH);
} else {
slic_reg64_write(adapter, &adapter->slic_regs->slic_cbar64,
(hcmd->paddrl | hcmd->cmdsize),
&adapter->slic_regs->slic_addr_upper,
hcmd->paddrh, DONT_FLUSH);
}
xmit_done:
return NETDEV_TX_OK;
xmit_fail:
slic_xmit_fail(adapter, skb, offloadcmd, NORMAL_ETHFRAME, status);
goto xmit_done;
}
static void slic_adapter_freeresources(struct adapter *adapter)
{
slic_init_cleanup(adapter);
adapter->error_interrupts = 0;
adapter->rcv_interrupts = 0;
adapter->xmit_interrupts = 0;
adapter->linkevent_interrupts = 0;
adapter->upr_interrupts = 0;
adapter->num_isrs = 0;
adapter->xmit_completes = 0;
adapter->rcv_broadcasts = 0;
adapter->rcv_multicasts = 0;
adapter->rcv_unicasts = 0;
}
static int slic_adapter_allocresources(struct adapter *adapter)
{
if (!adapter->intrregistered) {
int retval;
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
retval = request_irq(adapter->netdev->irq,
&slic_interrupt,
IRQF_SHARED,
adapter->netdev->name, adapter->netdev);
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
if (retval) {
dev_err(&adapter->netdev->dev,
"request_irq (%s) FAILED [%x]\n",
adapter->netdev->name, retval);
return retval;
}
adapter->intrregistered = 1;
}
return 0;
}
/*
* slic_if_init
*
* Perform initialization of our slic interface.
*
*/
static int slic_if_init(struct adapter *adapter)
{
struct sliccard *card = adapter->card;
struct net_device *dev = adapter->netdev;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
struct slic_shmem *pshmem;
int rc;
/* adapter should be down at this point */
if (adapter->state != ADAPT_DOWN) {
dev_err(&dev->dev, "%s: adapter->state != ADAPT_DOWN\n",
__func__);
rc = -EIO;
goto err;
}
adapter->devflags_prev = dev->flags;
adapter->macopts = MAC_DIRECTED;
if (dev->flags) {
if (dev->flags & IFF_BROADCAST)
adapter->macopts |= MAC_BCAST;
if (dev->flags & IFF_PROMISC)
adapter->macopts |= MAC_PROMISC;
if (dev->flags & IFF_ALLMULTI)
adapter->macopts |= MAC_ALLMCAST;
if (dev->flags & IFF_MULTICAST)
adapter->macopts |= MAC_MCAST;
}
rc = slic_adapter_allocresources(adapter);
if (rc) {
dev_err(&dev->dev,
"%s: slic_adapter_allocresources FAILED %x\n",
__func__, rc);
slic_adapter_freeresources(adapter);
goto err;
}
if (!adapter->queues_initialized) {
rc = slic_rspqueue_init(adapter);
if (rc)
goto err;
rc = slic_cmdq_init(adapter);
if (rc)
goto err;
rc = slic_rcvqueue_init(adapter);
if (rc)
goto err;
adapter->queues_initialized = 1;
}
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_OFF, FLUSH);
mdelay(1);
if (!adapter->isp_initialized) {
pshmem = (struct slic_shmem *)(unsigned long)
adapter->phys_shmem;
spin_lock_irqsave(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
#if BITS_PER_LONG == 64
slic_reg32_write(&slic_regs->slic_addr_upper,
SLIC_GET_ADDR_HIGH(&pshmem->isr), DONT_FLUSH);
slic_reg32_write(&slic_regs->slic_isp,
SLIC_GET_ADDR_LOW(&pshmem->isr), FLUSH);
#else
slic_reg32_write(&slic_regs->slic_addr_upper, 0, DONT_FLUSH);
slic_reg32_write(&slic_regs->slic_isp, (u32)&pshmem->isr, FLUSH);
#endif
spin_unlock_irqrestore(&adapter->bit64reglock.lock,
adapter->bit64reglock.flags);
adapter->isp_initialized = 1;
}
adapter->state = ADAPT_UP;
if (!card->loadtimerset) {
init_timer(&card->loadtimer);
card->loadtimer.expires =
jiffies + (SLIC_LOADTIMER_PERIOD * HZ);
card->loadtimer.data = (ulong) card;
card->loadtimer.function = &slic_timer_load_check;
add_timer(&card->loadtimer);
card->loadtimerset = 1;
}
if (!adapter->pingtimerset) {
init_timer(&adapter->pingtimer);
adapter->pingtimer.expires =
jiffies + (PING_TIMER_INTERVAL * HZ);
adapter->pingtimer.data = (ulong) dev;
adapter->pingtimer.function = &slic_timer_ping;
add_timer(&adapter->pingtimer);
adapter->pingtimerset = 1;
adapter->card->pingstatus = ISR_PINGMASK;
}
/*
* clear any pending events, then enable interrupts
*/
adapter->isrcopy = 0;
adapter->pshmem->isr = 0;
slic_reg32_write(&slic_regs->slic_isr, 0, FLUSH);
