blob: e689846cb252f62376f97120e4f4a41f9916ce79 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NET3 Protocol independent device support routines.
*
* Derived from the non IP parts of dev.c 1.0.19
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
*
* Additional Authors:
* Florian la Roche <rzsfl@rz.uni-sb.de>
* Alan Cox <gw4pts@gw4pts.ampr.org>
* David Hinds <dahinds@users.sourceforge.net>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Adam Sulmicki <adam@cfar.umd.edu>
* Pekka Riikonen <priikone@poesidon.pspt.fi>
*
* Changes:
* D.J. Barrow : Fixed bug where dev->refcnt gets set
* to 2 if register_netdev gets called
* before net_dev_init & also removed a
* few lines of code in the process.
* Alan Cox : device private ioctl copies fields back.
* Alan Cox : Transmit queue code does relevant
* stunts to keep the queue safe.
* Alan Cox : Fixed double lock.
* Alan Cox : Fixed promisc NULL pointer trap
* ???????? : Support the full private ioctl range
* Alan Cox : Moved ioctl permission check into
* drivers
* Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
* Alan Cox : 100 backlog just doesn't cut it when
* you start doing multicast video 8)
* Alan Cox : Rewrote net_bh and list manager.
* Alan Cox : Fix ETH_P_ALL echoback lengths.
* Alan Cox : Took out transmit every packet pass
* Saved a few bytes in the ioctl handler
* Alan Cox : Network driver sets packet type before
* calling netif_rx. Saves a function
* call a packet.
* Alan Cox : Hashed net_bh()
* Richard Kooijman: Timestamp fixes.
* Alan Cox : Wrong field in SIOCGIFDSTADDR
* Alan Cox : Device lock protection.
* Alan Cox : Fixed nasty side effect of device close
* changes.
* Rudi Cilibrasi : Pass the right thing to
* set_mac_address()
* Dave Miller : 32bit quantity for the device lock to
* make it work out on a Sparc.
* Bjorn Ekwall : Added KERNELD hack.
* Alan Cox : Cleaned up the backlog initialise.
* Craig Metz : SIOCGIFCONF fix if space for under
* 1 device.
* Thomas Bogendoerfer : Return ENODEV for dev_open, if there
* is no device open function.
* Andi Kleen : Fix error reporting for SIOCGIFCONF
* Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
* Cyrus Durgin : Cleaned for KMOD
* Adam Sulmicki : Bug Fix : Network Device Unload
* A network device unload needs to purge
* the backlog queue.
* Paul Rusty Russell : SIOCSIFNAME
* Pekka Riikonen : Netdev boot-time settings code
* Andrew Morton : Make unregister_netdevice wait
* indefinitely on dev->refcnt
* J Hadi Salim : - Backlog queue sampling
* - netif_rx() feedback
*/
#include <linux/uaccess.h>
#include <linux/bitops.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/kthread.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/busy_poll.h>
#include <linux/rtnetlink.h>
#include <linux/stat.h>
#include <net/dsa.h>
#include <net/dst.h>
#include <net/dst_metadata.h>
#include <net/gro.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/checksum.h>
#include <net/xfrm.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netpoll.h>
#include <linux/rcupdate.h>
#include <linux/delay.h>
#include <net/iw_handler.h>
#include <asm/current.h>
#include <linux/audit.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <net/mpls.h>
#include <linux/ipv6.h>
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <trace/events/napi.h>
#include <trace/events/net.h>
#include <trace/events/skb.h>
#include <trace/events/qdisc.h>
#include <linux/inetdevice.h>
#include <linux/cpu_rmap.h>
#include <linux/static_key.h>
#include <linux/hashtable.h>
#include <linux/vmalloc.h>
#include <linux/if_macvlan.h>
#include <linux/errqueue.h>
#include <linux/hrtimer.h>
#include <linux/netfilter_netdev.h>
#include <linux/crash_dump.h>
#include <linux/sctp.h>
#include <net/udp_tunnel.h>
#include <linux/net_namespace.h>
#include <linux/indirect_call_wrapper.h>
#include <net/devlink.h>
#include <linux/pm_runtime.h>
#include <linux/prandom.h>
#include <linux/once_lite.h>
#include <trace/hooks/net.h>
#include "dev.h"
#include "net-sysfs.h"
static DEFINE_SPINLOCK(ptype_lock);
struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
struct list_head ptype_all __read_mostly; /* Taps */
static int netif_rx_internal(struct sk_buff *skb);
static int call_netdevice_notifiers_info(unsigned long val,
struct netdev_notifier_info *info);
static int call_netdevice_notifiers_extack(unsigned long val,
struct net_device *dev,
struct netlink_ext_ack *extack);
static struct napi_struct *napi_by_id(unsigned int napi_id);
/*
* The @dev_base_head list is protected by @dev_base_lock and the rtnl
* semaphore.
*
* Pure readers hold dev_base_lock for reading, or rcu_read_lock()
*
* Writers must hold the rtnl semaphore while they loop through the
* dev_base_head list, and hold dev_base_lock for writing when they do the
* actual updates. This allows pure readers to access the list even
* while a writer is preparing to update it.
*
* To put it another way, dev_base_lock is held for writing only to
* protect against pure readers; the rtnl semaphore provides the
* protection against other writers.
*
* See, for example usages, register_netdevice() and
* unregister_netdevice(), which must be called with the rtnl
* semaphore held.
*/
DEFINE_RWLOCK(dev_base_lock);
EXPORT_SYMBOL(dev_base_lock);
static DEFINE_MUTEX(ifalias_mutex);
/* protects napi_hash addition/deletion and napi_gen_id */
static DEFINE_SPINLOCK(napi_hash_lock);
static unsigned int napi_gen_id = NR_CPUS;
static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
static DECLARE_RWSEM(devnet_rename_sem);
static inline void dev_base_seq_inc(struct net *net)
{
while (++net->dev_base_seq == 0)
;
}
static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
{
unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
}
static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
{
return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
}
static inline void rps_lock_irqsave(struct softnet_data *sd,
unsigned long *flags)
{
if (IS_ENABLED(CONFIG_RPS))
spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_save(*flags);
}
static inline void rps_lock_irq_disable(struct softnet_data *sd)
{
if (IS_ENABLED(CONFIG_RPS))
spin_lock_irq(&sd->input_pkt_queue.lock);
else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_disable();
}
static inline void rps_unlock_irq_restore(struct softnet_data *sd,
unsigned long *flags)
{
if (IS_ENABLED(CONFIG_RPS))
spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_restore(*flags);
}
static inline void rps_unlock_irq_enable(struct softnet_data *sd)
{
if (IS_ENABLED(CONFIG_RPS))
spin_unlock_irq(&sd->input_pkt_queue.lock);
else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_irq_enable();
}
static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
const char *name)
{
struct netdev_name_node *name_node;
name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
if (!name_node)
return NULL;
INIT_HLIST_NODE(&name_node->hlist);
name_node->dev = dev;
name_node->name = name;
return name_node;
}
static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device *dev)
{
struct netdev_name_node *name_node;
name_node = netdev_name_node_alloc(dev, dev->name);
if (!name_node)
return NULL;
INIT_LIST_HEAD(&name_node->list);
return name_node;
}
static void netdev_name_node_free(struct netdev_name_node *name_node)
{
kfree(name_node);
}
static void netdev_name_node_add(struct net *net,
struct netdev_name_node *name_node)
{
hlist_add_head_rcu(&name_node->hlist,
dev_name_hash(net, name_node->name));
}
static void netdev_name_node_del(struct netdev_name_node *name_node)
{
hlist_del_rcu(&name_node->hlist);
}
static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
const char *name)
{
struct hlist_head *head = dev_name_hash(net, name);
struct netdev_name_node *name_node;
hlist_for_each_entry(name_node, head, hlist)
if (!strcmp(name_node->name, name))
return name_node;
return NULL;
}
static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
const char *name)
{
struct hlist_head *head = dev_name_hash(net, name);
struct netdev_name_node *name_node;
hlist_for_each_entry_rcu(name_node, head, hlist)
if (!strcmp(name_node->name, name))
return name_node;
return NULL;
}
bool netdev_name_in_use(struct net *net, const char *name)
{
return netdev_name_node_lookup(net, name);
}
EXPORT_SYMBOL(netdev_name_in_use);
int netdev_name_node_alt_create(struct net_device *dev, const char *name)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
name_node = netdev_name_node_lookup(net, name);
if (name_node)
return -EEXIST;
name_node = netdev_name_node_alloc(dev, name);
if (!name_node)
return -ENOMEM;
netdev_name_node_add(net, name_node);
/* The node that holds dev->name acts as a head of per-device list. */
list_add_tail(&name_node->list, &dev->name_node->list);
return 0;
}
static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
{
list_del(&name_node->list);
netdev_name_node_del(name_node);
kfree(name_node->name);
netdev_name_node_free(name_node);
}
int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
name_node = netdev_name_node_lookup(net, name);
if (!name_node)
return -ENOENT;
/* lookup might have found our primary name or a name belonging
* to another device.
