blob: b6bd609c3655f9e0f78e778a6acc018ed1cfc4c0 [file] [log] [blame]
/*
* AD5933 AD5934 Impedance Converter, Network Analyzer
*
* Copyright 2011 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/sysfs.h>
#include <linux/i2c.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <asm/div64.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/kfifo_buf.h>
#include "ad5933.h"
/* AD5933/AD5934 Registers */
#define AD5933_REG_CONTROL_HB 0x80 /* R/W, 2 bytes */
#define AD5933_REG_CONTROL_LB 0x81 /* R/W, 2 bytes */
#define AD5933_REG_FREQ_START 0x82 /* R/W, 3 bytes */
#define AD5933_REG_FREQ_INC 0x85 /* R/W, 3 bytes */
#define AD5933_REG_INC_NUM 0x88 /* R/W, 2 bytes, 9 bit */
#define AD5933_REG_SETTLING_CYCLES 0x8A /* R/W, 2 bytes */
#define AD5933_REG_STATUS 0x8F /* R, 1 byte */
#define AD5933_REG_TEMP_DATA 0x92 /* R, 2 bytes*/
#define AD5933_REG_REAL_DATA 0x94 /* R, 2 bytes*/
#define AD5933_REG_IMAG_DATA 0x96 /* R, 2 bytes*/
/* AD5933_REG_CONTROL_HB Bits */
#define AD5933_CTRL_INIT_START_FREQ (0x1 << 4)
#define AD5933_CTRL_START_SWEEP (0x2 << 4)
#define AD5933_CTRL_INC_FREQ (0x3 << 4)
#define AD5933_CTRL_REPEAT_FREQ (0x4 << 4)
#define AD5933_CTRL_MEASURE_TEMP (0x9 << 4)
#define AD5933_CTRL_POWER_DOWN (0xA << 4)
#define AD5933_CTRL_STANDBY (0xB << 4)
#define AD5933_CTRL_RANGE_2000mVpp (0x0 << 1)
#define AD5933_CTRL_RANGE_200mVpp (0x1 << 1)
#define AD5933_CTRL_RANGE_400mVpp (0x2 << 1)
#define AD5933_CTRL_RANGE_1000mVpp (0x3 << 1)
#define AD5933_CTRL_RANGE(x) ((x) << 1)
#define AD5933_CTRL_PGA_GAIN_1 (0x1 << 0)
#define AD5933_CTRL_PGA_GAIN_5 (0x0 << 0)
/* AD5933_REG_CONTROL_LB Bits */
#define AD5933_CTRL_RESET (0x1 << 4)
#define AD5933_CTRL_INT_SYSCLK (0x0 << 3)
#define AD5933_CTRL_EXT_SYSCLK (0x1 << 3)
/* AD5933_REG_STATUS Bits */
#define AD5933_STAT_TEMP_VALID (0x1 << 0)
#define AD5933_STAT_DATA_VALID (0x1 << 1)
#define AD5933_STAT_SWEEP_DONE (0x1 << 2)
/* I2C Block Commands */
#define AD5933_I2C_BLOCK_WRITE 0xA0
#define AD5933_I2C_BLOCK_READ 0xA1
#define AD5933_I2C_ADDR_POINTER 0xB0
/* Device Specs */
#define AD5933_INT_OSC_FREQ_Hz 16776000
#define AD5933_MAX_OUTPUT_FREQ_Hz 100000
#define AD5933_MAX_RETRIES 100
#define AD5933_OUT_RANGE 1
#define AD5933_OUT_RANGE_AVAIL 2
#define AD5933_OUT_SETTLING_CYCLES 3
#define AD5933_IN_PGA_GAIN 4
#define AD5933_IN_PGA_GAIN_AVAIL 5
#define AD5933_FREQ_POINTS 6
#define AD5933_POLL_TIME_ms 10
#define AD5933_INIT_EXCITATION_TIME_ms 100
struct ad5933_state {
struct i2c_client *client;
struct regulator *reg;
struct ad5933_platform_data *pdata;
struct delayed_work work;
unsigned long mclk_hz;