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_ON, FLUSH);
slic_link_config(adapter, LINK_AUTOSPEED, LINK_AUTOD);
slic_link_event_handler(adapter);
err:
return rc;
}
static int slic_entry_open(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card = adapter->card;
int status;
netif_stop_queue(adapter->netdev);
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
if (!adapter->activated) {
card->adapters_activated++;
slic_global.num_slic_ports_active++;
adapter->activated = 1;
}
status = slic_if_init(adapter);
if (status != 0) {
if (adapter->activated) {
card->adapters_activated--;
slic_global.num_slic_ports_active--;
adapter->activated = 0;
}
goto spin_unlock;
}
if (!card->master)
card->master = adapter;
spin_unlock:
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
return status;
}
static void slic_card_cleanup(struct sliccard *card)
{
if (card->loadtimerset) {
card->loadtimerset = 0;
del_timer_sync(&card->loadtimer);
}
kfree(card);
}
static void slic_entry_remove(struct pci_dev *pcidev)
{
struct net_device *dev = pci_get_drvdata(pcidev);
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card;
struct mcast_address *mcaddr, *mlist;
unregister_netdev(dev);
slic_adapter_freeresources(adapter);
slic_unmap_mmio_space(adapter);
/* free multicast addresses */
mlist = adapter->mcastaddrs;
while (mlist) {
mcaddr = mlist;
mlist = mlist->next;
kfree(mcaddr);
}
card = adapter->card;
card->adapters_allocated--;
adapter->allocated = 0;
if (!card->adapters_allocated) {
struct sliccard *curr_card = slic_global.slic_card;
if (curr_card == card) {
slic_global.slic_card = card->next;
} else {
while (curr_card->next != card)
curr_card = curr_card->next;
curr_card->next = card->next;
}
slic_global.num_slic_cards--;
slic_card_cleanup(card);
}
free_netdev(dev);
pci_release_regions(pcidev);
pci_disable_device(pcidev);
}
static int slic_entry_halt(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
struct sliccard *card = adapter->card;
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
spin_lock_irqsave(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
netif_stop_queue(adapter->netdev);
adapter->state = ADAPT_DOWN;
adapter->linkstate = LINK_DOWN;
adapter->upr_list = NULL;
adapter->upr_busy = 0;
adapter->devflags_prev = 0;
slic_reg32_write(&slic_regs->slic_icr, ICR_INT_OFF, FLUSH);
adapter->all_reg_writes++;
adapter->icr_reg_writes++;
slic_config_clear(adapter);
if (adapter->activated) {
card->adapters_activated--;
slic_global.num_slic_ports_active--;
adapter->activated = 0;
}
#ifdef AUTOMATIC_RESET
slic_reg32_write(&slic_regs->slic_reset_iface, 0, FLUSH);
#endif
/*
* Reset the adapter's cmd queues
*/
slic_cmdq_reset(adapter);
#ifdef AUTOMATIC_RESET
if (!card->adapters_activated)
slic_card_init(card, adapter);
#endif
spin_unlock_irqrestore(&slic_global.driver_lock.lock,
slic_global.driver_lock.flags);
return 0;
}
static struct net_device_stats *slic_get_stats(struct net_device *dev)
{
struct adapter *adapter = netdev_priv(dev);
dev->stats.collisions = adapter->slic_stats.iface.xmit_collisions;
dev->stats.rx_errors = adapter->slic_stats.iface.rcv_errors;
dev->stats.tx_errors = adapter->slic_stats.iface.xmt_errors;
dev->stats.rx_missed_errors = adapter->slic_stats.iface.rcv_discards;
dev->stats.tx_heartbeat_errors = 0;
dev->stats.tx_aborted_errors = 0;
dev->stats.tx_window_errors = 0;
dev->stats.tx_fifo_errors = 0;
dev->stats.rx_frame_errors = 0;
dev->stats.rx_length_errors = 0;
return &dev->stats;
}
static int slic_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct adapter *adapter = netdev_priv(dev);
struct ethtool_cmd edata;
struct ethtool_cmd ecmd;
u32 data[7];
u32 intagg;
switch (cmd) {
case SIOCSLICSETINTAGG:
if (copy_from_user(data, rq->ifr_data, 28))
return -EFAULT;
intagg = data[0];
dev_err(&dev->dev, "%s: set interrupt aggregation to %d\n",
