| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * cpuid support routines |
| * |
| * derived from arch/x86/kvm/x86.c |
| * |
| * Copyright 2011 Red Hat, Inc. and/or its affiliates. |
| * Copyright IBM Corporation, 2008 |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/stat.h> |
| |
| #include <asm/processor.h> |
| #include <asm/user.h> |
| #include <asm/fpu/xstate.h> |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "mmu.h" |
| #include "trace.h" |
| #include "pmu.h" |
| |
| static u32 xstate_required_size(u64 xstate_bv, bool compacted) |
| { |
| int feature_bit = 0; |
| u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
| |
| xstate_bv &= XFEATURE_MASK_EXTEND; |
| while (xstate_bv) { |
| if (xstate_bv & 0x1) { |
| u32 eax, ebx, ecx, edx, offset; |
| cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); |
| offset = compacted ? ret : ebx; |
| ret = max(ret, offset + eax); |
| } |
| |
| xstate_bv >>= 1; |
| feature_bit++; |
| } |
| |
| return ret; |
| } |
| |
| bool kvm_mpx_supported(void) |
| { |
| return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) |
| && kvm_x86_ops->mpx_supported()); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mpx_supported); |
| |
| u64 kvm_supported_xcr0(void) |
| { |
| u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; |
| |
| if (!kvm_mpx_supported()) |
| xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); |
| |
| return xcr0; |
| } |
| |
| #define F(x) bit(X86_FEATURE_##x) |
| |
| int kvm_update_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| |
| best = kvm_find_cpuid_entry(vcpu, 1, 0); |
| if (!best) |
| return 0; |
| |
| /* Update OSXSAVE bit */ |
| if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) { |
| best->ecx &= ~F(OSXSAVE); |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) |
| best->ecx |= F(OSXSAVE); |
| } |
| |
| best->edx &= ~F(APIC); |
| if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE) |
| best->edx |= F(APIC); |
| |
| if (apic) { |
| if (best->ecx & F(TSC_DEADLINE_TIMER)) |
| apic->lapic_timer.timer_mode_mask = 3 << 17; |
| else |
| apic->lapic_timer.timer_mode_mask = 1 << 17; |
| } |
| |
| best = kvm_find_cpuid_entry(vcpu, 7, 0); |
| if (best) { |
| /* Update OSPKE bit */ |
| if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) { |
| best->ecx &= ~F(OSPKE); |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) |
| best->ecx |= F(OSPKE); |
| } |
| } |
| |
| best = kvm_find_cpuid_entry(vcpu, 0xD, 0); |
| if (!best) { |
| vcpu->arch.guest_supported_xcr0 = 0; |
| vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
| } else { |
| vcpu->arch.guest_supported_xcr0 = |
| (best->eax | ((u64)best->edx << 32)) & |
| kvm_supported_xcr0(); |
| vcpu->arch.guest_xstate_size = best->ebx = |
| xstate_required_size(vcpu->arch.xcr0, false); |
| } |
| |
| best = kvm_find_cpuid_entry(vcpu, 0xD, 1); |
| if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) |
| best->ebx = xstate_required_size(vcpu->arch.xcr0, true); |
| |
| /* |
| * The existing code assumes virtual address is 48-bit or 57-bit in the |
| * canonical address checks; exit if it is ever changed. |
| */ |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); |
| if (best) { |
| int vaddr_bits = (best->eax & 0xff00) >> 8; |
| |
| if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) |
| return -EINVAL; |
| } |
| |
| best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0); |
| if (kvm_hlt_in_guest(vcpu->kvm) && best && |
| (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) |
| best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); |
| |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { |
| best = kvm_find_cpuid_entry(vcpu, 0x1, 0); |
| if (best) { |
| if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT) |
| best->ecx |= F(MWAIT); |
| else |
| best->ecx &= ~F(MWAIT); |
| } |
| } |
| |
| /* Update physical-address width */ |
| vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
| kvm_mmu_reset_context(vcpu); |
| |
| kvm_pmu_refresh(vcpu); |
| return 0; |
| } |
| |
| static int is_efer_nx(void) |
| { |
| unsigned long long efer = 0; |
| |
| rdmsrl_safe(MSR_EFER, &efer); |