unsigned char ctrl_hb;
unsigned char ctrl_lb;
unsigned range_avail[4];
unsigned short vref_mv;
unsigned short settling_cycles;
unsigned short freq_points;
unsigned freq_start;
unsigned freq_inc;
unsigned state;
unsigned poll_time_jiffies;
};
static struct ad5933_platform_data ad5933_default_pdata = {
.vref_mv = 3300,
};
static const struct iio_chan_spec ad5933_channels[] = {
{
.type = IIO_TEMP,
.indexed = 1,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.address = AD5933_REG_TEMP_DATA,
.scan_index = -1,
.scan_type = {
.sign = 's',
.realbits = 14,
.storagebits = 16,
},
}, { /* Ring Channels */
.type = IIO_VOLTAGE,
.indexed = 1,
.channel = 0,
.extend_name = "real",
.address = AD5933_REG_REAL_DATA,
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
},
}, {
.type = IIO_VOLTAGE,
.indexed = 1,
.channel = 0,
.extend_name = "imag",
.address = AD5933_REG_IMAG_DATA,
.scan_index = 1,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
},
},
};
static int ad5933_i2c_write(struct i2c_client *client,
u8 reg, u8 len, u8 *data)
{
int ret;
while (len--) {
ret = i2c_smbus_write_byte_data(client, reg++, *data++);
if (ret < 0) {
dev_err(&client->dev, "I2C write error\n");
return ret;
}
}
return 0;
}
static int ad5933_i2c_read(struct i2c_client *client,
u8 reg, u8 len, u8 *data)
{
int ret;
while (len--) {
ret = i2c_smbus_read_byte_data(client, reg++);
if (ret < 0) {
dev_err(&client->dev, "I2C read error\n");
return ret;
}
*data++ = ret;
}
return 0;
}
static int ad5933_cmd(struct ad5933_state *st, unsigned char cmd)
{
unsigned char dat = st->ctrl_hb | cmd;
return ad5933_i2c_write(st->client,
AD5933_REG_CONTROL_HB, 1, &dat);
}
static int ad5933_reset(struct ad5933_state *st)
{
unsigned char dat = st->ctrl_lb | AD5933_CTRL_RESET;
return ad5933_i2c_write(st->client,
AD5933_REG_CONTROL_LB, 1, &dat);
}
static int ad5933_wait_busy(struct ad5933_state *st, unsigned char event)
{
unsigned char val, timeout = AD5933_MAX_RETRIES;
int ret;
while (timeout--) {
ret = ad5933_i2c_read(st->client, AD5933_REG_STATUS, 1, &val);
if (ret < 0)
return ret;
if (val & event)
return val;
cpu_relax();
mdelay(1);
}
return -EAGAIN;
}
static int ad5933_set_freq(struct ad5933_state *st,
unsigned reg, unsigned long freq)
{
unsigned long long freqreg;
union {
__be32 d32;
u8 d8[4];
} dat;
freqreg = (u64) freq * (u64) (1 << 27);
do_div(freqreg, st->mclk_hz / 4);
switch (reg) {
case AD5933_REG_FREQ_START:
st->freq_start = freq;
break;
case AD5933_REG_FREQ_INC:
st->freq_inc = freq;
break;
default:
return -EINVAL;
}
dat.d32 = cpu_to_be32(freqreg);
return ad5933_i2c_write(st->client, reg, 3, &dat.d8[1]);