*/
if (name_node == dev->name_node || name_node->dev != dev)
return -EINVAL;
__netdev_name_node_alt_destroy(name_node);
return 0;
}
static void netdev_name_node_alt_flush(struct net_device *dev)
{
struct netdev_name_node *name_node, *tmp;
list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
__netdev_name_node_alt_destroy(name_node);
}
/* Device list insertion */
static void list_netdevice(struct net_device *dev)
{
struct net *net = dev_net(dev);
ASSERT_RTNL();
write_lock(&dev_base_lock);
list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
netdev_name_node_add(net, dev->name_node);
hlist_add_head_rcu(&dev->index_hlist,
dev_index_hash(net, dev->ifindex));
write_unlock(&dev_base_lock);
dev_base_seq_inc(net);
}
/* Device list removal
* caller must respect a RCU grace period before freeing/reusing dev
*/
static void unlist_netdevice(struct net_device *dev, bool lock)
{
ASSERT_RTNL();
/* Unlink dev from the device chain */
if (lock)
write_lock(&dev_base_lock);
list_del_rcu(&dev->dev_list);
netdev_name_node_del(dev->name_node);
hlist_del_rcu(&dev->index_hlist);
if (lock)
write_unlock(&dev_base_lock);
dev_base_seq_inc(dev_net(dev));
}
/*
* Our notifier list
*/
static RAW_NOTIFIER_HEAD(netdev_chain);
/*
* Device drivers call our routines to queue packets here. We empty the
* queue in the local softnet handler.
*/
DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
EXPORT_PER_CPU_SYMBOL(softnet_data);
#ifdef CONFIG_LOCKDEP
/*
* register_netdevice() inits txq->_xmit_lock and sets lockdep class
* according to dev->type
*/
static const unsigned short netdev_lock_type[] = {
ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
static const char *const netdev_lock_name[] = {
"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
static inline unsigned short netdev_lock_pos(unsigned short dev_type)
{
int i;
for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
if (netdev_lock_type[i] == dev_type)
return i;
/* the last key is used by default */
return ARRAY_SIZE(netdev_lock_type) - 1;
}
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
unsigned short dev_type)
{
int i;
i = netdev_lock_pos(dev_type);
lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
netdev_lock_name[i]);
}
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
{
int i;
i = netdev_lock_pos(dev->type);
lockdep_set_class_and_name(&dev->addr_list_lock,
&netdev_addr_lock_key[i],
netdev_lock_name[i]);
}
#else
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
unsigned short dev_type)
{
}
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
{
}
#endif
/*******************************************************************************
*
* Protocol management and registration routines
*
*******************************************************************************/
/*
* Add a protocol ID to the list. Now that the input handler is
* smarter we can dispense with all the messy stuff that used to be
* here.
*
* BEWARE!!! Protocol handlers, mangling input packets,
* MUST BE last in hash buckets and checking protocol handlers
* MUST start from promiscuous ptype_all chain in net_bh.
* It is true now, do not change it.
* Explanation follows: if protocol handler, mangling packet, will
* be the first on list, it is not able to sense, that packet
* is cloned and should be copied-on-write, so that it will
* change it and subsequent readers will get broken packet.
* --ANK (980803)
*/
static inline struct list_head *ptype_head(const struct packet_type *pt)
{
struct list_head vendor_pt = { .next = NULL, };
trace_android_vh_ptype_head(pt, &vendor_pt);
if (vendor_pt.next)
return vendor_pt.next;
if (pt->type == htons(ETH_P_ALL))
return pt->dev ? &pt->dev->ptype_all : &ptype_all;
else
return pt->dev ? &pt->dev->ptype_specific :
&ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
}
/**
* dev_add_pack - add packet handler
* @pt: packet type declaration
*
* Add a protocol handler to the networking stack. The passed &packet_type
* is linked into kernel lists and may not be freed until it has been
* removed from the kernel lists.
*
* This call does not sleep therefore it can not
* guarantee all CPU's that are in middle of receiving packets
* will see the new packet type (until the next received packet).
*/
void dev_add_pack(struct packet_type *pt)
{
struct list_head *head = ptype_head(pt);
spin_lock(&ptype_lock);
list_add_rcu(&pt->list, head);
spin_unlock(&ptype_lock);
}
EXPORT_SYMBOL(dev_add_pack);
/**
* __dev_remove_pack - remove packet handler
* @pt: packet type declaration
*
* Remove a protocol handler that was previously added to the kernel
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
* from the kernel lists and can be freed or reused once this function
* returns.
*
* The packet type might still be in use by receivers
* and must not be freed until after all the CPU's have gone
* through a quiescent state.
*/
void __dev_remove_pack(struct packet_type *pt)
{
struct list_head *head = ptype_head(pt);
struct packet_type *pt1;
spin_lock(&ptype_lock);
list_for_each_entry(pt1, head, list) {
if (pt == pt1) {
list_del_rcu(&pt->list);
goto out;
}
}
pr_warn("dev_remove_pack: %p not found\n", pt);
out:
spin_unlock(&ptype_lock);
}
EXPORT_SYMBOL(__dev_remove_pack);
/**
* dev_remove_pack - remove packet handler
* @pt: packet type declaration
*
* Remove a protocol handler that was previously added to the kernel
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
* from the kernel lists and can be freed or reused once this function
* returns.
*
* This call sleeps to guarantee that no CPU is looking at the packet
* type after return.
*/
void dev_remove_pack(struct packet_type *pt)
{
__dev_remove_pack(pt);
synchronize_net();
}
EXPORT_SYMBOL(dev_remove_pack);
/*******************************************************************************
*
* Device Interface Subroutines
*
*******************************************************************************/
/**
* dev_get_iflink - get 'iflink' value of a interface
* @dev: targeted interface
*
* Indicates the ifindex the interface is linked to.
* Physical interfaces have the same 'ifindex' and 'iflink' values.
*/
int dev_get_iflink(const struct net_device *dev)
{
if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
return dev->netdev_ops->ndo_get_iflink(dev);
return dev->ifindex;
}
EXPORT_SYMBOL(dev_get_iflink);
/**
* dev_fill_metadata_dst - Retrieve tunnel egress information.
* @dev: targeted interface
* @skb: The packet.
*
* For better visibility of tunnel traffic OVS needs to retrieve
* egress tunnel information for a packet. Following API allows
* user to get this info.
*/
int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
{
struct ip_tunnel_info *info;
if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
return -EINVAL;
info = skb_tunnel_info_unclone(skb);
if (!info)
return -ENOMEM;
if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
return -EINVAL;
return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
}
EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
{
int k = stack->num_paths++;
if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
return NULL;
return &stack->path[k];
}
int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
struct net_device_path_stack *stack)
{
const struct net_device *last_dev;
struct net_device_path_ctx ctx = {
.dev = dev,
};
struct net_device_path *path;
int ret = 0;
memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
stack->num_paths = 0;
while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
last_dev = ctx.dev;
path = dev_fwd_path(stack);
if (!path)
return -1;
memset(path, 0, sizeof(struct net_device_path));
ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
if (ret < 0)
return -1;
if (WARN_ON_ONCE(last_dev == ctx.dev))
return -1;
}
if (!ctx.dev)
return ret;
path = dev_fwd_path(stack);
if (!path)
return -1;
path->type = DEV_PATH_ETHERNET;
path->dev = ctx.dev;
return ret;
}
EXPORT_SYMBOL_GPL(dev_fill_forward_path);
/**
* __dev_get_by_name - find a device by its name
* @net: the applicable net namespace
* @name: name to find
*
* Find an interface by name. Must be called under RTNL semaphore
* or @dev_base_lock. If the name is found a pointer to the device
* is returned. If the name is not found then %NULL is returned. The
* reference counters are not incremented so the caller must be
* careful with locks.
*/
struct net_device *__dev_get_by_name(struct net *net, const char *name)
{
struct netdev_name_node *node_name;
node_name = netdev_name_node_lookup(net, name);
return node_name ? node_name->dev : NULL;
}
EXPORT_SYMBOL(__dev_get_by_name);
/**
* dev_get_by_name_rcu - find a device by its name
* @net: the applicable net namespace
* @name: name to find
*
* Find an interface by name.
* If the name is found a pointer to the device is returned.
* If the name is not found then %NULL is returned.
* The reference counters are not incremented so the caller must be
* careful with locks. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
{
struct netdev_name_node *node_name;
node_name = netdev_name_node_lookup_rcu(net, name);
return node_name ? node_name->dev : NULL;
}
EXPORT_SYMBOL(dev_get_by_name_rcu);
/**
* dev_get_by_name - find a device by its name
* @net: the applicable net namespace
* @name: name to find
*
* Find an interface by name. This can be called from any
* context and does its own locking. The returned handle has
* the usage count incremented and the caller must use dev_put() to
* release it when it is no longer needed. %NULL is returned if no
* matching device is found.
*/
struct net_device *dev_get_by_name(struct net *net, const char *name)
{
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_name_rcu(net, name);
dev_hold(dev);
rcu_read_unlock();
return dev;
}
EXPORT_SYMBOL(dev_get_by_name);
/**
* __dev_get_by_index - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
*
* Search for an interface by index. Returns %NULL if the device
* is not found or a pointer to the device. The device has not
* had its reference counter increased so the caller must be careful
* about locking. The caller must hold either the RTNL semaphore
* or @dev_base_lock.