| return efer & EFER_NX; |
| } |
| |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *e, *entry; |
| |
| entry = NULL; |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (e->function == 0x80000001) { |
| entry = e; |
| break; |
| } |
| } |
| if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { |
| entry->edx &= ~F(NX); |
| printk(KERN_INFO "kvm: guest NX capability removed\n"); |
| } |
| } |
| |
| int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); |
| if (!best || best->eax < 0x80000008) |
| goto not_found; |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); |
| if (best) |
| return best->eax & 0xff; |
| not_found: |
| return 36; |
| } |
| EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); |
| |
| /* when an old userspace process fills a new kernel module */ |
| int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r, i; |
| struct kvm_cpuid_entry *cpuid_entries = NULL; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -ENOMEM; |
| if (cpuid->nent) { |
| cpuid_entries = |
| vmalloc(array_size(sizeof(struct kvm_cpuid_entry), |
| cpuid->nent)); |
| if (!cpuid_entries) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry))) |
| goto out; |
| } |
| for (i = 0; i < cpuid->nent; i++) { |
| vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; |
| vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; |
| vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; |
| vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; |
| vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; |
| vcpu->arch.cpuid_entries[i].index = 0; |
| vcpu->arch.cpuid_entries[i].flags = 0; |
| vcpu->arch.cpuid_entries[i].padding[0] = 0; |
| vcpu->arch.cpuid_entries[i].padding[1] = 0; |
| vcpu->arch.cpuid_entries[i].padding[2] = 0; |
| } |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| cpuid_fix_nx_cap(vcpu); |
| kvm_apic_set_version(vcpu); |
| kvm_x86_ops->cpuid_update(vcpu); |
| r = kvm_update_cpuid(vcpu); |
| |
| out: |
| vfree(cpuid_entries); |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&vcpu->arch.cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| kvm_apic_set_version(vcpu); |
| kvm_x86_ops->cpuid_update(vcpu); |
| r = kvm_update_cpuid(vcpu); |
| out: |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent < vcpu->arch.cpuid_nent) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(entries, &vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| return 0; |
| |
| out: |
| cpuid->nent = vcpu->arch.cpuid_nent; |
| return r; |
| } |
| |
| static void cpuid_mask(u32 *word, int wordnum) |
| { |
| *word &= boot_cpu_data.x86_capability[wordnum]; |
| } |
| |
| static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function, |
| u32 index) |
| { |
| entry->function = function; |
| entry->index = index; |
| entry->flags = 0; |
| |
| cpuid_count(entry->function, entry->index, |
| &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); |
| |
| switch (function) { |
| case 2: |
| entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; |
| break; |
| case 4: |
| case 7: |
| case 0xb: |
| case 0xd: |
| case 0xf: |
| case 0x10: |
| case 0x12: |
| case 0x14: |
| case 0x17: |
| case 0x18: |
| case 0x1f: |
| case 0x8000001d: |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| break; |
| } |
| } |
| |
| static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, |
| u32 func, int *nent, int maxnent) |
| { |
| entry->function = func; |
| entry->index = 0; |
| entry->flags = 0; |
| |
| switch (func) { |
| case 0: |
| entry->eax = 7; |
| ++*nent; |
| break; |
| case 1: |
| entry->ecx = F(MOVBE); |
| ++*nent; |
| break; |
| case 7: |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| entry->eax = 0; |
| entry->ecx = F(RDPID); |
| ++*nent; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index) |
| { |
| unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; |
| unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; |
| unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0; |
| unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; |
| unsigned f_la57; |
| unsigned f_pku = kvm_x86_ops->pku_supported() ? F(PKU) : 0; |