__func__, intagg);
slic_intagg_set(adapter, intagg);
return 0;
#ifdef SLIC_TRACE_DUMP_ENABLED
case SIOCSLICTRACEDUMP:
{
u32 value;
DBG_IOCTL("slic_ioctl SIOCSLIC_TRACE_DUMP\n");
if (copy_from_user(data, rq->ifr_data, 28)) {
PRINT_ERROR
("slic: copy_from_user FAILED getting initial simba param\n");
return -EFAULT;
}
value = data[0];
if (tracemon_request == SLIC_DUMP_DONE) {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested\n");
tracemon_request = SLIC_DUMP_REQUESTED;
tracemon_request_type = value;
tracemon_timestamp = jiffies;
} else if ((tracemon_request == SLIC_DUMP_REQUESTED) ||
(tracemon_request ==
SLIC_DUMP_IN_PROGRESS)) {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested but already in progress... ignore\n");
} else {
PRINT_ERROR
("ATK Diagnostic Trace Dump Requested\n");
tracemon_request = SLIC_DUMP_REQUESTED;
tracemon_request_type = value;
tracemon_timestamp = jiffies;
}
return 0;
}
#endif
case SIOCETHTOOL:
if (copy_from_user(&ecmd, rq->ifr_data, sizeof(ecmd)))
return -EFAULT;
if (ecmd.cmd == ETHTOOL_GSET) {
memset(&edata, 0, sizeof(edata));
edata.supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_MII);
edata.port = PORT_MII;
edata.transceiver = XCVR_INTERNAL;
edata.phy_address = 0;
if (adapter->linkspeed == LINK_100MB)
edata.speed = SPEED_100;
else if (adapter->linkspeed == LINK_10MB)
edata.speed = SPEED_10;
else
edata.speed = 0;
if (adapter->linkduplex == LINK_FULLD)
edata.duplex = DUPLEX_FULL;
else
edata.duplex = DUPLEX_HALF;
edata.autoneg = AUTONEG_ENABLE;
edata.maxtxpkt = 1;
edata.maxrxpkt = 1;
if (copy_to_user(rq->ifr_data, &edata, sizeof(edata)))
return -EFAULT;
} else if (ecmd.cmd == ETHTOOL_SSET) {
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (adapter->linkspeed == LINK_100MB)
edata.speed = SPEED_100;
else if (adapter->linkspeed == LINK_10MB)
edata.speed = SPEED_10;
else
edata.speed = 0;
if (adapter->linkduplex == LINK_FULLD)
edata.duplex = DUPLEX_FULL;
else
edata.duplex = DUPLEX_HALF;
edata.autoneg = AUTONEG_ENABLE;
edata.maxtxpkt = 1;
edata.maxrxpkt = 1;
if ((ecmd.speed != edata.speed) ||
(ecmd.duplex != edata.duplex)) {
u32 speed;
u32 duplex;
if (ecmd.speed == SPEED_10)
speed = 0;
else
speed = PCR_SPEED_100;
if (ecmd.duplex == DUPLEX_FULL)
duplex = PCR_DUPLEX_FULL;
else
duplex = 0;
slic_link_config(adapter, speed, duplex);
slic_link_event_handler(adapter);
}
}
return 0;
default:
return -EOPNOTSUPP;
}
}
static void slic_config_pci(struct pci_dev *pcidev)
{
u16 pci_command;
u16 new_command;
pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
new_command = pci_command | PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
| PCI_COMMAND_INVALIDATE
| PCI_COMMAND_PARITY | PCI_COMMAND_SERR | PCI_COMMAND_FAST_BACK;
if (pci_command != new_command)
pci_write_config_word(pcidev, PCI_COMMAND, new_command);
}
static int slic_card_init(struct sliccard *card, struct adapter *adapter)
{
__iomem struct slic_regs *slic_regs = adapter->slic_regs;
struct slic_eeprom *peeprom;
struct oslic_eeprom *pOeeprom;
dma_addr_t phys_config;
u32 phys_configh;
u32 phys_configl;
u32 i = 0;
struct slic_shmem *pshmem;
int status;
uint macaddrs = card->card_size;
ushort eecodesize;
ushort dramsize;
ushort ee_chksum;
ushort calc_chksum;
struct slic_config_mac *pmac;
unsigned char fruformat;
unsigned char oemfruformat;
struct atk_fru *patkfru;
union oemfru *poemfru;
/* Reset everything except PCI configuration space */
slic_soft_reset(adapter);
/* Download the microcode */
status = slic_card_download(adapter);
if (status)
return status;
if (!card->config_set) {
peeprom = pci_alloc_consistent(adapter->pcidev,
sizeof(struct slic_eeprom),
&phys_config);
phys_configl = SLIC_GET_ADDR_LOW(phys_config);
phys_configh = SLIC_GET_ADDR_HIGH(phys_config);
if (!peeprom) {
dev_err(&adapter->pcidev->dev,
"Failed to allocate DMA memory for EEPROM.\n");
return -ENOMEM;
}
memset(peeprom, 0, sizeof(struct slic_eeprom));