*/
struct net_device *__dev_get_by_index(struct net *net, int ifindex)
{
struct net_device *dev;
struct hlist_head *head = dev_index_hash(net, ifindex);
hlist_for_each_entry(dev, head, index_hlist)
if (dev->ifindex == ifindex)
return dev;
return NULL;
}
EXPORT_SYMBOL(__dev_get_by_index);
/**
* dev_get_by_index_rcu - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
*
* Search for an interface by index. Returns %NULL if the device
* is not found or a pointer to the device. The device has not
* had its reference counter increased so the caller must be careful
* about locking. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
{
struct net_device *dev;
struct hlist_head *head = dev_index_hash(net, ifindex);
hlist_for_each_entry_rcu(dev, head, index_hlist)
if (dev->ifindex == ifindex)
return dev;
return NULL;
}
EXPORT_SYMBOL(dev_get_by_index_rcu);
/**
* dev_get_by_index - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
*
* Search for an interface by index. Returns NULL if the device
* is not found or a pointer to the device. The device returned has
* had a reference added and the pointer is safe until the user calls
* dev_put to indicate they have finished with it.
*/
struct net_device *dev_get_by_index(struct net *net, int ifindex)
{
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(net, ifindex);
dev_hold(dev);
rcu_read_unlock();
return dev;
}
EXPORT_SYMBOL(dev_get_by_index);
/**
* dev_get_by_napi_id - find a device by napi_id
* @napi_id: ID of the NAPI struct
*
* Search for an interface by NAPI ID. Returns %NULL if the device
* is not found or a pointer to the device. The device has not had
* its reference counter increased so the caller must be careful
* about locking. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_napi_id(unsigned int napi_id)
{
struct napi_struct *napi;
WARN_ON_ONCE(!rcu_read_lock_held());
if (napi_id < MIN_NAPI_ID)
return NULL;
napi = napi_by_id(napi_id);
return napi ? napi->dev : NULL;
}
EXPORT_SYMBOL(dev_get_by_napi_id);
/**
* netdev_get_name - get a netdevice name, knowing its ifindex.
* @net: network namespace
* @name: a pointer to the buffer where the name will be stored.
* @ifindex: the ifindex of the interface to get the name from.
*/
int netdev_get_name(struct net *net, char *name, int ifindex)
{
struct net_device *dev;
int ret;
down_read(&devnet_rename_sem);
rcu_read_lock();
dev = dev_get_by_index_rcu(net, ifindex);
if (!dev) {
ret = -ENODEV;
goto out;
}
strcpy(name, dev->name);
ret = 0;
out:
rcu_read_unlock();
up_read(&devnet_rename_sem);
return ret;
}
/**
* dev_getbyhwaddr_rcu - find a device by its hardware address
* @net: the applicable net namespace
* @type: media type of device
* @ha: hardware address
*
* Search for an interface by MAC address. Returns NULL if the device
* is not found or a pointer to the device.
* The caller must hold RCU or RTNL.
* The returned device has not had its ref count increased
* and the caller must therefore be careful about locking
*
*/
struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
const char *ha)
{
struct net_device *dev;
for_each_netdev_rcu(net, dev)
if (dev->type == type &&
!memcmp(dev->dev_addr, ha, dev->addr_len))
return dev;
return NULL;
}
EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
{
struct net_device *dev, *ret = NULL;
rcu_read_lock();
for_each_netdev_rcu(net, dev)
if (dev->type == type) {
dev_hold(dev);
ret = dev;
break;
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(dev_getfirstbyhwtype);
/**
* __dev_get_by_flags - find any device with given flags
* @net: the applicable net namespace
* @if_flags: IFF_* values
* @mask: bitmask of bits in if_flags to check
*
* Search for any interface with the given flags. Returns NULL if a device
* is not found or a pointer to the device. Must be called inside
* rtnl_lock(), and result refcount is unchanged.
*/
struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
unsigned short mask)
{
struct net_device *dev, *ret;
ASSERT_RTNL();
ret = NULL;
for_each_netdev(net, dev) {
if (((dev->flags ^ if_flags) & mask) == 0) {
ret = dev;
break;
}
}
return ret;
}
EXPORT_SYMBOL(__dev_get_by_flags);
/**
* dev_valid_name - check if name is okay for network device
* @name: name string
*
* Network device names need to be valid file names to
* allow sysfs to work. We also disallow any kind of
* whitespace.
*/
bool dev_valid_name(const char *name)
{
if (*name == '\0')
return false;
if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
return false;
if (!strcmp(name, ".") || !strcmp(name, ".."))
return false;
while (*name) {
if (*name == '/' || *name == ':' || isspace(*name))
return false;
name++;
}
return true;
}
EXPORT_SYMBOL(dev_valid_name);
/**
* __dev_alloc_name - allocate a name for a device
* @net: network namespace to allocate the device name in
* @name: name format string
* @buf: scratch buffer and result name string
*
* Passed a format string - eg "lt%d" it will try and find a suitable
* id. It scans list of devices to build up a free map, then chooses
* the first empty slot. The caller must hold the dev_base or rtnl lock
* while allocating the name and adding the device in order to avoid
* duplicates.
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
* Returns the number of the unit assigned or a negative errno code.
*/
static int __dev_alloc_name(struct net *net, const char *name, char *buf)
{
int i = 0;
const char *p;
const int max_netdevices = 8*PAGE_SIZE;
unsigned long *inuse;
struct net_device *d;
if (!dev_valid_name(name))
return -EINVAL;
p = strchr(name, '%');
if (p) {
/*
* Verify the string as this thing may have come from
* the user. There must be either one "%d" and no other "%"
* characters.
*/
if (p[1] != 'd' || strchr(p + 2, '%'))
return -EINVAL;
/* Use one page as a bit array of possible slots */
inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
if (!inuse)
return -ENOMEM;
for_each_netdev(net, d) {
struct netdev_name_node *name_node;
list_for_each_entry(name_node, &d->name_node->list, list) {
if (!sscanf(name_node->name, name, &i))
continue;
if (i < 0 || i >= max_netdevices)
continue;
/* avoid cases where sscanf is not exact inverse of printf */
snprintf(buf, IFNAMSIZ, name, i);
if (!strncmp(buf, name_node->name, IFNAMSIZ))
__set_bit(i, inuse);
}
if (!sscanf(d->name, name, &i))
continue;
if (i < 0 || i >= max_netdevices)
continue;
/* avoid cases where sscanf is not exact inverse of printf */
snprintf(buf, IFNAMSIZ, name, i);
if (!strncmp(buf, d->name, IFNAMSIZ))
__set_bit(i, inuse);
}
i = find_first_zero_bit(inuse, max_netdevices);
free_page((unsigned long) inuse);
}
snprintf(buf, IFNAMSIZ, name, i);
if (!netdev_name_in_use(net, buf))
return i;
/* It is possible to run out of possible slots
* when the name is long and there isn't enough space left
* for the digits, or if all bits are used.
*/
return -ENFILE;
}
static int dev_alloc_name_ns(struct net *net,
struct net_device *dev,
const char *name)
{
char buf[IFNAMSIZ];
int ret;
BUG_ON(!net);
ret = __dev_alloc_name(net, name, buf);
if (ret >= 0)
strscpy(dev->name, buf, IFNAMSIZ);
return ret;
}
/**
* dev_alloc_name - allocate a name for a device
* @dev: device
* @name: name format string
*
* Passed a format string - eg "lt%d" it will try and find a suitable
* id. It scans list of devices to build up a free map, then chooses
* the first empty slot. The caller must hold the dev_base or rtnl lock
* while allocating the name and adding the device in order to avoid
* duplicates.
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
* Returns the number of the unit assigned or a negative errno code.
*/
int dev_alloc_name(struct net_device *dev, const char *name)
{
return dev_alloc_name_ns(dev_net(dev), dev, name);
}
EXPORT_SYMBOL(dev_alloc_name);
static int dev_get_valid_name(struct net *net, struct net_device *dev,
const char *name)
{
BUG_ON(!net);
if (!dev_valid_name(name))
return -EINVAL;
if (strchr(name, '%'))
return dev_alloc_name_ns(net, dev, name);
else if (netdev_name_in_use(net, name))
return -EEXIST;
else if (dev->name != name)
strscpy(dev->name, name, IFNAMSIZ);
return 0;
}
/**
* dev_change_name - change name of a device
* @dev: device
* @newname: name (or format string) must be at least IFNAMSIZ
*
* Change name of a device, can pass format strings "eth%d".
* for wildcarding.
*/
int dev_change_name(struct net_device *dev, const char *newname)
{
unsigned char old_assign_type;
char oldname[IFNAMSIZ];
int err = 0;
int ret;
struct net *net;
ASSERT_RTNL();
BUG_ON(!dev_net(dev));
net = dev_net(dev);
/* Some auto-enslaved devices e.g. failover slaves are
* special, as userspace might rename the device after
* the interface had been brought up and running since
* the point kernel initiated auto-enslavement. Allow
* live name change even when these slave devices are
* up and running.
*
* Typically, users of these auto-enslaving devices
* don't actually care about slave name change, as
* they are supposed to operate on master interface
* directly.
*/
if (dev->flags & IFF_UP &&
likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
return -EBUSY;
down_write(&devnet_rename_sem);
if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
up_write(&devnet_rename_sem);
return 0;
}
memcpy(oldname, dev->name, IFNAMSIZ);
err = dev_get_valid_name(net, dev, newname);
if (err < 0) {
up_write(&devnet_rename_sem);
return err;
}
if (oldname[0] && !strchr(oldname, '%'))
netdev_info(dev, "renamed from %s\n", oldname);
old_assign_type = dev->name_assign_type;
dev->name_assign_type = NET_NAME_RENAMED;
rollback:
ret = device_rename(&dev->dev, dev->name);
if (ret) {
memcpy(dev->name, oldname, IFNAMSIZ);
dev->name_assign_type = old_assign_type;
up_write(&devnet_rename_sem);
return ret;
}
up_write(&devnet_rename_sem);
netdev_adjacent_rename_links(dev, oldname);
write_lock(&dev_base_lock);
netdev_name_node_del(dev->name_node);
write_unlock(&dev_base_lock);
synchronize_rcu();
write_lock(&dev_base_lock);
netdev_name_node_add(net, dev->name_node);
write_unlock(&dev_base_lock);
ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
ret = notifier_to_errno(ret);
if (ret) {
/* err >= 0 after dev_alloc_name() or stores the first errno */
if (err >= 0) {
err = ret;
down_write(&devnet_rename_sem);
memcpy(dev->name, oldname, IFNAMSIZ);
memcpy(oldname, newname, IFNAMSIZ);
dev->name_assign_type = old_assign_type;
old_assign_type = NET_NAME_RENAMED;
goto rollback;
} else {
netdev_err(dev, "name change rollback failed: %d\n",
ret);
}
}
return err;
}
/**
* dev_set_alias - change ifalias of a device
* @dev: device
* @alias: name up to IFALIASZ
* @len: limit of bytes to copy from info
*
* Set ifalias for a device,
*/
int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
{
struct dev_ifalias *new_alias = NULL;
if (len >= IFALIASZ)
return -EINVAL;
if (len) {
new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
if (!new_alias)
return -ENOMEM;
memcpy(new_alias->ifalias, alias, len);
new_alias->ifalias[len] = 0;
}
mutex_lock(&ifalias_mutex);
new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
mutex_is_locked(&ifalias_mutex));
mutex_unlock(&ifalias_mutex);
if (new_alias)
kfree_rcu(new_alias, rcuhead);
return len;
}
EXPORT_SYMBOL(dev_set_alias);
/**
* dev_get_alias - get ifalias of a device
* @dev: device
* @name: buffer to store name of ifalias
* @len: size of buffer
*
* get ifalias for a device. Caller must make sure dev cannot go
* away, e.g. rcu read lock or own a reference count to device.
*/
int dev_get_alias(const struct net_device *dev, char *name, size_t len)
{
const struct dev_ifalias *alias;
int ret = 0;
rcu_read_lock();
alias = rcu_dereference(dev->ifalias);
if (alias)
ret = snprintf(name, len, "%s", alias->ifalias);
rcu_read_unlock();
return ret;
}
/**
* netdev_features_change - device changes features
* @dev: device to cause notification
*
* Called to indicate a device has changed features.
*/
void netdev_features_change(struct net_device *dev)
{
call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
}
EXPORT_SYMBOL(netdev_features_change);
/**
* netdev_state_change - device changes state
* @dev: device to cause notification
*
* Called to indicate a device has changed state. This function calls
* the notifier chains for netdev_chain and sends a NEWLINK message
* to the routing socket.
*/
void netdev_state_change(struct net_device *dev)
{
if (dev->flags & IFF_UP) {
struct netdev_notifier_change_info change_info = {
.info.dev = dev,
};
call_netdevice_notifiers_info(NETDEV_CHANGE,
&change_info.info);
rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
}
}
EXPORT_SYMBOL(netdev_state_change);
/**
* __netdev_notify_peers - notify network peers about existence of @dev,
* to be called when rtnl lock is already held.
* @dev: network device
*
* Generate traffic such that interested network peers are aware of
* @dev, such as by generating a gratuitous ARP. This may be used when
* a device wants to inform the rest of the network about some sort of
* reconfiguration such as a failover event or virtual machine
* migration.
*/
void __netdev_notify_peers(struct net_device *dev)
{
ASSERT_RTNL();
call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
}
EXPORT_SYMBOL(__netdev_notify_peers);
/**
* netdev_notify_peers - notify network peers about existence of @dev
* @dev: network device
*
* Generate traffic such that interested network peers are aware of
* @dev, such as by generating a gratuitous ARP. This may be used when
* a device wants to inform the rest of the network about some sort of
* reconfiguration such as a failover event or virtual machine
* migration.
*/
void netdev_notify_peers(struct net_device *dev)
{
rtnl_lock();
__netdev_notify_peers(dev);
rtnl_unlock();
}
EXPORT_SYMBOL(netdev_notify_peers);
static int napi_threaded_poll(void *data);
static int napi_kthread_create(struct napi_struct *n)
{
int err = 0;
/* Create and wake up the kthread once to put it in
* TASK_INTERRUPTIBLE mode to avoid the blocked task
* warning and work with loadavg.
*/
n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
n->dev->name, n->napi_id);
if (IS_ERR(n->thread)) {
err = PTR_ERR(n->thread);
pr_err("kthread_run failed with err %d\n", err);
n->thread = NULL;
}
return err;
}
static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
int ret;
ASSERT_RTNL();
dev_addr_check(dev);
if (!netif_device_present(dev)) {
/* may be detached because parent is runtime-suspended */
if (dev->dev.parent)
pm_runtime_resume(dev->dev.parent);
if (!netif_device_present(dev))
return -ENODEV;
}
/* Block netpoll from trying to do any rx path servicing.
* If we don't do this there is a chance ndo_poll_controller
* or ndo_poll may be running while we open the device
*/
netpoll_poll_disable(dev);
ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
ret = notifier_to_errno(ret);
if (ret)
return ret;
set_bit(__LINK_STATE_START, &dev->state);
if (ops->ndo_validate_addr)
ret = ops->ndo_validate_addr(dev);
if (!ret && ops->ndo_open)
ret = ops->ndo_open(dev);
netpoll_poll_enable(dev);
if (ret)
clear_bit(__LINK_STATE_START, &dev->state);
else {
dev->flags |= IFF_UP;
dev_set_rx_mode(dev);
dev_activate(dev);
add_device_randomness(dev->dev_addr, dev->addr_len);
}
return ret;
}
/**
* dev_open - prepare an interface for use.
* @dev: device to open
* @extack: netlink extended ack
*
* Takes a device from down to up state. The device's private open
* function is invoked and then the multicast lists are loaded. Finally
* the device is moved into the up state and a %NETDEV_UP message is
* sent to the netdev notifier chain.
*
* Calling this function on an active interface is a nop. On a failure
* a negative errno code is returned.
*/
int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
{
int ret;
if (dev->flags & IFF_UP)
return 0;
ret = __dev_open(dev, extack);
if (ret < 0)
return ret;
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
call_netdevice_notifiers(NETDEV_UP, dev);
return ret;
}
EXPORT_SYMBOL(dev_open);
static void __dev_close_many(struct list_head *head)
{
struct net_device *dev;
ASSERT_RTNL();
might_sleep();
list_for_each_entry(dev, head, close_list) {
/* Temporarily disable netpoll until the interface is down */
netpoll_poll_disable(dev);
call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
clear_bit(__LINK_STATE_START, &dev->state);
/* Synchronize to scheduled poll. We cannot touch poll list, it
* can be even on different cpu. So just clear netif_running().
*
* dev->stop() will invoke napi_disable() on all of it's
* napi_struct instances on this device.
*/
smp_mb__after_atomic(); /* Commit netif_running(). */
}
dev_deactivate_many(head);
list_for_each_entry(dev, head, close_list) {
const struct net_device_ops *ops = dev->netdev_ops;
/*
* Call the device specific close. This cannot fail.
* Only if device is UP
*
* We allow it to be called even after a DETACH hot-plug
* event.
*/
if (ops->ndo_stop)
ops->ndo_stop(dev);
dev->flags &= ~IFF_UP;
netpoll_poll_enable(dev);
}
}
static void __dev_close(struct net_device *dev)
{
LIST_HEAD(single);
list_add(&dev->close_list, &single);
__dev_close_many(&single);
list_del(&single);
}
void dev_close_many(struct list_head *head, bool unlink)
{
struct net_device *dev, *tmp;
/* Remove the devices that don't need to be closed */
list_for_each_entry_safe(dev, tmp, head, close_list)
if (!(dev->flags & IFF_UP))
list_del_init(&dev->close_list);
__dev_close_many(head);
list_for_each_entry_safe(dev, tmp, head, close_list) {
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
call_netdevice_notifiers(NETDEV_DOWN, dev);
if (unlink)
list_del_init(&dev->close_list);
}
}
EXPORT_SYMBOL(dev_close_many);
/**
* dev_close - shutdown an interface.
* @dev: device to shutdown
*
* This function moves an active device into down state. A
* %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
* is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
* chain.
*/
void dev_close(struct net_device *dev)
{
if (dev->flags & IFF_UP) {
LIST_HEAD(single);
list_add(&dev->close_list, &single);
dev_close_many(&single, true);
list_del(&single);
}
}
EXPORT_SYMBOL(dev_close);
/**
* dev_disable_lro - disable Large Receive Offload on a device
* @dev: device
*
* Disable Large Receive Offload (LRO) on a net device. Must be
* called under RTNL. This is needed if received packets may be
* forwarded to another interface.
*/
void dev_disable_lro(struct net_device *dev)
{
struct net_device *lower_dev;
struct list_head *iter;
dev->wanted_features &= ~NETIF_F_LRO;
netdev_update_features(dev);
if (unlikely(dev->features & NETIF_F_LRO))
netdev_WARN(dev, "failed to disable LRO!\n");
netdev_for_each_lower_dev(dev, lower_dev, iter)
dev_disable_lro(lower_dev);
}
EXPORT_SYMBOL(dev_disable_lro);
/**
* dev_disable_gro_hw - disable HW Generic Receive Offload on a device
* @dev: device
*
* Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
* called under RTNL. This is needed if Generic XDP is installed on
* the device.
*/
static void dev_disable_gro_hw(struct net_device *dev)
{
dev->wanted_features &= ~NETIF_F_GRO_HW;
netdev_update_features(dev);
if (unlikely(dev->features & NETIF_F_GRO_HW))
netdev_WARN(dev, "failed to disable GRO_HW!\n");
}
const char *netdev_cmd_to_name(enum netdev_cmd cmd)
{
#define N(val) \
case NETDEV_##val: \
return "NETDEV_" __stringify(val);
switch (cmd) {
N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
}
#undef N
return "UNKNOWN_NETDEV_EVENT";
}
EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
struct net_device *dev)
{
struct netdev_notifier_info info = {
.dev = dev,
};
return nb->notifier_call(nb, val, &info);
}
static int call_netdevice_register_notifiers(struct notifier_block *nb,
struct net_device *dev)
{
int err;
err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
err = notifier_to_errno(err);
if (err)
return err;
if (!(dev->flags & IFF_UP))
return 0;
call_netdevice_notifier(nb, NETDEV_UP, dev);
return 0;
}
static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
struct net_device *dev)
{
if (dev->flags & IFF_UP) {
call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
dev);
call_netdevice_notifier(nb, NETDEV_DOWN, dev);
}
call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
}
static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
struct net *net)
{
struct net_device *dev;
int err;
for_each_netdev(net, dev) {
err = call_netdevice_register_notifiers(nb, dev);
if (err)
goto rollback;
}
return 0;
rollback:
for_each_netdev_continue_reverse(net, dev)
call_netdevice_unregister_notifiers(nb, dev);
return err;
}
static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
struct net *net)
{
struct net_device *dev;
for_each_netdev(net, dev)
call_netdevice_unregister_notifiers(nb, dev);
}
static int dev_boot_phase = 1;
/**
* register_netdevice_notifier - register a network notifier block
* @nb: notifier
*
* Register a notifier to be called when network device events occur.
* The notifier passed is linked into the kernel structures and must
* not be reused until it has been unregistered. A negative errno code
* is returned on a failure.
*
* When registered all registration and up events are replayed
* to the new notifier to allow device to have a race free
* view of the network device list.
*/
int register_netdevice_notifier(struct notifier_block *nb)
{
struct net *net;
int err;
/* Close race with setup_net() and cleanup_net() */
down_write(&pernet_ops_rwsem);
rtnl_lock();
err = raw_notifier_chain_register(&netdev_chain, nb);
if (err)
goto unlock;
if (dev_boot_phase)
goto unlock;
for_each_net(net) {
err = call_netdevice_register_net_notifiers(nb, net);
if (err)
goto rollback;
}
unlock:
rtnl_unlock();
up_write(&pernet_ops_rwsem);
return err;
rollback:
for_each_net_continue_reverse(net)
call_netdevice_unregister_net_notifiers(nb, net);
raw_notifier_chain_unregister(&netdev_chain, nb);
goto unlock;
}
EXPORT_SYMBOL(register_netdevice_notifier);
/**
* unregister_netdevice_notifier - unregister a network notifier block
* @nb: notifier
*
* Unregister a notifier previously registered by
* register_netdevice_notifier(). The notifier is unlinked into the
* kernel structures and may then be reused. A negative errno code
* is returned on a failure.
*
* After unregistering unregister and down device events are synthesized
* for all devices on the device list to the removed notifier to remove
* the need for special case cleanup code.
*/
int unregister_netdevice_notifier(struct notifier_block *nb)
{
struct net *net;
int err;
/* Close race with setup_net() and cleanup_net() */
down_write(&pernet_ops_rwsem);
rtnl_lock();
err = raw_notifier_chain_unregister(&netdev_chain, nb);
if (err)
goto unlock;
for_each_net(net)
call_netdevice_unregister_net_notifiers(nb, net);
unlock:
rtnl_unlock();
up_write(&pernet_ops_rwsem);
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier);
static int __register_netdevice_notifier_net(struct net *net,
struct notifier_block *nb,
bool ignore_call_fail)
{
int err;
err = raw_notifier_chain_register(&net->netdev_chain, nb);
if (err)
return err;
if (dev_boot_phase)
return 0;
err = call_netdevice_register_net_notifiers(nb, net);
if (err && !ignore_call_fail)
goto chain_unregister;
return 0;
chain_unregister:
raw_notifier_chain_unregister(&net->netdev_chain, nb);
return err;
}
static int __unregister_netdevice_notifier_net(struct net *net,
struct notifier_block *nb)
{
int err;
err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
if (err)
return err;
call_netdevice_unregister_net_notifiers(nb, net);
return 0;
}
/**
* register_netdevice_notifier_net - register a per-netns network notifier block
* @net: network namespace
* @nb: notifier
*
* Register a notifier to be called when network device events occur.
* The notifier passed is linked into the kernel structures and must
* not be reused until it has been unregistered. A negative errno code
* is returned on a failure.
*
* When registered all registration and up events are replayed
* to the new notifier to allow device to have a race free
* view of the network device list.
*/
int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
{
int err;
rtnl_lock();
err = __register_netdevice_notifier_net(net, nb, false);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(register_netdevice_notifier_net);
/**
* unregister_netdevice_notifier_net - unregister a per-netns
* network notifier block
* @net: network namespace
* @nb: notifier
*
* Unregister a notifier previously registered by
* register_netdevice_notifier(). The notifier is unlinked into the
* kernel structures and may then be reused. A negative errno code
* is returned on a failure.
*
* After unregistering unregister and down device events are synthesized
* for all devices on the device list to the removed notifier to remove
* the need for special case cleanup code.
*/
int unregister_netdevice_notifier_net(struct net *net,
struct notifier_block *nb)
{
int err;
rtnl_lock();
err = __unregister_netdevice_notifier_net(net, nb);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier_net);
int register_netdevice_notifier_dev_net(struct net_device *dev,
struct notifier_block *nb,
struct netdev_net_notifier *nn)
{
int err;
rtnl_lock();
err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
if (!err) {
nn->nb = nb;
list_add(&nn->list, &dev->net_notifier_list);
}
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
int unregister_netdevice_notifier_dev_net(struct net_device *dev,
struct notifier_block *nb,
struct netdev_net_notifier *nn)
{
int err;
rtnl_lock();
list_del(&nn->list);
err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
static void move_netdevice_notifiers_dev_net(struct net_device *dev,
struct net *net)
{
struct netdev_net_notifier *nn;
list_for_each_entry(nn, &dev->net_notifier_list, list) {
__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
__register_netdevice_notifier_net(net, nn->nb, true);
}
}
/**
* call_netdevice_notifiers_info - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @info: notifier information data
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
static int call_netdevice_notifiers_info(unsigned long val,
struct netdev_notifier_info *info)
{
struct net *net = dev_net(info->dev);
int ret;
ASSERT_RTNL();
/* Run per-netns notifier block chain first, then run the global one.
* Hopefully, one day, the global one is going to be removed after
* all notifier block registrators get converted to be per-netns.
*/
ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
if (ret & NOTIFY_STOP_MASK)
return ret;
return raw_notifier_call_chain(&netdev_chain, val, info);
}
/**
* call_netdevice_notifiers_info_robust - call per-netns notifier blocks
* for and rollback on error
* @val_up: value passed unmodified to notifier function
* @val_down: value passed unmodified to the notifier function when
* recovering from an error on @val_up
* @info: notifier information data
*
* Call all per-netns network notifier blocks, but not notifier blocks on
* the global notifier chain. Parameters and return value are as for
* raw_notifier_call_chain_robust().
*/
static int
call_netdevice_notifiers_info_robust(unsigned long val_up,
unsigned long val_down,
struct netdev_notifier_info *info)
{
struct net *net = dev_net(info->dev);
ASSERT_RTNL();
return raw_notifier_call_chain_robust(&net->netdev_chain,
val_up, val_down, info);
}
static int call_netdevice_notifiers_extack(unsigned long val,
struct net_device *dev,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_info info = {
.dev = dev,
.extack = extack,
};
return call_netdevice_notifiers_info(val, &info);
}
/**
* call_netdevice_notifiers - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @dev: net_device pointer passed unmodified to notifier function
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
{
return call_netdevice_notifiers_extack(val, dev, NULL);
}
EXPORT_SYMBOL(call_netdevice_notifiers);
/**
* call_netdevice_notifiers_mtu - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @dev: net_device pointer passed unmodified to notifier function
* @arg: additional u32 argument passed to the notifier function
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
static int call_netdevice_notifiers_mtu(unsigned long val,
struct net_device *dev, u32 arg)
{
struct netdev_notifier_info_ext info = {
.info.dev = dev,
.ext.mtu = arg,
};
BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
return call_netdevice_notifiers_info(val, &info.info);
}
#ifdef CONFIG_NET_INGRESS
static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
void net_inc_ingress_queue(void)
{
static_branch_inc(&ingress_needed_key);
}
EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
void net_dec_ingress_queue(void)
{
static_branch_dec(&ingress_needed_key);
}
EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
#endif
#ifdef CONFIG_NET_EGRESS
static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
void net_inc_egress_queue(void)
{
static_branch_inc(&egress_needed_key);
}
EXPORT_SYMBOL_GPL(net_inc_egress_queue);
void net_dec_egress_queue(void)
{
static_branch_dec(&egress_needed_key);
}
EXPORT_SYMBOL_GPL(net_dec_egress_queue);
#endif
DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
EXPORT_SYMBOL(netstamp_needed_key);
#ifdef CONFIG_JUMP_LABEL
static atomic_t netstamp_needed_deferred;
static atomic_t netstamp_wanted;
static void netstamp_clear(struct work_struct *work)
{
int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
int wanted;
wanted = atomic_add_return(deferred, &netstamp_wanted);
if (wanted > 0)
static_branch_enable(&netstamp_needed_key);
else
static_branch_disable(&netstamp_needed_key);
}
static DECLARE_WORK(netstamp_work, netstamp_clear);
#endif
void net_enable_timestamp(void)
{
#ifdef CONFIG_JUMP_LABEL
int wanted;
while (1) {
wanted = atomic_read(&netstamp_wanted);
if (wanted <= 0)
break;
if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
return;
}
atomic_inc(&netstamp_needed_deferred);
schedule_work(&netstamp_work);
#else
static_branch_inc(&netstamp_needed_key);
#endif
}
EXPORT_SYMBOL(net_enable_timestamp);
void net_disable_timestamp(void)
{
#ifdef CONFIG_JUMP_LABEL
int wanted;
while (1) {
wanted = atomic_read(&netstamp_wanted);
if (wanted <= 1)
break;
if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
return;
}
atomic_dec(&netstamp_needed_deferred);
schedule_work(&netstamp_work);
#else
static_branch_dec(&netstamp_needed_key);
#endif
}
EXPORT_SYMBOL(net_disable_timestamp);
static inline void net_timestamp_set(struct sk_buff *skb)
{
skb->tstamp = 0;
skb->mono_delivery_time = 0;
if (static_branch_unlikely(&netstamp_needed_key))
skb->tstamp = ktime_get_real();
}
#define net_timestamp_check(COND, SKB) \
if (static_branch_unlikely(&netstamp_needed_key)) { \
if ((COND) && !(SKB)->tstamp) \
(SKB)->tstamp = ktime_get_real(); \
} \
bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
{
return __is_skb_forwardable(dev, skb, true);
}
EXPORT_SYMBOL_GPL(is_skb_forwardable);
static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
bool check_mtu)
{
int ret = ____dev_forward_skb(dev, skb, check_mtu);
if (likely(!ret)) {
skb->protocol = eth_type_trans(skb, dev);
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
}
return ret;
}
int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb2(dev, skb, true);
}
EXPORT_SYMBOL_GPL(__dev_forward_skb);
/**
* dev_forward_skb - loopback an skb to another netif
*
* @dev: destination network device
* @skb: buffer to forward
*
* return values:
* NET_RX_SUCCESS (no congestion)
* NET_RX_DROP (packet was dropped, but freed)
*
* dev_forward_skb can be used for injecting an skb from the
* start_xmit function of one device into the receive queue
* of another device.
*
* The receiving device may be in another namespace, so
* we have to clear all information in the skb that could
* impact namespace isolation.
*/
int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
}
EXPORT_SYMBOL_GPL(dev_forward_skb);
int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
}
static inline int deliver_skb(struct sk_buff *skb,
struct packet_type *pt_prev,
struct net_device *orig_dev)
{
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
return -ENOMEM;
refcount_inc(&skb->users);
return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
}
static inline void deliver_ptype_list_skb(struct sk_buff *skb,
struct packet_type **pt,
struct net_device *orig_dev,
__be16 type,
struct list_head *ptype_list)
{
struct packet_type *ptype, *pt_prev = *pt;
list_for_each_entry_rcu(ptype, ptype_list, list) {
if (ptype->type != type)
continue;
if (pt_prev)
deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
*pt = pt_prev;
}
static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
{
if (!ptype->af_packet_priv || !skb->sk)
return false;
if (ptype->id_match)
return ptype->id_match(ptype, skb->sk);
else if ((struct sock *)ptype->af_packet_priv == skb->sk)
return true;
return false;
}
/**
* dev_nit_active - return true if any network interface taps are in use
*
* @dev: network device to check for the presence of taps
*/
bool dev_nit_active(struct net_device *dev)
{
return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
}
EXPORT_SYMBOL_GPL(dev_nit_active);
/*
* Support routine. Sends outgoing frames to any network
* taps currently in use.
*/
void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
{
struct packet_type *ptype;
struct sk_buff *skb2 = NULL;
struct packet_type *pt_prev = NULL;
struct list_head *ptype_list = &ptype_all;
rcu_read_lock();
again:
list_for_each_entry_rcu(ptype, ptype_list, list) {
if (ptype->ignore_outgoing)
continue;
/* Never send packets back to the socket
* they originated from - MvS (miquels@drinkel.ow.org)
*/
if (skb_loop_sk(ptype, skb))
continue;
if (pt_prev) {
deliver_skb(skb2, pt_prev, skb->dev);
pt_prev = ptype;
continue;
}
/* need to clone skb, done only once */
skb2 = skb_clone(skb, GFP_ATOMIC);
if (!skb2)
goto out_unlock;
net_timestamp_set(skb2);
/* skb->nh should be correctly
* set by sender, so that the second statement is
* just protection against buggy protocols.
*/
skb_reset_mac_header(skb2);
if (skb_network_header(skb2) < skb2->data ||
skb_network_header(skb2) > skb_tail_pointer(skb2)) {
net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
ntohs(skb2->protocol),
dev->name);
skb_reset_network_header(skb2);
}
skb2->transport_header = skb2->network_header;
skb2->pkt_type = PACKET_OUTGOING;
pt_prev = ptype;
}
if (ptype_list == &ptype_all) {
ptype_list = &dev->ptype_all;
goto again;
}
out_unlock:
if (pt_prev) {
if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
else
kfree_skb(skb2);
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
/**
* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
* @dev: Network device
* @txq: number of queues available
*
* If real_num_tx_queues is changed the tc mappings may no longer be
* valid. To resolve this verify the tc mapping remains valid and if
* not NULL the mapping. With no priorities mapping to this
* offset/count pair it will no longer be used. In the worst case TC0
* is invalid nothing can be done so disable priority mappings. If is
* expected that drivers will fix this mapping if they can before
* calling netif_set_real_num_tx_queues.
*/
static void netif_setup_tc(struct net_device *dev, unsigned int txq)
{
int i;
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
/* If TC0 is invalidated disable TC mapping */
if (tc->offset + tc->count > txq) {
netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
dev->num_tc = 0;
return;
}
/* Invalidated prio to tc mappings set to TC0 */
for (i = 1; i < TC_BITMASK + 1; i++) {
int q = netdev_get_prio_tc_map(dev, i);
tc = &dev->tc_to_txq[q];
if (tc->offset + tc->count > txq) {
netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
i, q);
netdev_set_prio_tc_map(dev, i, 0);
}
}
}
int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
{
if (dev->num_tc) {
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
int i;
/* walk through the TCs and see if it falls into any of them */
for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
if ((txq - tc->offset) < tc->count)
return i;
}
/* didn't find it, just return -1 to indicate no match */
return -1;
}
return 0;
}
EXPORT_SYMBOL(netdev_txq_to_tc);
#ifdef CONFIG_XPS
static struct static_key xps_needed __read_mostly;
static struct static_key xps_rxqs_needed __read_mostly;
static DEFINE_MUTEX(xps_map_mutex);
#define xmap_dereference(P) \
rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
struct xps_dev_maps *old_maps, int tci, u16 index)
{
struct xps_map *map = NULL;
int pos;
if (dev_maps)
map = xmap_dereference(dev_maps->attr_map[tci]);
if (!map)
return false;
for (pos = map->len; pos--;) {
if (map->queues[pos] != index)
continue;
if (map->len > 1) {
map->queues[pos] = map->queues[--map->len];
break;
}
if (old_maps)
RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
kfree_rcu(map, rcu);
return false;
}
return true;
}
static bool remove_xps_queue_cpu(struct net_device *dev,
struct xps_dev_maps *dev_maps,
int cpu, u16 offset, u16 count)
{
int num_tc = dev_maps->num_tc;
bool active = false;
int tci;
for (tci = cpu * num_tc; num_tc--; tci++) {
int i, j;
for (i = count, j = offset; i--; j++) {
if (!remove_xps_queue(dev_maps, NULL, tci, j))
break;
}
active |= i < 0;
}
return active;
}
static void reset_xps_maps(struct net_device *dev,
struct xps_dev_maps *dev_maps,
enum xps_map_type type)
{
static_key_slow_dec_cpuslocked(&xps_needed);
if (type == XPS_RXQS)
static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
RCU_INIT_POINTER(dev->xps_maps[type], NULL);
kfree_rcu(dev_maps, rcu);
}
static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
u16 offset, u16 count)
{
struct xps_dev_maps *dev_maps;
bool active = false;
int i, j;
dev_maps = xmap_dereference(dev->xps_maps[type]);
if (!dev_maps)
return;
for (j = 0; j < dev_maps->nr_ids; j++)
active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
if (!active)
reset_xps_maps(dev, dev_maps, type);
if (type == XPS_CPUS) {
for (i = offset + (count - 1); count--; i--)
netdev_queue_numa_node_write(
netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
}
}
static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
u16 count)
{
if (!static_key_false(&xps_needed))
return;
cpus_read_lock();
mutex_lock(&xps_map_mutex);
if (static_key_false(&xps_rxqs_needed))
clean_xps_maps(dev, XPS_RXQS, offset, count);
clean_xps_maps(dev, XPS_CPUS, offset, count);
mutex_unlock(&xps_map_mutex);
cpus_read_unlock();
}
static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
{
netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
}
static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
u16 index, bool is_rxqs_map)
{
struct xps_map *new_map;
int alloc_len = XPS_MIN_MAP_ALLOC;
int i, pos;
for (pos = 0; map && pos < map->len; pos++) {
if (map->queues[pos] != index)
continue;
return map;
}
/* Need to add tx-queue to this CPU's/rx-queue's existing map */
if (map) {
if (pos < map->alloc_len)
return map;
alloc_len = map->alloc_len * 2;
}
/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
* map
*/
if (is_rxqs_map)
new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
else
new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
cpu_to_node(attr_index));
if (!new_map)
return NULL;
for (i = 0; i < pos; i++)
new_map->queues[i] = map->queues[i];
new_map->alloc_len = alloc_len;
new_map->len = pos;
return new_map;
}
/* Copy xps maps at a given index */
static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
struct xps_dev_maps *new_dev_maps, int index,
int tc, bool skip_tc)
{
int i, tci = index * dev_maps->num_tc;
struct xps_map *map;
/* copy maps belonging to foreign traffic classes */
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
if (i == tc && skip_tc)
continue;
/* fill in the new device map from the old device map */
map = xmap_dereference(dev_maps->attr_map[tci]);
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
}
}
/* Must be called under cpus_read_lock */
int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
u16 index, enum xps_map_type type)
{
struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
const unsigned long *online_mask = NULL;
bool active = false, copy = false;
int i, j, tci, numa_node_id = -2;
int maps_sz, num_tc = 1, tc = 0;
struct xps_map *map, *new_map;
unsigned int nr_ids;
WARN_ON_ONCE(index >= dev->num_tx_queues);
if (dev->num_tc) {
/* Do not allow XPS on subordinate device directly */
num_tc = dev->num_tc;
if (num_tc < 0)
return -EINVAL;
/* If queue belongs to subordinate dev use its map */
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
tc = netdev_txq_to_tc(dev, index);
if (tc < 0)
return -EINVAL;
}
mutex_lock(&xps_map_mutex);
dev_maps = xmap_dereference(dev->xps_maps[type]);
if (type == XPS_RXQS) {
maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
nr_ids = dev->num_rx_queues;
} else {
maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
if (num_possible_cpus() > 1)
online_mask = cpumask_bits(cpu_online_mask);
nr_ids = nr_cpu_ids;
}
if (maps_sz < L1_CACHE_BYTES)
maps_sz = L1_CACHE_BYTES;
/* The old dev_maps could be larger or smaller than the one we're
* setting up now, as dev->num_tc or nr_ids could have been updated in
* between. We could try to be smart, but let's be safe instead and only
* copy foreign traffic classes if the two map sizes match.