| |
| /* cpuid 7.0.ebx */ |
| const u32 kvm_cpuid_7_0_ebx_x86_features = |
| F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | |
| F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | |
| F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | |
| F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | |
| F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt; |
| |
| /* cpuid 7.0.ecx*/ |
| const u32 kvm_cpuid_7_0_ecx_x86_features = |
| F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) | |
| F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | |
| F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | |
| F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/; |
| |
| /* cpuid 7.0.edx*/ |
| const u32 kvm_cpuid_7_0_edx_x86_features = |
| F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | |
| F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | |
| F(MD_CLEAR); |
| |
| /* cpuid 7.1.eax */ |
| const u32 kvm_cpuid_7_1_eax_x86_features = |
| F(AVX512_BF16); |
| |
| switch (index) { |
| case 0: |
| entry->eax = min(entry->eax, 1u); |
| entry->ebx &= kvm_cpuid_7_0_ebx_x86_features; |
| cpuid_mask(&entry->ebx, CPUID_7_0_EBX); |
| /* TSC_ADJUST is emulated */ |
| entry->ebx |= F(TSC_ADJUST); |
| |
| entry->ecx &= kvm_cpuid_7_0_ecx_x86_features; |
| f_la57 = entry->ecx & F(LA57); |
| cpuid_mask(&entry->ecx, CPUID_7_ECX); |
| /* Set LA57 based on hardware capability. */ |
| entry->ecx |= f_la57; |
| entry->ecx |= f_umip; |
| entry->ecx |= f_pku; |
| /* PKU is not yet implemented for shadow paging. */ |
| if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) |
| entry->ecx &= ~F(PKU); |
| |
| entry->edx &= kvm_cpuid_7_0_edx_x86_features; |
| cpuid_mask(&entry->edx, CPUID_7_EDX); |
| if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) |
| entry->edx |= F(SPEC_CTRL); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| entry->edx |= F(INTEL_STIBP); |
| if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || |
| boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| entry->edx |= F(SPEC_CTRL_SSBD); |
| /* |
| * We emulate ARCH_CAPABILITIES in software even |
| * if the host doesn't support it. |
| */ |
| entry->edx |= F(ARCH_CAPABILITIES); |
| break; |
| case 1: |
| entry->eax &= kvm_cpuid_7_1_eax_x86_features; |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| entry->eax = 0; |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| } |
| } |
| |
| static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function, |
| int *nent, int maxnent) |
| { |
| int r; |
| unsigned f_nx = is_efer_nx() ? F(NX) : 0; |
| #ifdef CONFIG_X86_64 |
| unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) |
| ? F(GBPAGES) : 0; |
| unsigned f_lm = F(LM); |
| #else |
| unsigned f_gbpages = 0; |
| unsigned f_lm = 0; |
| #endif |
| unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; |
| unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; |
| unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; |
| |
| /* cpuid 1.edx */ |
| const u32 kvm_cpuid_1_edx_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | |
| 0 /* Reserved, DS, ACPI */ | F(MMX) | |
| F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | |
| 0 /* HTT, TM, Reserved, PBE */; |
| /* cpuid 0x80000001.edx */ |
| const u32 kvm_cpuid_8000_0001_edx_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* Reserved */ | |
| f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | |
| F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | |
| 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); |
| /* cpuid 1.ecx */ |
| const u32 kvm_cpuid_1_ecx_x86_features = |
| /* NOTE: MONITOR (and MWAIT) are emulated as NOP, |
| * but *not* advertised to guests via CPUID ! */ |
| F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | |
| 0 /* DS-CPL, VMX, SMX, EST */ | |
| 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | |
| F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | |
| F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | |
| F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | |
| 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | |
| F(F16C) | F(RDRAND); |
| /* cpuid 0x80000001.ecx */ |
| const u32 kvm_cpuid_8000_0001_ecx_x86_features = |
| F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | |
| F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | |
| F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | |
| 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | |
| F(TOPOEXT) | F(PERFCTR_CORE); |
| |
| /* cpuid 0x80000008.ebx */ |
| const u32 kvm_cpuid_8000_0008_ebx_x86_features = |
| F(CLZERO) | F(XSAVEERPTR) | |
| F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | |
| F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON); |
| |
| /* cpuid 0xC0000001.edx */ |
| const u32 kvm_cpuid_C000_0001_edx_x86_features = |
| F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | |
| F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | |
| F(PMM) | F(PMM_EN); |
| |
| /* cpuid 0xD.1.eax */ |
| const u32 kvm_cpuid_D_1_eax_x86_features = |
| F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; |
| |
| /* all calls to cpuid_count() should be made on the same cpu */ |
| get_cpu(); |
| |
| r = -E2BIG; |
| |
| if (WARN_ON(*nent >= maxnent)) |
| goto out; |
| |
| do_host_cpuid(entry, function, 0); |
| ++*nent; |
| |
| switch (function) { |
| case 0: |
| /* Limited to the highest leaf implemented in KVM. */ |
| entry->eax = min(entry->eax, 0x1fU); |
| break; |
| case 1: |
| entry->edx &= kvm_cpuid_1_edx_x86_features; |
| cpuid_mask(&entry->edx, CPUID_1_EDX); |
| entry->ecx &= kvm_cpuid_1_ecx_x86_features; |
| cpuid_mask(&entry->ecx, CPUID_1_ECX); |
| /* we support x2apic emulation even if host does not support |
| * it since we emulate x2apic in software */ |
| entry->ecx |= F(X2APIC); |
| break; |
| /* function 2 entries are STATEFUL. That is, repeated cpuid commands |
| * may return different values. This forces us to get_cpu() before |
| * issuing the first command, and also to emulate this annoying behavior |
| * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ |
| case 2: { |
| int t, times = entry->eax & 0xff; |
| |
| entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| for (t = 1; t < times; ++t) { |
| if (*nent >= maxnent) |
| goto out; |
| |
| do_host_cpuid(&entry[t], function, 0); |
| ++*nent; |
| } |
| break; |
| } |
| /* functions 4 and 0x8000001d have additional index. */ |
| case 4: |
| case 0x8000001d: { |
| int i, cache_type; |
| |
| /* read more entries until cache_type is zero */ |
| for (i = 1; ; ++i) { |
| if (*nent >= maxnent) |
| goto out; |
| |
| cache_type = entry[i - 1].eax & 0x1f; |
| if (!cache_type) |
| break; |
| do_host_cpuid(&entry[i], function, i); |
| ++*nent; |
| } |
| break; |
| } |
| case 6: /* Thermal management */ |
| entry->eax = 0x4; /* allow ARAT */ |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| /* function 7 has additional index. */ |
| case 7: { |
| int i; |
| |
| for (i = 0; ; ) { |
| do_cpuid_7_mask(&entry[i], i); |
| if (i == entry->eax) |
| break; |
| if (*nent >= maxnent) |
| goto out; |
| |
| ++i; |
| do_host_cpuid(&entry[i], function, i); |
| ++*nent; |
| } |
| break; |
| } |
| case 9: |
| break; |
| case 0xa: { /* Architectural Performance Monitoring */ |
| struct x86_pmu_capability cap; |
| union cpuid10_eax eax; |
| union cpuid10_edx edx; |
| |
| perf_get_x86_pmu_capability(&cap); |
| |
| /* |
| * Only support guest architectural pmu on a host |
| * with architectural pmu. |
| */ |
| if (!cap.version) |
| memset(&cap, 0, sizeof(cap)); |
| |
| eax.split.version_id = min(cap.version, 2); |
| eax.split.num_counters = cap.num_counters_gp; |
| eax.split.bit_width = cap.bit_width_gp; |
| eax.split.mask_length = cap.events_mask_len; |
| |
| edx.split.num_counters_fixed = cap.num_counters_fixed; |
| edx.split.bit_width_fixed = cap.bit_width_fixed; |
| edx.split.reserved = 0; |
| |
| entry->eax = eax.full; |
| entry->ebx = cap.events_mask; |
| entry->ecx = 0; |
| entry->edx = edx.full; |
| break; |
| } |
| /* |
| * Per Intel's SDM, the 0x1f is a superset of 0xb, |
| * thus they can be handled by common code. |
| */ |
| case 0x1f: |
| case 0xb: { |
| int i; |
| |
| /* |
| * We filled in entry[0] for CPUID(EAX=<function>, |