}
static int ad5933_setup(struct ad5933_state *st)
{
__be16 dat;
int ret;
ret = ad5933_reset(st);
if (ret < 0)
return ret;
ret = ad5933_set_freq(st, AD5933_REG_FREQ_START, 10000);
if (ret < 0)
return ret;
ret = ad5933_set_freq(st, AD5933_REG_FREQ_INC, 200);
if (ret < 0)
return ret;
st->settling_cycles = 10;
dat = cpu_to_be16(st->settling_cycles);
ret = ad5933_i2c_write(st->client,
AD5933_REG_SETTLING_CYCLES, 2, (u8 *)&dat);
if (ret < 0)
return ret;
st->freq_points = 100;
dat = cpu_to_be16(st->freq_points);
return ad5933_i2c_write(st->client, AD5933_REG_INC_NUM, 2, (u8 *)&dat);
}
static void ad5933_calc_out_ranges(struct ad5933_state *st)
{
int i;
unsigned normalized_3v3[4] = {1980, 198, 383, 970};
for (i = 0; i < 4; i++)
st->range_avail[i] = normalized_3v3[i] * st->vref_mv / 3300;
}
/*
* handles: AD5933_REG_FREQ_START and AD5933_REG_FREQ_INC
*/
static ssize_t ad5933_show_frequency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
unsigned long long freqreg;
union {
__be32 d32;
u8 d8[4];
} dat;
mutex_lock(&indio_dev->mlock);
ret = ad5933_i2c_read(st->client, this_attr->address, 3, &dat.d8[1]);
mutex_unlock(&indio_dev->mlock);
if (ret < 0)
return ret;
freqreg = be32_to_cpu(dat.d32) & 0xFFFFFF;
freqreg = (u64) freqreg * (u64) (st->mclk_hz / 4);
do_div(freqreg, 1 << 27);
return sprintf(buf, "%d\n", (int) freqreg);
}
static ssize_t ad5933_store_frequency(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
unsigned long val;
int ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val > AD5933_MAX_OUTPUT_FREQ_Hz)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
ret = ad5933_set_freq(st, this_attr->address, val);
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(out_voltage0_freq_start, S_IRUGO | S_IWUSR,
ad5933_show_frequency,
ad5933_store_frequency,
AD5933_REG_FREQ_START);
static IIO_DEVICE_ATTR(out_voltage0_freq_increment, S_IRUGO | S_IWUSR,
ad5933_show_frequency,
ad5933_store_frequency,
AD5933_REG_FREQ_INC);
static ssize_t ad5933_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret = 0, len = 0;
mutex_lock(&indio_dev->mlock);
switch ((u32) this_attr->address) {
case AD5933_OUT_RANGE:
len = sprintf(buf, "%d\n",
st->range_avail[(st->ctrl_hb >> 1) & 0x3]);
break;
case AD5933_OUT_RANGE_AVAIL:
len = sprintf(buf, "%d %d %d %d\n", st->range_avail[0],
st->range_avail[3], st->range_avail[2],
st->range_avail[1]);
break;
case AD5933_OUT_SETTLING_CYCLES:
len = sprintf(buf, "%d\n", st->settling_cycles);
break;
case AD5933_IN_PGA_GAIN:
len = sprintf(buf, "%s\n",
(st->ctrl_hb & AD5933_CTRL_PGA_GAIN_1) ?
"1" : "0.2");
break;
case AD5933_IN_PGA_GAIN_AVAIL:
len = sprintf(buf, "1 0.2\n");
break;
case AD5933_FREQ_POINTS:
len = sprintf(buf, "%d\n", st->freq_points);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static ssize_t ad5933_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5933_state *st = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u16 val;
int i, ret = 0;
__be16 dat;
if (this_attr->address != AD5933_IN_PGA_GAIN) {
ret = kstrtou16(buf, 10, &val);
if (ret)
return ret;
}
mutex_lock(&indio_dev->mlock);
switch ((u32) this_attr->address) {
case AD5933_OUT_RANGE:
for (i = 0; i < 4; i++)
if (val == st->range_avail[i]) {
st->ctrl_hb &= ~AD5933_CTRL_RANGE(0x3);
st->ctrl_hb |= AD5933_CTRL_RANGE(i);
ret = ad5933_cmd(st, 0);
break;
}
ret = -EINVAL;
break;
case AD5933_IN_PGA_GAIN:
if (sysfs_streq(buf, "1")) {
st->ctrl_hb |= AD5933_CTRL_PGA_GAIN_1;
} else if (sysfs_streq(buf, "0.2")) {
st->ctrl_hb &= ~AD5933_CTRL_PGA_GAIN_1;
} else {
ret = -EINVAL;
break;
}
ret = ad5933_cmd(st, 0);
break;
case AD5933_OUT_SETTLING_CYCLES:
val = clamp(val, (u16)0, (u16)0x7FF);
st->settling_cycles = val;
/* 2x, 4x handling, see datasheet */
if (val > 511)
val = (val >> 1) | (1 << 9);
else if (val > 1022)
val = (val >> 2) | (3 << 9);
dat = cpu_to_be16(val);
ret = ad5933_i2c_write(st->client,
AD5933_REG_SETTLING_CYCLES, 2, (u8 *)&dat);
break;
case AD5933_FREQ_POINTS:
val = clamp(val, (u16)0, (u16)511);
st->freq_points = val;
dat = cpu_to_be16(val);
ret = ad5933_i2c_write(st->client, AD5933_REG_INC_NUM, 2,
(u8 *)&dat);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(out_voltage0_scale, S_IRUGO | S_IWUSR,
ad5933_show,
ad5933_store,
AD5933_OUT_RANGE);
static IIO_DEVICE_ATTR(out_voltage0_scale_available, S_IRUGO,
ad5933_show,
NULL,
AD5933_OUT_RANGE_AVAIL);
static IIO_DEVICE_ATTR(in_voltage0_scale, S_IRUGO | S_IWUSR,
ad5933_show,
ad5933_store,
AD5933_IN_PGA_GAIN);
static IIO_DEVICE_ATTR(in_voltage0_scale_available, S_IRUGO,
ad5933_show,
NULL,
AD5933_IN_PGA_GAIN_AVAIL);
static IIO_DEVICE_ATTR(out_voltage0_freq_points, S_IRUGO | S_IWUSR,
ad5933_show,
ad5933_store,
AD5933_FREQ_POINTS);
static IIO_DEVICE_ATTR(out_voltage0_settling_cycles, S_IRUGO | S_IWUSR,
ad5933_show,
ad5933_store,
AD5933_OUT_SETTLING_CYCLES);
/* note:
* ideally we would handle the scale attributes via the iio_info
* (read|write)_raw methods, however this part is a untypical since we
* don't create dedicated sysfs channel attributes for out0 and in0.
*/
static struct attribute *ad5933_attributes[] = {
&iio_dev_attr_out_voltage0_scale.dev_attr.attr,
&iio_dev_attr_out_voltage0_scale_available.dev_attr.attr,
&iio_dev_attr_out_voltage0_freq_start.dev_attr.attr,
&iio_dev_attr_out_voltage0_freq_increment.dev_attr.attr,
&iio_dev_attr_out_voltage0_freq_points.dev_attr.attr,
&iio_dev_attr_out_voltage0_settling_cycles.dev_attr.attr,
&iio_dev_attr_in_voltage0_scale.dev_attr.attr,
&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group ad5933_attribute_group = {
.attrs = ad5933_attributes,
};
static int ad5933_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad5933_state *st = iio_priv(indio_dev);
__be16 dat;
int ret = -EINVAL;
mutex_lock(&indio_dev->mlock);
switch (m) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
if (iio_buffer_enabled(indio_dev)) {
ret = -EBUSY;
goto out;
}
ret = ad5933_cmd(st, AD5933_CTRL_MEASURE_TEMP);
if (ret < 0)
goto out;
ret = ad5933_wait_busy(st, AD5933_STAT_TEMP_VALID);
if (ret < 0)
goto out;
ret = ad5933_i2c_read(st->client,
AD5933_REG_TEMP_DATA, 2,
(u8 *)&dat);
if (ret < 0)
goto out;
mutex_unlock(&indio_dev->mlock);
ret = be16_to_cpu(dat);
/* Temp in Milli degrees Celsius */
if (ret < 8192)
*val = ret * 1000 / 32;
else
*val = (ret - 16384) * 1000 / 32;
return IIO_VAL_INT;
}
out:
mutex_unlock(&indio_dev->mlock);
return ret;
}
static const struct iio_info ad5933_info = {
.read_raw = &ad5933_read_raw,
.attrs = &ad5933_attribute_group,
.driver_module = THIS_MODULE,
};
static int ad5933_ring_preenable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
int ret;
if (bitmap_empty(indio_dev->active_scan_mask, indio_dev->masklength))
return -EINVAL;
ret = ad5933_reset(st);
if (ret < 0)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_STANDBY);
if (ret < 0)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_INIT_START_FREQ);
if (ret < 0)
return ret;
st->state = AD5933_CTRL_INIT_START_FREQ;
return 0;
}
static int ad5933_ring_postenable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
/* AD5933_CTRL_INIT_START_FREQ:
* High Q complex circuits require a long time to reach steady state.
* To facilitate the measurement of such impedances, this mode allows
* the user full control of the settling time requirement before
* entering start frequency sweep mode where the impedance measurement
* takes place. In this mode the impedance is excited with the
* programmed start frequency (ad5933_ring_preenable),
* but no measurement takes place.
*/
schedule_delayed_work(&st->work,
msecs_to_jiffies(AD5933_INIT_EXCITATION_TIME_ms));
return 0;
}
static int ad5933_ring_postdisable(struct iio_dev *indio_dev)
{
struct ad5933_state *st = iio_priv(indio_dev);
cancel_delayed_work_sync(&st->work);
return ad5933_cmd(st, AD5933_CTRL_POWER_DOWN);
}
static const struct iio_buffer_setup_ops ad5933_ring_setup_ops = {
.preenable = &ad5933_ring_preenable,
.postenable = &ad5933_ring_postenable,
.postdisable = &ad5933_ring_postdisable,
};
static int ad5933_register_ring_funcs_and_init(struct iio_dev *indio_dev)
{
struct iio_buffer *buffer;
buffer = iio_kfifo_allocate(indio_dev);
if (!buffer)
return -ENOMEM;
iio_device_attach_buffer(indio_dev, buffer);
/* Ring buffer functions - here trigger setup related */
indio_dev->setup_ops = &ad5933_ring_setup_ops;
indio_dev->modes |= INDIO_BUFFER_HARDWARE;
return 0;
}
static void ad5933_work(struct work_struct *work)
{
struct ad5933_state *st = container_of(work,
struct ad5933_state, work.work);
struct iio_dev *indio_dev = i2c_get_clientdata(st->client);
signed short buf[2];
unsigned char status;
mutex_lock(&indio_dev->mlock);
if (st->state == AD5933_CTRL_INIT_START_FREQ) {
/* start sweep */
ad5933_cmd(st, AD5933_CTRL_START_SWEEP);
st->state = AD5933_CTRL_START_SWEEP;
schedule_delayed_work(&st->work, st->poll_time_jiffies);
mutex_unlock(&indio_dev->mlock);
return;
}
ad5933_i2c_read(st->client, AD5933_REG_STATUS, 1, &status);
if (status & AD5933_STAT_DATA_VALID) {
int scan_count = bitmap_weight(indio_dev->active_scan_mask,
indio_dev->masklength);
ad5933_i2c_read(st->client,
test_bit(1, indio_dev->active_scan_mask) ?
AD5933_REG_REAL_DATA : AD5933_REG_IMAG_DATA,
scan_count * 2, (u8 *)buf);
if (scan_count == 2) {
buf[0] = be16_to_cpu(buf[0]);
buf[1] = be16_to_cpu(buf[1]);
} else {
buf[0] = be16_to_cpu(buf[0]);
}
iio_push_to_buffers(indio_dev, buf);
} else {
/* no data available - try again later */
schedule_delayed_work(&st->work, st->poll_time_jiffies);
mutex_unlock(&indio_dev->mlock);
return;
}
if (status & AD5933_STAT_SWEEP_DONE) {
/* last sample received - power down do nothing until
* the ring enable is toggled */
ad5933_cmd(st, AD5933_CTRL_POWER_DOWN);
} else {
/* we just received a valid datum, move on to the next */
ad5933_cmd(st, AD5933_CTRL_INC_FREQ);
schedule_delayed_work(&st->work, st->poll_time_jiffies);
}
mutex_unlock(&indio_dev->mlock);
}
static int ad5933_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret, voltage_uv = 0;
struct ad5933_platform_data *pdata = client->dev.platform_data;
struct ad5933_state *st;
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
st->client = client;
if (!pdata)
st->pdata = &ad5933_default_pdata;
else
st->pdata = pdata;
st->reg = devm_regulator_get(&client->dev, "vcc");
if (!IS_ERR(st->reg)) {
ret = regulator_enable(st->reg);
if (ret)
return ret;
voltage_uv = regulator_get_voltage(st->reg);
}
if (voltage_uv)
st->vref_mv = voltage_uv / 1000;
else
st->vref_mv = st->pdata->vref_mv;
if (st->pdata->ext_clk_Hz) {
st->mclk_hz = st->pdata->ext_clk_Hz;
st->ctrl_lb = AD5933_CTRL_EXT_SYSCLK;
} else {
st->mclk_hz = AD5933_INT_OSC_FREQ_Hz;
st->ctrl_lb = AD5933_CTRL_INT_SYSCLK;
}
ad5933_calc_out_ranges(st);
INIT_DELAYED_WORK(&st->work, ad5933_work);
st->poll_time_jiffies = msecs_to_jiffies(AD5933_POLL_TIME_ms);
indio_dev->dev.parent = &client->dev;
indio_dev->info = &ad5933_info;
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = ad5933_channels;
indio_dev->num_channels = ARRAY_SIZE(ad5933_channels);
ret = ad5933_register_ring_funcs_and_init(indio_dev);
if (ret)
goto error_disable_reg;
ret = iio_buffer_register(indio_dev, ad5933_channels,
ARRAY_SIZE(ad5933_channels));
if (ret)
goto error_unreg_ring;
/* enable both REAL and IMAG channels by default */
iio_scan_mask_set(indio_dev, indio_dev->buffer, 0);
iio_scan_mask_set(indio_dev, indio_dev->buffer, 1);
ret = ad5933_setup(st);
if (ret)
goto error_uninitialize_ring;
ret = iio_device_register(indio_dev);
if (ret)
goto error_uninitialize_ring;
return 0;
error_uninitialize_ring:
iio_buffer_unregister(indio_dev);
error_unreg_ring:
iio_kfifo_free(indio_dev->buffer);
error_disable_reg:
if (!IS_ERR(st->reg))
regulator_disable(st->reg);
return ret;
}
static int ad5933_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct ad5933_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_buffer_unregister(indio_dev);
iio_kfifo_free(indio_dev->buffer);
if (!IS_ERR(st->reg))
regulator_disable(st->reg);
return 0;
}
static const struct i2c_device_id ad5933_id[] = {
{ "ad5933", 0 },
{ "ad5934", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, ad5933_id);
static struct i2c_driver ad5933_driver = {
.driver = {
.name = "ad5933",
},
.probe = ad5933_probe,
.remove = ad5933_remove,
.id_table = ad5933_id,
};
module_i2c_driver(ad5933_driver);
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("Analog Devices AD5933 Impedance Conv. Network Analyzer");
MODULE_LICENSE("GPL v2");