*/
if (dev_maps &&
dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
copy = true;
/* allocate memory for queue storage */
for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
j < nr_ids;) {
if (!new_dev_maps) {
new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
if (!new_dev_maps) {
mutex_unlock(&xps_map_mutex);
return -ENOMEM;
}
new_dev_maps->nr_ids = nr_ids;
new_dev_maps->num_tc = num_tc;
}
tci = j * num_tc + tc;
map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
map = expand_xps_map(map, j, index, type == XPS_RXQS);
if (!map)
goto error;
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
}
if (!new_dev_maps)
goto out_no_new_maps;
if (!dev_maps) {
/* Increment static keys at most once per type */
static_key_slow_inc_cpuslocked(&xps_needed);
if (type == XPS_RXQS)
static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
}
for (j = 0; j < nr_ids; j++) {
bool skip_tc = false;
tci = j * num_tc + tc;
if (netif_attr_test_mask(j, mask, nr_ids) &&
netif_attr_test_online(j, online_mask, nr_ids)) {
/* add tx-queue to CPU/rx-queue maps */
int pos = 0;
skip_tc = true;
map = xmap_dereference(new_dev_maps->attr_map[tci]);
while ((pos < map->len) && (map->queues[pos] != index))
pos++;
if (pos == map->len)
map->queues[map->len++] = index;
#ifdef CONFIG_NUMA
if (type == XPS_CPUS) {
if (numa_node_id == -2)
numa_node_id = cpu_to_node(j);
else if (numa_node_id != cpu_to_node(j))
numa_node_id = -1;
}
#endif
}
if (copy)
xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
skip_tc);
}
rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
/* Cleanup old maps */
if (!dev_maps)
goto out_no_old_maps;
for (j = 0; j < dev_maps->nr_ids; j++) {
for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
map = xmap_dereference(dev_maps->attr_map[tci]);
if (!map)
continue;
if (copy) {
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
if (map == new_map)
continue;
}
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
kfree_rcu(map, rcu);
}
}
old_dev_maps = dev_maps;
out_no_old_maps:
dev_maps = new_dev_maps;
active = true;
out_no_new_maps:
if (type == XPS_CPUS)
/* update Tx queue numa node */
netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
(numa_node_id >= 0) ?
numa_node_id : NUMA_NO_NODE);
if (!dev_maps)
goto out_no_maps;
/* removes tx-queue from unused CPUs/rx-queues */
for (j = 0; j < dev_maps->nr_ids; j++) {
tci = j * dev_maps->num_tc;
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
if (i == tc &&
netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
continue;
active |= remove_xps_queue(dev_maps,
copy ? old_dev_maps : NULL,
tci, index);
}
}
if (old_dev_maps)
kfree_rcu(old_dev_maps, rcu);
/* free map if not active */
if (!active)
reset_xps_maps(dev, dev_maps, type);
out_no_maps:
mutex_unlock(&xps_map_mutex);
return 0;
error:
/* remove any maps that we added */
for (j = 0; j < nr_ids; j++) {
for (i = num_tc, tci = j * num_tc; i--; tci++) {
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
map = copy ?
xmap_dereference(dev_maps->attr_map[tci]) :
NULL;
if (new_map && new_map != map)
kfree(new_map);
}
}
mutex_unlock(&xps_map_mutex);
kfree(new_dev_maps);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
u16 index)
{
int ret;
cpus_read_lock();
ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
cpus_read_unlock();
return ret;
}
EXPORT_SYMBOL(netif_set_xps_queue);
#endif
static void netdev_unbind_all_sb_channels(struct net_device *dev)
{
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
/* Unbind any subordinate channels */
while (txq-- != &dev->_tx[0]) {
if (txq->sb_dev)
netdev_unbind_sb_channel(dev, txq->sb_dev);
}
}
void netdev_reset_tc(struct net_device *dev)
{
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, 0);
#endif
netdev_unbind_all_sb_channels(dev);
/* Reset TC configuration of device */
dev->num_tc = 0;
memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
}
EXPORT_SYMBOL(netdev_reset_tc);
int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
{
if (tc >= dev->num_tc)
return -EINVAL;
#ifdef CONFIG_XPS
netif_reset_xps_queues(dev, offset, count);
#endif
dev->tc_to_txq[tc].count = count;
dev->tc_to_txq[tc].offset = offset;
return 0;
}
EXPORT_SYMBOL(netdev_set_tc_queue);
int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
{
if (num_tc > TC_MAX_QUEUE)
return -EINVAL;
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, 0);
#endif
netdev_unbind_all_sb_channels(dev);
dev->num_tc = num_tc;
return 0;
}
EXPORT_SYMBOL(netdev_set_num_tc);
void netdev_unbind_sb_channel(struct net_device *dev,
struct net_device *sb_dev)
{
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(sb_dev, 0);
#endif
memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
while (txq-- != &dev->_tx[0]) {
if (txq->sb_dev == sb_dev)
txq->sb_dev = NULL;
}
}
EXPORT_SYMBOL(netdev_unbind_sb_channel);
int netdev_bind_sb_channel_queue(struct net_device *dev,
struct net_device *sb_dev,
u8 tc, u16 count, u16 offset)
{
/* Make certain the sb_dev and dev are already configured */
if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
return -EINVAL;
/* We cannot hand out queues we don't have */
if ((offset + count) > dev->real_num_tx_queues)
return -EINVAL;
/* Record the mapping */
sb_dev->tc_to_txq[tc].count = count;
sb_dev->tc_to_txq[tc].offset = offset;
/* Provide a way for Tx queue to find the tc_to_txq map or
* XPS map for itself.
*/
while (count--)
netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
return 0;
}
EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
int netdev_set_sb_channel(struct net_device *dev, u16 channel)
{
/* Do not use a multiqueue device to represent a subordinate channel */
if (netif_is_multiqueue(dev))
return -ENODEV;
/* We allow channels 1 - 32767 to be used for subordinate channels.
* Channel 0 is meant to be "native" mode and used only to represent
* the main root device. We allow writing 0 to reset the device back
* to normal mode after being used as a subordinate channel.
*/
if (channel > S16_MAX)
return -EINVAL;
dev->num_tc = -channel;
return 0;
}
EXPORT_SYMBOL(netdev_set_sb_channel);
/*
* Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
* greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
*/
int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
{
bool disabling;
int rc;
disabling = txq < dev->real_num_tx_queues;
if (txq < 1 || txq > dev->num_tx_queues)
return -EINVAL;
if (dev->reg_state == NETREG_REGISTERED ||
dev->reg_state == NETREG_UNREGISTERING) {
ASSERT_RTNL();
rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
txq);
if (rc)
return rc;
if (dev->num_tc)
netif_setup_tc(dev, txq);
dev_qdisc_change_real_num_tx(dev, txq);
dev->real_num_tx_queues = txq;
if (disabling) {
synchronize_net();
qdisc_reset_all_tx_gt(dev, txq);
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, txq);
#endif
}
} else {
dev->real_num_tx_queues = txq;
}
return 0;
}
EXPORT_SYMBOL(netif_set_real_num_tx_queues);
#ifdef CONFIG_SYSFS
/**
* netif_set_real_num_rx_queues - set actual number of RX queues used
* @dev: Network device
* @rxq: Actual number of RX queues
*
* This must be called either with the rtnl_lock held or before
* registration of the net device. Returns 0 on success, or a
* negative error code. If called before registration, it always
* succeeds.
*/
int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
{
int rc;
if (rxq < 1 || rxq > dev->num_rx_queues)
return -EINVAL;
if (dev->reg_state == NETREG_REGISTERED) {
ASSERT_RTNL();
rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
rxq);
if (rc)
return rc;
}
dev->real_num_rx_queues = rxq;
return 0;
}
EXPORT_SYMBOL(netif_set_real_num_rx_queues);
#endif
/**
* netif_set_real_num_queues - set actual number of RX and TX queues used
* @dev: Network device
* @txq: Actual number of TX queues
* @rxq: Actual number of RX queues
*
* Set the real number of both TX and RX queues.
* Does nothing if the number of queues is already correct.
*/
int netif_set_real_num_queues(struct net_device *dev,
unsigned int txq, unsigned int rxq)
{
unsigned int old_rxq = dev->real_num_rx_queues;
int err;
if (txq < 1 || txq > dev->num_tx_queues ||
rxq < 1 || rxq > dev->num_rx_queues)
return -EINVAL;
/* Start from increases, so the error path only does decreases -
* decreases can't fail.
*/
if (rxq > dev->real_num_rx_queues) {
err = netif_set_real_num_rx_queues(dev, rxq);
if (err)
return err;
}
if (txq > dev->real_num_tx_queues) {
err = netif_set_real_num_tx_queues(dev, txq);
if (err)
goto undo_rx;
}
if (rxq < dev->real_num_rx_queues)
WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
if (txq < dev->real_num_tx_queues)
WARN_ON(netif_set_real_num_tx_queues(dev, txq));
return 0;
undo_rx:
WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
return err;
}
EXPORT_SYMBOL(netif_set_real_num_queues);
/**
* netif_set_tso_max_size() - set the max size of TSO frames supported
* @dev: netdev to update
* @size: max skb->len of a TSO frame
*
* Set the limit on the size of TSO super-frames the device can handle.
* Unless explicitly set the stack will assume the value of
* %GSO_LEGACY_MAX_SIZE.
*/
void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
{
dev->tso_max_size = min(GSO_MAX_SIZE, size);
if (size < READ_ONCE(dev->gso_max_size))
netif_set_gso_max_size(dev, size);
}
EXPORT_SYMBOL(netif_set_tso_max_size);
/**
* netif_set_tso_max_segs() - set the max number of segs supported for TSO
* @dev: netdev to update
* @segs: max number of TCP segments
*
* Set the limit on the number of TCP segments the device can generate from
* a single TSO super-frame.
* Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
*/
void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
{
dev->tso_max_segs = segs;
if (segs < READ_ONCE(dev->gso_max_segs))
netif_set_gso_max_segs(dev, segs);
}
EXPORT_SYMBOL(netif_set_tso_max_segs);
/**
* netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
* @to: netdev to update
* @from: netdev from which to copy the limits
*/
void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
{
netif_set_tso_max_size(to, from->tso_max_size);
netif_set_tso_max_segs(to, from->tso_max_segs);
}
EXPORT_SYMBOL(netif_inherit_tso_max);
/**
* netif_get_num_default_rss_queues - default number of RSS queues
*
* Default value is the number of physical cores if there are only 1 or 2, or
* divided by 2 if there are more.
*/
int netif_get_num_default_rss_queues(void)
{
cpumask_var_t cpus;
int cpu, count = 0;
if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
return 1;
cpumask_copy(cpus, cpu_online_mask);
for_each_cpu(cpu, cpus) {
++count;
cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
}
free_cpumask_var(cpus);
return count > 2 ? DIV_ROUND_UP(count, 2) : count;
}
EXPORT_SYMBOL(netif_get_num_default_rss_queues);
static void __netif_reschedule(struct Qdisc *q)
{
struct softnet_data *sd;
unsigned long flags;
local_irq_save(flags);
sd = this_cpu_ptr(&softnet_data);
q->next_sched = NULL;
*sd->output_queue_tailp = q;
sd->output_queue_tailp = &q->next_sched;
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);
}
void __netif_schedule(struct Qdisc *q)
{
if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
__netif_reschedule(q);
}
EXPORT_SYMBOL(__netif_schedule);
struct dev_kfree_skb_cb {
enum skb_free_reason reason;
};
static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
{
return (struct dev_kfree_skb_cb *)skb->cb;
}
void netif_schedule_queue(struct netdev_queue *txq)
{
rcu_read_lock();
if (!netif_xmit_stopped(txq)) {
struct Qdisc *q = rcu_dereference(txq->qdisc);
__netif_schedule(q);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(netif_schedule_queue);
void netif_tx_wake_queue(struct netdev_queue *dev_queue)
{
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
struct Qdisc *q;
rcu_read_lock();
q = rcu_dereference(dev_queue->qdisc);
__netif_schedule(q);
rcu_read_unlock();
}
}
EXPORT_SYMBOL(netif_tx_wake_queue);
void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
{
unsigned long flags;
if (unlikely(!skb))
return;
if (likely(refcount_read(&skb->users) == 1)) {
smp_rmb();
refcount_set(&skb->users, 0);
} else if (likely(!refcount_dec_and_test(&skb->users))) {
return;
}
get_kfree_skb_cb(skb)->reason = reason;
local_irq_save(flags);
skb->next = __this_cpu_read(softnet_data.completion_queue);
__this_cpu_write(softnet_data.completion_queue, skb);
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);
}
EXPORT_SYMBOL(__dev_kfree_skb_irq);
void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
{
if (in_hardirq() || irqs_disabled())
__dev_kfree_skb_irq(skb, reason);
else if (unlikely(reason == SKB_REASON_DROPPED))
kfree_skb(skb);
else
consume_skb(skb);
}
EXPORT_SYMBOL(__dev_kfree_skb_any);
/**
* netif_device_detach - mark device as removed
* @dev: network device
*
* Mark device as removed from system and therefore no longer available.
*/
void netif_device_detach(struct net_device *dev)
{
if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_tx_stop_all_queues(dev);
}
}
EXPORT_SYMBOL(netif_device_detach);
/**
* netif_device_attach - mark device as attached
* @dev: network device
*
* Mark device as attached from system and restart if needed.
*/
void netif_device_attach(struct net_device *dev)
{
if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_tx_wake_all_queues(dev);
__netdev_watchdog_up(dev);
}
}
EXPORT_SYMBOL(netif_device_attach);
/*
* Returns a Tx hash based on the given packet descriptor a Tx queues' number
* to be used as a distribution range.
*/
static u16 skb_tx_hash(const struct net_device *dev,
const struct net_device *sb_dev,
struct sk_buff *skb)
{
u32 hash;
u16 qoffset = 0;
u16 qcount = dev->real_num_tx_queues;
if (dev->num_tc) {
u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
qoffset = sb_dev->tc_to_txq[tc].offset;
qcount = sb_dev->tc_to_txq[tc].count;
if (unlikely(!qcount)) {
net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
sb_dev->name, qoffset, tc);
qoffset = 0;
qcount = dev->real_num_tx_queues;
}
}
if (skb_rx_queue_recorded(skb)) {
DEBUG_NET_WARN_ON_ONCE(qcount == 0);
hash = skb_get_rx_queue(skb);
if (hash >= qoffset)
hash -= qoffset;
while (unlikely(hash >= qcount))
hash -= qcount;
return hash + qoffset;
}
return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
}
static void skb_warn_bad_offload(const struct sk_buff *skb)
{
static const netdev_features_t null_features;
struct net_device *dev = skb->dev;
const char *name = "";
if (!net_ratelimit())
return;
if (dev) {
if (dev->dev.parent)
name = dev_driver_string(dev->dev.parent);
else
name = netdev_name(dev);
}
skb_dump(KERN_WARNING, skb, false);
WARN(1, "%s: caps=(%pNF, %pNF)\n",
name, dev ? &dev->features : &null_features,
skb->sk ? &skb->sk->sk_route_caps : &null_features);
}
/*
* Invalidate hardware checksum when packet is to be mangled, and
* complete checksum manually on outgoing path.
*/
int skb_checksum_help(struct sk_buff *skb)
{
__wsum csum;
int ret = 0, offset;
if (skb->ip_summed == CHECKSUM_COMPLETE)
goto out_set_summed;
if (unlikely(skb_is_gso(skb))) {
skb_warn_bad_offload(skb);
return -EINVAL;
}
/* Before computing a checksum, we should make sure no frag could
* be modified by an external entity : checksum could be wrong.
*/
if (skb_has_shared_frag(skb)) {
ret = __skb_linearize(skb);
if (ret)
goto out;
}
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
goto out;
}
csum = skb_checksum(skb, offset, skb->len - offset, 0);
offset += skb->csum_offset;
if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);