| * ECX=00H) above. If its level type (ECX[15:8]) is |
| * zero, then the leaf is unimplemented, and we're |
| * done. Otherwise, continue to populate entries |
| * until the level type (ECX[15:8]) of the previously |
| * added entry is zero. |
| */ |
| for (i = 1; entry[i - 1].ecx & 0xff00; ++i) { |
| if (*nent >= maxnent) |
| goto out; |
| |
| do_host_cpuid(&entry[i], function, i); |
| ++*nent; |
| } |
| break; |
| } |
| case 0xd: { |
| int idx, i; |
| u64 supported = kvm_supported_xcr0(); |
| |
| entry->eax &= supported; |
| entry->ebx = xstate_required_size(supported, false); |
| entry->ecx = entry->ebx; |
| entry->edx &= supported >> 32; |
| if (!supported) |
| break; |
| |
| for (idx = 1, i = 1; idx < 64; ++idx) { |
| u64 mask = ((u64)1 << idx); |
| if (*nent >= maxnent) |
| goto out; |
| |
| do_host_cpuid(&entry[i], function, idx); |
| if (idx == 1) { |
| entry[i].eax &= kvm_cpuid_D_1_eax_x86_features; |
| cpuid_mask(&entry[i].eax, CPUID_D_1_EAX); |
| entry[i].ebx = 0; |
| if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) |
| entry[i].ebx = |
| xstate_required_size(supported, |
| true); |
| } else { |
| if (entry[i].eax == 0 || !(supported & mask)) |
| continue; |
| if (WARN_ON_ONCE(entry[i].ecx & 1)) |
| continue; |
| } |
| entry[i].ecx = 0; |
| entry[i].edx = 0; |
| ++*nent; |
| ++i; |
| } |
| break; |
| } |
| /* Intel PT */ |
| case 0x14: { |
| int t, times = entry->eax; |
| |
| if (!f_intel_pt) |
| break; |
| |
| for (t = 1; t <= times; ++t) { |
| if (*nent >= maxnent) |
| goto out; |
| do_host_cpuid(&entry[t], function, t); |
| ++*nent; |
| } |
| break; |
| } |
| case KVM_CPUID_SIGNATURE: { |
| static const char signature[12] = "KVMKVMKVM\0\0"; |
| const u32 *sigptr = (const u32 *)signature; |
| entry->eax = KVM_CPUID_FEATURES; |
| entry->ebx = sigptr[0]; |
| entry->ecx = sigptr[1]; |
| entry->edx = sigptr[2]; |
| break; |
| } |
| case KVM_CPUID_FEATURES: |
| entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | |
| (1 << KVM_FEATURE_NOP_IO_DELAY) | |
| (1 << KVM_FEATURE_CLOCKSOURCE2) | |
| (1 << KVM_FEATURE_ASYNC_PF) | |
| (1 << KVM_FEATURE_PV_EOI) | |
| (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | |
| (1 << KVM_FEATURE_PV_UNHALT) | |
| (1 << KVM_FEATURE_PV_TLB_FLUSH) | |
| (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | |
| (1 << KVM_FEATURE_PV_SEND_IPI) | |
| (1 << KVM_FEATURE_POLL_CONTROL) | |
| (1 << KVM_FEATURE_PV_SCHED_YIELD); |
| |
| if (sched_info_on()) |
| entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); |
| |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| case 0x80000000: |
| entry->eax = min(entry->eax, 0x8000001f); |
| break; |
| case 0x80000001: |
| entry->edx &= kvm_cpuid_8000_0001_edx_x86_features; |
| cpuid_mask(&entry->edx, CPUID_8000_0001_EDX); |
| entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features; |
| cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX); |
| break; |
| case 0x80000007: /* Advanced power management */ |
| /* invariant TSC is CPUID.80000007H:EDX[8] */ |
| entry->edx &= (1 << 8); |
| /* mask against host */ |
| entry->edx &= boot_cpu_data.x86_power; |
| entry->eax = entry->ebx = entry->ecx = 0; |
| break; |
| case 0x80000008: { |
| unsigned g_phys_as = (entry->eax >> 16) & 0xff; |
| unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); |
| unsigned phys_as = entry->eax & 0xff; |
| |
| /* |
| * Use bare metal's MAXPHADDR if the CPU doesn't report guest |
| * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the |
| * guest version "applies only to guests using nested paging". |
| */ |
| if (!g_phys_as || !tdp_enabled) |
| g_phys_as = phys_as; |
| |
| entry->eax = g_phys_as | (virt_as << 8); |
| entry->edx = 0; |
| entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features; |
| cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX); |
| /* |
| * AMD has separate bits for each SPEC_CTRL bit. |
| * arch/x86/kernel/cpu/bugs.c is kind enough to |
| * record that in cpufeatures so use them. |
| */ |
| if (boot_cpu_has(X86_FEATURE_IBPB)) |
| entry->ebx |= F(AMD_IBPB); |
| if (boot_cpu_has(X86_FEATURE_IBRS)) |
| entry->ebx |= F(AMD_IBRS); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| entry->ebx |= F(AMD_STIBP); |
| if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || |
| boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| entry->ebx |= F(AMD_SSBD); |
| if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| entry->ebx |= F(AMD_SSB_NO); |
| /* |
| * The preference is to use SPEC CTRL MSR instead of the |
| * VIRT_SPEC MSR. |
| */ |
| if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && |
| !boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| entry->ebx |= F(VIRT_SSBD); |
| break; |
| } |
| case 0x80000019: |
| entry->ecx = entry->edx = 0; |
| break; |
| case 0x8000001a: |
| case 0x8000001e: |
| break; |
| /*Add support for Centaur's CPUID instruction*/ |
| case 0xC0000000: |
| /*Just support up to 0xC0000004 now*/ |
| entry->eax = min(entry->eax, 0xC0000004); |
| break; |
| case 0xC0000001: |
| entry->edx &= kvm_cpuid_C000_0001_edx_x86_features; |
| cpuid_mask(&entry->edx, CPUID_C000_0001_EDX); |
| break; |
| case 3: /* Processor serial number */ |
| case 5: /* MONITOR/MWAIT */ |
| case 0xC0000002: |
| case 0xC0000003: |
| case 0xC0000004: |
| default: |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| kvm_x86_ops->set_supported_cpuid(function, entry); |
| |
| r = 0; |
| |
| out: |
| put_cpu(); |
| |
| return r; |
| } |
| |
| static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func, |
| int *nent, int maxnent, unsigned int type) |
| { |
| if (*nent >= maxnent) |
| return -E2BIG; |
| |
| if (type == KVM_GET_EMULATED_CPUID) |
| return __do_cpuid_func_emulated(entry, func, nent, maxnent); |
| |
| return __do_cpuid_func(entry, func, nent, maxnent); |
| } |
| |
| #undef F |
| |
| struct kvm_cpuid_param { |
| u32 func; |
| bool (*qualifier)(const struct kvm_cpuid_param *param); |
| }; |
| |
| static bool is_centaur_cpu(const struct kvm_cpuid_param *param) |
| { |
| return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; |
| } |
| |
| static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, |
| __u32 num_entries, unsigned int ioctl_type) |
| { |
| int i; |
| __u32 pad[3]; |
| |
| if (ioctl_type != KVM_GET_EMULATED_CPUID) |
| return false; |
| |
| /* |
| * We want to make sure that ->padding is being passed clean from |
| * userspace in case we want to use it for something in the future. |
| * |
| * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we |
| * have to give ourselves satisfied only with the emulated side. /me |
| * sheds a tear. |
| */ |
| for (i = 0; i < num_entries; i++) { |
| if (copy_from_user(pad, entries[i].padding, sizeof(pad))) |
| return true; |
| |
| if (pad[0] || pad[1] || pad[2]) |
| return true; |
| } |
| return false; |
| } |
| |
| int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries, |
| unsigned int type) |
| { |
| struct kvm_cpuid_entry2 *cpuid_entries; |
| int limit, nent = 0, r = -E2BIG, i; |
| u32 func; |
| static const struct kvm_cpuid_param param[] = { |
| { .func = 0 }, |
| { .func = 0x80000000 }, |
| { .func = 0xC0000000, .qualifier = is_centaur_cpu }, |
| { .func = KVM_CPUID_SIGNATURE }, |
| }; |
| |
| if (cpuid->nent < 1) |
| goto out; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| cpuid->nent = KVM_MAX_CPUID_ENTRIES; |
| |
| if (sanity_check_entries(entries, cpuid->nent, type)) |
| return -EINVAL; |
| |
| r = -ENOMEM; |
| cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2), |
| cpuid->nent)); |
| if (!cpuid_entries) |
| goto out; |
| |
| r = 0; |
| for (i = 0; i < ARRAY_SIZE(param); i++) { |
| const struct kvm_cpuid_param *ent = ¶m[i]; |
| |
| if (ent->qualifier && !ent->qualifier(ent)) |
| continue; |
| |
| r = do_cpuid_func(&cpuid_entries[nent], ent->func, |
| &nent, cpuid->nent, type); |
| |
| if (r) |
| goto out_free; |
| |
| limit = cpuid_entries[nent - 1].eax; |
| for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) |
| r = do_cpuid_func(&cpuid_entries[nent], func, |
| &nent, cpuid->nent, type); |
| |
| if (r) |
| goto out_free; |
| } |
| |
| r = -EFAULT; |
| if (copy_to_user(entries, cpuid_entries, |
| nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out_free; |
| cpuid->nent = nent; |
| r = 0; |
| |
| out_free: |
| vfree(cpuid_entries); |
| out: |
| return r; |
| } |
| |
| static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) |
| { |
| struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; |
| struct kvm_cpuid_entry2 *ej; |
| int j = i; |
| int nent = vcpu->arch.cpuid_nent; |
| |
| e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; |
| /* when no next entry is found, the current entry[i] is reselected */ |
| do { |
| j = (j + 1) % nent; |
| ej = &vcpu->arch.cpuid_entries[j]; |
| } while (ej->function != e->function); |
| |
| ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| |
| return j; |
| } |
| |
| /* find an entry with matching function, matching index (if needed), and that |
| * should be read next (if it's stateful) */ |
| static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, |
| u32 function, u32 index) |
| { |
| if (e->function != function) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && |
| !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) |
| return 0; |
| return 1; |
| } |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function, u32 index) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *best = NULL; |
| |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| struct kvm_cpuid_entry2 *e; |
| |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (is_matching_cpuid_entry(e, function, index)) { |
| if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) |
| move_to_next_stateful_cpuid_entry(vcpu, i); |
| best = e; |
| break; |
| } |
| } |
| return best; |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); |
| |
| /* |
| * If the basic or extended CPUID leaf requested is higher than the |
| * maximum supported basic or extended leaf, respectively, then it is |
| * out of range. |
| */ |
| static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function) |
| { |
| struct kvm_cpuid_entry2 *max; |
| |
| max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); |
| return max && function <= max->eax; |
| } |
| |
| bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, |
| u32 *ecx, u32 *edx, bool check_limit) |
| { |
| u32 function = *eax, index = *ecx; |
| struct kvm_cpuid_entry2 *entry; |
| struct kvm_cpuid_entry2 *max; |
| bool found; |
| |
| entry = kvm_find_cpuid_entry(vcpu, function, index); |
| found = entry; |
| /* |
| * Intel CPUID semantics treats any query for an out-of-range |
| * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were |
| * requested. AMD CPUID semantics returns all zeroes for any |
| * undefined leaf, whether or not the leaf is in range. |
| */ |
| if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) && |
| !cpuid_function_in_range(vcpu, function)) { |
| max = kvm_find_cpuid_entry(vcpu, 0, 0); |
| if (max) { |
| function = max->eax; |
| entry = kvm_find_cpuid_entry(vcpu, function, index); |
| } |
| } |
| if (entry) { |
| *eax = entry->eax; |
| *ebx = entry->ebx; |
| *ecx = entry->ecx; |
| *edx = entry->edx; |
| } else { |
| *eax = *ebx = *ecx = *edx = 0; |
| /* |
| * When leaf 0BH or 1FH is defined, CL is pass-through |
| * and EDX is always the x2APIC ID, even for undefined |
| * subleaves. Index 1 will exist iff the leaf is |
| * implemented, so we pass through CL iff leaf 1 |
| * exists. EDX can be copied from any existing index. |
| */ |
| if (function == 0xb || function == 0x1f) { |
| entry = kvm_find_cpuid_entry(vcpu, function, 1); |
| if (entry) { |
| *ecx = index & 0xff; |
| *edx = entry->edx; |
| } |
| } |
| } |
| trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found); |
| return found; |
| } |
| EXPORT_SYMBOL_GPL(kvm_cpuid); |
| |
| int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| u32 eax, ebx, ecx, edx; |
| |
| if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) |
| return 1; |
| |
| eax = kvm_rax_read(vcpu); |
| ecx = kvm_rcx_read(vcpu); |
| kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true); |
| kvm_rax_write(vcpu, eax); |
| kvm_rbx_write(vcpu, ebx); |
| kvm_rcx_write(vcpu, ecx); |
| kvm_rdx_write(vcpu, edx); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |