| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright (C) 2018 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * |
| * Transmit and frame generation functions. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_vlan.h> |
| #include <linux/etherdevice.h> |
| #include <linux/bitmap.h> |
| #include <linux/rcupdate.h> |
| #include <linux/export.h> |
| #include <net/net_namespace.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <net/cfg80211.h> |
| #include <net/mac80211.h> |
| #include <net/codel.h> |
| #include <net/codel_impl.h> |
| #include <asm/unaligned.h> |
| #include <net/fq_impl.h> |
| |
| #include "ieee80211_i.h" |
| #include "driver-ops.h" |
| #include "led.h" |
| #include "mesh.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "wme.h" |
| #include "rate.h" |
| |
| /* misc utils */ |
| |
| static inline void ieee80211_tx_stats(struct net_device *dev, u32 len) |
| { |
| struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); |
| |
| u64_stats_update_begin(&tstats->syncp); |
| tstats->tx_packets++; |
| tstats->tx_bytes += len; |
| u64_stats_update_end(&tstats->syncp); |
| } |
| |
| static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, |
| struct sk_buff *skb, int group_addr, |
| int next_frag_len) |
| { |
| int rate, mrate, erp, dur, i, shift = 0; |
| struct ieee80211_rate *txrate; |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_chanctx_conf *chanctx_conf; |
| u32 rate_flags = 0; |
| |
| /* assume HW handles this */ |
| if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS)) |
| return 0; |
| |
| rcu_read_lock(); |
| chanctx_conf = rcu_dereference(tx->sdata->vif.chanctx_conf); |
| if (chanctx_conf) { |
| shift = ieee80211_chandef_get_shift(&chanctx_conf->def); |
| rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def); |
| } |
| rcu_read_unlock(); |
| |
| /* uh huh? */ |
| if (WARN_ON_ONCE(tx->rate.idx < 0)) |
| return 0; |
| |
| sband = local->hw.wiphy->bands[info->band]; |
| txrate = &sband->bitrates[tx->rate.idx]; |
| |
| erp = txrate->flags & IEEE80211_RATE_ERP_G; |
| |
| /* |
| * data and mgmt (except PS Poll): |
| * - during CFP: 32768 |
| * - during contention period: |
| * if addr1 is group address: 0 |
| * if more fragments = 0 and addr1 is individual address: time to |
| * transmit one ACK plus SIFS |
| * if more fragments = 1 and addr1 is individual address: time to |
| * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| * |
| * IEEE 802.11, 9.6: |
| * - control response frame (CTS or ACK) shall be transmitted using the |
| * same rate as the immediately previous frame in the frame exchange |
| * sequence, if this rate belongs to the PHY mandatory rates, or else |
| * at the highest possible rate belonging to the PHY rates in the |
| * BSSBasicRateSet |
| */ |
| hdr = (struct ieee80211_hdr *)skb->data; |
| if (ieee80211_is_ctl(hdr->frame_control)) { |
| /* TODO: These control frames are not currently sent by |
| * mac80211, but should they be implemented, this function |
| * needs to be updated to support duration field calculation. |
| * |
| * RTS: time needed to transmit pending data/mgmt frame plus |
| * one CTS frame plus one ACK frame plus 3 x SIFS |
| * CTS: duration of immediately previous RTS minus time |
| * required to transmit CTS and its SIFS |
| * ACK: 0 if immediately previous directed data/mgmt had |
| * more=0, with more=1 duration in ACK frame is duration |
| * from previous frame minus time needed to transmit ACK |
| * and its SIFS |
| * PS Poll: BIT(15) | BIT(14) | aid |
| */ |
| return 0; |
| } |
| |
| /* data/mgmt */ |
| if (0 /* FIX: data/mgmt during CFP */) |
| return cpu_to_le16(32768); |
| |
| if (group_addr) /* Group address as the destination - no ACK */ |
| return 0; |
| |
| /* Individual destination address: |
| * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| * CTS and ACK frames shall be transmitted using the highest rate in |
| * basic rate set that is less than or equal to the rate of the |
| * immediately previous frame and that is using the same modulation |
| * (CCK or OFDM). If no basic rate set matches with these requirements, |
| * the highest mandatory rate of the PHY that is less than or equal to |
| * the rate of the previous frame is used. |
| * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| */ |
| rate = -1; |
| /* use lowest available if everything fails */ |
| mrate = sband->bitrates[0].bitrate; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| struct ieee80211_rate *r = &sband->bitrates[i]; |
| |
| if (r->bitrate > txrate->bitrate) |
| break; |
| |
| if ((rate_flags & r->flags) != rate_flags) |
| continue; |
| |
| if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) |
| rate = DIV_ROUND_UP(r->bitrate, 1 << shift); |
| |
| switch (sband->band) { |
| case NL80211_BAND_2GHZ: { |
| u32 flag; |
| if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) |
| flag = IEEE80211_RATE_MANDATORY_G; |
| else |
| flag = IEEE80211_RATE_MANDATORY_B; |
| if (r->flags & flag) |
| mrate = r->bitrate; |
| break; |
| } |
| case NL80211_BAND_5GHZ: |
| if (r->flags & IEEE80211_RATE_MANDATORY_A) |
| mrate = r->bitrate; |
| break; |
| case NL80211_BAND_60GHZ: |
| /* TODO, for now fall through */ |
| case NUM_NL80211_BANDS: |
| WARN_ON(1); |
| break; |
| } |
| } |
| if (rate == -1) { |
| /* No matching basic rate found; use highest suitable mandatory |
| * PHY rate */ |
| rate = DIV_ROUND_UP(mrate, 1 << shift); |
| } |
| |
| /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ |
| if (ieee80211_is_data_qos(hdr->frame_control) && |
| *(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) |
| dur = 0; |
| else |
| /* Time needed to transmit ACK |
| * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| * to closest integer */ |
| dur = ieee80211_frame_duration(sband->band, 10, rate, erp, |
| tx->sdata->vif.bss_conf.use_short_preamble, |
| shift); |
| |
| if (next_frag_len) { |
| /* Frame is fragmented: duration increases with time needed to |
| * transmit next fragment plus ACK and 2 x SIFS. */ |
| dur *= 2; /* ACK + SIFS */ |
| /* next fragment */ |
| dur += ieee80211_frame_duration(sband->band, next_frag_len, |
| txrate->bitrate, erp, |
| tx->sdata->vif.bss_conf.use_short_preamble, |
| shift); |
| } |
| |
| return cpu_to_le16(dur); |
| } |
| |
| /* tx handlers */ |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_if_managed *ifmgd; |
| |
| /* driver doesn't support power save */ |
| if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) |
| return TX_CONTINUE; |
| |
| /* hardware does dynamic power save */ |
| if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) |
| return TX_CONTINUE; |
| |
| /* dynamic power save disabled */ |
| if (local->hw.conf.dynamic_ps_timeout <= 0) |
| return TX_CONTINUE; |
| |
| /* we are scanning, don't enable power save */ |
| if (local->scanning) |
| return TX_CONTINUE; |
| |
| if (!local->ps_sdata) |
| return TX_CONTINUE; |
| |
| /* No point if we're going to suspend */ |
| if (local->quiescing) |
| return TX_CONTINUE; |
| |
| /* dynamic ps is supported only in managed mode */ |
| if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) |
| return TX_CONTINUE; |
| |
| ifmgd = &tx->sdata->u.mgd; |
| |
| /* |
| * Don't wakeup from power save if u-apsd is enabled, voip ac has |
| * u-apsd enabled and the frame is in voip class. This effectively |
| * means that even if all access categories have u-apsd enabled, in |
| * practise u-apsd is only used with the voip ac. This is a |
| * workaround for the case when received voip class packets do not |
| * have correct qos tag for some reason, due the network or the |
| * peer application. |
| * |
| * Note: ifmgd->uapsd_queues access is racy here. If the value is |
| * changed via debugfs, user needs to reassociate manually to have |
| * everything in sync. |
| */ |
| if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) && |
| (ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) && |
| skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO) |
| return TX_CONTINUE; |
| |
| if (local->hw.conf.flags & IEEE80211_CONF_PS) { |
| ieee80211_stop_queues_by_reason(&local->hw, |
| IEEE80211_MAX_QUEUE_MAP, |
| IEEE80211_QUEUE_STOP_REASON_PS, |
| false); |
| ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; |
| ieee80211_queue_work(&local->hw, |
| &local->dynamic_ps_disable_work); |
| } |
| |
| /* Don't restart the timer if we're not disassociated */ |
| if (!ifmgd->associated) |
| return TX_CONTINUE; |
| |
| mod_timer(&local->dynamic_ps_timer, jiffies + |
| msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) |
| { |
| |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| bool assoc = false; |
| |
| if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) |
| return TX_CONTINUE; |
| |
| if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && |
| test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && |
| !ieee80211_is_probe_req(hdr->frame_control) && |
| !ieee80211_is_nullfunc(hdr->frame_control)) |
| /* |
| * When software scanning only nullfunc frames (to notify |
| * the sleep state to the AP) and probe requests (for the |
| * active scan) are allowed, all other frames should not be |
| * sent and we should not get here, but if we do |
| * nonetheless, drop them to avoid sending them |
| * off-channel. See the link below and |
| * ieee80211_start_scan() for more. |
| * |
| * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 |
| */ |
| return TX_DROP; |
| |
| if (tx->sdata->vif.type == NL80211_IFTYPE_OCB) |
| return TX_CONTINUE; |
| |
| if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) |
| return TX_CONTINUE; |
| |
| if (tx->flags & IEEE80211_TX_PS_BUFFERED) |
| return TX_CONTINUE; |
| |
| if (tx->sta) |
| assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); |
| |
| if (likely(tx->flags & IEEE80211_TX_UNICAST)) { |
| if (unlikely(!assoc && |
| ieee80211_is_data(hdr->frame_control))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| sdata_info(tx->sdata, |
| "dropped data frame to not associated station %pM\n", |
| hdr->addr1); |
| #endif |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| return TX_DROP; |
| } |
| } else if (unlikely(ieee80211_is_data(hdr->frame_control) && |
| ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) { |
| /* |
| * No associated STAs - no need to send multicast |
| * frames. |
| */ |
| return TX_DROP; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| /* This function is called whenever the AP is about to exceed the maximum limit |
| * of buffered frames for power saving STAs. This situation should not really |
| * happen often during normal operation, so dropping the oldest buffered packet |
| * from each queue should be OK to make some room for new frames. */ |
| static void purge_old_ps_buffers(struct ieee80211_local *local) |
| { |
| int total = 0, purged = 0; |
| struct sk_buff *skb; |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| struct ps_data *ps; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP) |
| ps = &sdata->u.ap.ps; |
| else if (ieee80211_vif_is_mesh(&sdata->vif)) |
| ps = &sdata->u.mesh.ps; |
| else |
| continue; |
| |
| skb = skb_dequeue(&ps->bc_buf); |
| if (skb) { |
| purged++; |
| ieee80211_free_txskb(&local->hw, skb); |
| } |
| total += skb_queue_len(&ps->bc_buf); |
| } |
| |
| /* |
| * Drop one frame from each station from the lowest-priority |
| * AC that has frames at all. |
| */ |
| list_for_each_entry_rcu(sta, &local->sta_list, list) { |
| int ac; |
| |
| for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { |
| skb = skb_dequeue(&sta->ps_tx_buf[ac]); |
| total += skb_queue_len(&sta->ps_tx_buf[ac]); |
| if (skb) { |
| purged++; |
| ieee80211_free_txskb(&local->hw, skb); |
| break; |
| } |
| } |
| } |
| |
| local->total_ps_buffered = total; |
| ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged); |
| } |
| |
| static ieee80211_tx_result |
| ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| struct ps_data *ps; |
| |
| /* |
| * broadcast/multicast frame |
| * |
| * If any of the associated/peer stations is in power save mode, |
| * the frame is buffered to be sent after DTIM beacon frame. |
| * This is done either by the hardware or us. |
| */ |
| |
| /* powersaving STAs currently only in AP/VLAN/mesh mode */ |
| if (tx->sdata->vif.type == NL80211_IFTYPE_AP || |
| tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| if (!tx->sdata->bss) |
| return TX_CONTINUE; |
| |
| ps = &tx->sdata->bss->ps; |
| } else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) { |
| ps = &tx->sdata->u.mesh.ps; |
| } else { |
| return TX_CONTINUE; |
| } |
| |
| |
| /* no buffering for ordered frames */ |
| if (ieee80211_has_order(hdr->frame_control)) |
| return TX_CONTINUE; |
| |
| if (ieee80211_is_probe_req(hdr->frame_control)) |
| return TX_CONTINUE; |
| |
| if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL)) |
| info->hw_queue = tx->sdata->vif.cab_queue; |
| |
| /* no stations in PS mode and no buffered packets */ |
| if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf)) |
| return TX_CONTINUE; |
| |
| info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; |
| |
| /* device releases frame after DTIM beacon */ |
| if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING)) |
| return TX_CONTINUE; |
| |
| /* buffered in mac80211 */ |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| |
| if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) { |
| ps_dbg(tx->sdata, |
| "BC TX buffer full - dropping the oldest frame\n"); |
| ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf)); |
| } else |
| tx->local->total_ps_buffered++; |
| |
| skb_queue_tail(&ps->bc_buf, tx->skb); |
| |
| return TX_QUEUED; |
| } |
| |
| static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| if (!ieee80211_is_mgmt(fc)) |
| return 0; |
| |
| if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) |
| return 0; |
| |
| if (!ieee80211_is_robust_mgmt_frame(skb)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static ieee80211_tx_result |
| ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| struct sta_info *sta = tx->sta; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| struct ieee80211_local *local = tx->local; |
| |
| if (unlikely(!sta)) |
| return TX_CONTINUE; |
| |
| if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || |
| test_sta_flag(sta, WLAN_STA_PS_DRIVER) || |
| test_sta_flag(sta, WLAN_STA_PS_DELIVER)) && |
| !(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) { |
| int ac = skb_get_queue_mapping(tx->skb); |
| |
| if (ieee80211_is_mgmt(hdr->frame_control) && |
| !ieee80211_is_bufferable_mmpdu(hdr->frame_control)) { |
| info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; |
| return TX_CONTINUE; |
| } |
| |
| ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n", |
| sta->sta.addr, sta->sta.aid, ac); |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| |
| /* sync with ieee80211_sta_ps_deliver_wakeup */ |
| spin_lock(&sta->ps_lock); |
| /* |
| * STA woke up the meantime and all the frames on ps_tx_buf have |
| * been queued to pending queue. No reordering can happen, go |
| * ahead and Tx the packet. |
| */ |
| if (!test_sta_flag(sta, WLAN_STA_PS_STA) && |
| !test_sta_flag(sta, WLAN_STA_PS_DRIVER) && |
| !test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { |
| spin_unlock(&sta->ps_lock); |
| return TX_CONTINUE; |
| } |
| |
| if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { |
| struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); |
| ps_dbg(tx->sdata, |
| "STA %pM TX buffer for AC %d full - dropping oldest frame\n", |
| sta->sta.addr, ac); |
| ieee80211_free_txskb(&local->hw, old); |
| } else |
| tx->local->total_ps_buffered++; |
| |
| info->control.jiffies = jiffies; |
| info->control.vif = &tx->sdata->vif; |
| info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; |
| skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); |
| spin_unlock(&sta->ps_lock); |
| |
| if (!timer_pending(&local->sta_cleanup)) |
| mod_timer(&local->sta_cleanup, |
| round_jiffies(jiffies + |
| STA_INFO_CLEANUP_INTERVAL)); |
| |
| /* |
| * We queued up some frames, so the TIM bit might |
| * need to be set, recalculate it. |
| */ |
| sta_info_recalc_tim(sta); |
| |
| return TX_QUEUED; |
| } else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { |
| ps_dbg(tx->sdata, |
| "STA %pM in PS mode, but polling/in SP -> send frame\n", |
| sta->sta.addr); |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) |
| { |
| if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) |
| return TX_CONTINUE; |
| |
| if (tx->flags & IEEE80211_TX_UNICAST) |
| return ieee80211_tx_h_unicast_ps_buf(tx); |
| else |
| return ieee80211_tx_h_multicast_ps_buf(tx); |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| |
| if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) { |
| if (tx->sdata->control_port_no_encrypt) |
| info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO; |
| info->flags |= IEEE80211_TX_CTL_USE_MINRATE; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_key *key; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| |
| if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) |
| tx->key = NULL; |
| else if (tx->sta && |
| (key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx]))) |
| tx->key = key; |
| else if (ieee80211_is_group_privacy_action(tx->skb) && |
| (key = rcu_dereference(tx->sdata->default_multicast_key))) |
| tx->key = key; |
| else if (ieee80211_is_mgmt(hdr->frame_control) && |
| is_multicast_ether_addr(hdr->addr1) && |
| ieee80211_is_robust_mgmt_frame(tx->skb) && |
| (key = rcu_dereference(tx->sdata->default_mgmt_key))) |
| tx->key = key; |
| else if (is_multicast_ether_addr(hdr->addr1) && |
| (key = rcu_dereference(tx->sdata->default_multicast_key))) |
| tx->key = key; |
| else if (!is_multicast_ether_addr(hdr->addr1) && |
| (key = rcu_dereference(tx->sdata->default_unicast_key))) |
| tx->key = key; |
| else |
| tx->key = NULL; |
| |
| if (tx->key) { |
| bool skip_hw = false; |
| |
| /* TODO: add threshold stuff again */ |
| |
| switch (tx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| case WLAN_CIPHER_SUITE_TKIP: |
| if (!ieee80211_is_data_present(hdr->frame_control)) |
| tx->key = NULL; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| if (!ieee80211_is_data_present(hdr->frame_control) && |
| !ieee80211_use_mfp(hdr->frame_control, tx->sta, |
| tx->skb) && |
| !ieee80211_is_group_privacy_action(tx->skb)) |
| tx->key = NULL; |
| else |
| skip_hw = (tx->key->conf.flags & |
| IEEE80211_KEY_FLAG_SW_MGMT_TX) && |
| ieee80211_is_mgmt(hdr->frame_control); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| if (!ieee80211_is_mgmt(hdr->frame_control)) |
| tx->key = NULL; |
| break; |
| } |
| |
| if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED && |
| !ieee80211_is_deauth(hdr->frame_control))) |
| return TX_DROP; |
| |
| if (!skip_hw && tx->key && |
| tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) |
| info->control.hw_key = &tx->key->conf; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (void *)tx->skb->data; |
| struct ieee80211_supported_band *sband; |
| u32 len; |
| struct ieee80211_tx_rate_control txrc; |
| struct ieee80211_sta_rates *ratetbl = NULL; |
| bool assoc = false; |
| |
| memset(&txrc, 0, sizeof(txrc)); |
| |
| sband = tx->local->hw.wiphy->bands[info->band]; |
| |
| len = min_t(u32, tx->skb->len + FCS_LEN, |
| tx->local->hw.wiphy->frag_threshold); |
| |
| /* set up the tx rate control struct we give the RC algo */ |
| txrc.hw = &tx->local->hw; |
| txrc.sband = sband; |
| txrc.bss_conf = &tx->sdata->vif.bss_conf; |
| txrc.skb = tx->skb; |
| txrc.reported_rate.idx = -1; |
| txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band]; |
| |
| if (tx->sdata->rc_has_mcs_mask[info->band]) |
| txrc.rate_idx_mcs_mask = |
| tx->sdata->rc_rateidx_mcs_mask[info->band]; |
| |
| txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || |
| tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || |
| tx->sdata->vif.type == NL80211_IFTYPE_ADHOC || |
| tx->sdata->vif.type == NL80211_IFTYPE_OCB); |
| |
| /* set up RTS protection if desired */ |
| if (len > tx->local->hw.wiphy->rts_threshold) { |
| txrc.rts = true; |
| } |
| |
| info->control.use_rts = txrc.rts; |
| info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot; |
| |
| /* |
| * Use short preamble if the BSS can handle it, but not for |
| * management frames unless we know the receiver can handle |
| * that -- the management frame might be to a station that |
| * just wants a probe response. |
| */ |
| if (tx->sdata->vif.bss_conf.use_short_preamble && |
| (ieee80211_is_data(hdr->frame_control) || |
| (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) |
| txrc.short_preamble = true; |
| |
| info->control.short_preamble = txrc.short_preamble; |
| |
| /* don't ask rate control when rate already injected via radiotap */ |
| if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT) |
| return TX_CONTINUE; |
| |
| if (tx->sta) |
| assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); |
| |
| /* |
| * Lets not bother rate control if we're associated and cannot |
| * talk to the sta. This should not happen. |
| */ |
| if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && |
| !rate_usable_index_exists(sband, &tx->sta->sta), |
| "%s: Dropped data frame as no usable bitrate found while " |
| "scanning and associated. Target station: " |
| "%pM on %d GHz band\n", |
| tx->sdata->name, hdr->addr1, |
| info->band ? 5 : 2)) |
| return TX_DROP; |
| |
| /* |
| * If we're associated with the sta at this point we know we can at |
| * least send the frame at the lowest bit rate. |
| */ |
| rate_control_get_rate(tx->sdata, tx->sta, &txrc); |
| |
| if (tx->sta && !info->control.skip_table) |
| ratetbl = rcu_dereference(tx->sta->sta.rates); |
| |
| if (unlikely(info->control.rates[0].idx < 0)) { |
| if (ratetbl) { |
| struct ieee80211_tx_rate rate = { |
| .idx = ratetbl->rate[0].idx, |
| .flags = ratetbl->rate[0].flags, |
| .count = ratetbl->rate[0].count |
| }; |
| |
| if (ratetbl->rate[0].idx < 0) |
| return TX_DROP; |
| |
| tx->rate = rate; |
| } else { |
| return TX_DROP; |
| } |
| } else { |
| tx->rate = info->control.rates[0]; |
| } |
| |
| if (txrc.reported_rate.idx < 0) { |
| txrc.reported_rate = tx->rate; |
| if (tx->sta && ieee80211_is_data(hdr->frame_control)) |
| tx->sta->tx_stats.last_rate = txrc.reported_rate; |
| } else if (tx->sta) |
| tx->sta->tx_stats.last_rate = txrc.reported_rate; |
| |
| if (ratetbl) |
| return TX_CONTINUE; |
| |
| if (unlikely(!info->control.rates[0].count)) |
| info->control.rates[0].count = 1; |
| |
| if (WARN_ON_ONCE((info->control.rates[0].count > 1) && |
| (info->flags & IEEE80211_TX_CTL_NO_ACK))) |
| info->control.rates[0].count = 1; |
| |
| return TX_CONTINUE; |
| } |
| |
| static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid) |
| { |
| u16 *seq = &sta->tid_seq[tid]; |
| __le16 ret = cpu_to_le16(*seq); |
| |
| /* Increase the sequence number. */ |
| *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; |
| |
| return ret; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| u8 *qc; |
| int tid; |
| |
| /* |
| * Packet injection may want to control the sequence |
| * number, if we have no matching interface then we |
| * neither assign one ourselves nor ask the driver to. |
| */ |
| if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) |
| return TX_CONTINUE; |
| |
| if (unlikely(ieee80211_is_ctl(hdr->frame_control))) |
| return TX_CONTINUE; |
| |
| if (ieee80211_hdrlen(hdr->frame_control) < 24) |
| return TX_CONTINUE; |
| |
| if (ieee80211_is_qos_nullfunc(hdr->frame_control)) |
| return TX_CONTINUE; |
| |
| /* |
| * Anything but QoS data that has a sequence number field |
| * (is long enough) gets a sequence number from the global |
| * counter. QoS data frames with a multicast destination |
| * also use the global counter (802.11-2012 9.3.2.10). |
| */ |
| if (!ieee80211_is_data_qos(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) { |
| /* driver should assign sequence number */ |
| info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; |
| /* for pure STA mode without beacons, we can do it */ |
| hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); |
| tx->sdata->sequence_number += 0x10; |
| if (tx->sta) |
| tx->sta->tx_stats.msdu[IEEE80211_NUM_TIDS]++; |
| return TX_CONTINUE; |
| } |
| |
| /* |
| * This should be true for injected/management frames only, for |
| * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ |
| * above since they are not QoS-data frames. |
| */ |
| if (!tx->sta) |
| return TX_CONTINUE; |
| |
| /* include per-STA, per-TID sequence counter */ |
| |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| tx->sta->tx_stats.msdu[tid]++; |
| |
| hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid); |
| |
| return TX_CONTINUE; |
| } |
| |
| static int ieee80211_fragment(struct ieee80211_tx_data *tx, |
| struct sk_buff *skb, int hdrlen, |
| int frag_threshold) |
| { |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_tx_info *info; |
| struct sk_buff *tmp; |
| int per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| int pos = hdrlen + per_fragm; |
| int rem = skb->len - hdrlen - per_fragm; |
| |
| if (WARN_ON(rem < 0)) |
| return -EINVAL; |
| |
| /* first fragment was already added to queue by caller */ |
| |
| while (rem) { |
| int fraglen = per_fragm; |
| |
| if (fraglen > rem) |
| fraglen = rem; |
| rem -= fraglen; |
| tmp = dev_alloc_skb(local->tx_headroom + |
| frag_threshold + |
| tx->sdata->encrypt_headroom + |
| IEEE80211_ENCRYPT_TAILROOM); |
| if (!tmp) |
| return -ENOMEM; |
| |
| __skb_queue_tail(&tx->skbs, tmp); |
| |
| skb_reserve(tmp, |
| local->tx_headroom + tx->sdata->encrypt_headroom); |
| |
| /* copy control information */ |
| memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); |
| |
| info = IEEE80211_SKB_CB(tmp); |
| info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | |
| IEEE80211_TX_CTL_FIRST_FRAGMENT); |
| |
| if (rem) |
| info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; |
| |
| skb_copy_queue_mapping(tmp, skb); |
| tmp->priority = skb->priority; |
| tmp->dev = skb->dev; |
| |
| /* copy header and data */ |
| skb_put_data(tmp, skb->data, hdrlen); |
| skb_put_data(tmp, skb->data + pos, fraglen); |
| |
| pos += fraglen; |
| } |
| |
| /* adjust first fragment's length */ |
| skb_trim(skb, hdrlen + per_fragm); |
| return 0; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (void *)skb->data; |
| int frag_threshold = tx->local->hw.wiphy->frag_threshold; |
| int hdrlen; |
| int fragnum; |
| |
| /* no matter what happens, tx->skb moves to tx->skbs */ |
| __skb_queue_tail(&tx->skbs, skb); |
| tx->skb = NULL; |
| |
| if (info->flags & IEEE80211_TX_CTL_DONTFRAG) |
| return TX_CONTINUE; |
| |
| if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) |
| return TX_CONTINUE; |
| |
| /* |
| * Warn when submitting a fragmented A-MPDU frame and drop it. |
| * This scenario is handled in ieee80211_tx_prepare but extra |
| * caution taken here as fragmented ampdu may cause Tx stop. |
| */ |
| if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| return TX_DROP; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| /* internal error, why isn't DONTFRAG set? */ |
| if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) |
| return TX_DROP; |
| |
| /* |
| * Now fragment the frame. This will allocate all the fragments and |
| * chain them (using skb as the first fragment) to skb->next. |
| * During transmission, we will remove the successfully transmitted |
| * fragments from this list. When the low-level driver rejects one |
| * of the fragments then we will simply pretend to accept the skb |
| * but store it away as pending. |
| */ |
| if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) |
| return TX_DROP; |
| |
| /* update duration/seq/flags of fragments */ |
| fragnum = 0; |
| |
| skb_queue_walk(&tx->skbs, skb) { |
| const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| |
| hdr = (void *)skb->data; |
| info = IEEE80211_SKB_CB(skb); |
| |
| if (!skb_queue_is_last(&tx->skbs, skb)) { |
| hdr->frame_control |= morefrags; |
| /* |
| * No multi-rate retries for fragmented frames, that |
| * would completely throw off the NAV at other STAs. |
| */ |
| info->control.rates[1].idx = -1; |
| info->control.rates[2].idx = -1; |
| info->control.rates[3].idx = -1; |
| BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4); |
| info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; |
| } else { |
| hdr->frame_control &= ~morefrags; |
| } |
| hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); |
| fragnum++; |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb; |
| int ac = -1; |
| |
| if (!tx->sta) |
| return TX_CONTINUE; |
| |
| skb_queue_walk(&tx->skbs, skb) { |
| ac = skb_get_queue_mapping(skb); |
| tx->sta->tx_stats.bytes[ac] += skb->len; |
| } |
| if (ac >= 0) |
| tx->sta->tx_stats.packets[ac]++; |
| |
| return TX_CONTINUE; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) |
| { |
| if (!tx->key) |
| return TX_CONTINUE; |
| |
| switch (tx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| return ieee80211_crypto_wep_encrypt(tx); |
| case WLAN_CIPHER_SUITE_TKIP: |
| return ieee80211_crypto_tkip_encrypt(tx); |
| case WLAN_CIPHER_SUITE_CCMP: |
| return ieee80211_crypto_ccmp_encrypt( |
| tx, IEEE80211_CCMP_MIC_LEN); |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| return ieee80211_crypto_ccmp_encrypt( |
| tx, IEEE80211_CCMP_256_MIC_LEN); |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| return ieee80211_crypto_aes_cmac_encrypt(tx); |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| return ieee80211_crypto_aes_cmac_256_encrypt(tx); |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| return ieee80211_crypto_aes_gmac_encrypt(tx); |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| return ieee80211_crypto_gcmp_encrypt(tx); |
| default: |
| return ieee80211_crypto_hw_encrypt(tx); |
| } |
| |
| return TX_DROP; |
| } |
| |
| static ieee80211_tx_result debug_noinline |
| ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) |
| { |
| struct sk_buff *skb; |
| struct ieee80211_hdr *hdr; |
| int next_len; |
| bool group_addr; |
| |
| skb_queue_walk(&tx->skbs, skb) { |
| hdr = (void *) skb->data; |
| if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) |
| break; /* must not overwrite AID */ |
| if (!skb_queue_is_last(&tx->skbs, skb)) { |
| struct sk_buff *next = skb_queue_next(&tx->skbs, skb); |
| next_len = next->len; |
| } else |
| next_len = 0; |
| group_addr = is_multicast_ether_addr(hdr->addr1); |
| |
| hdr->duration_id = |
| ieee80211_duration(tx, skb, group_addr, next_len); |
| } |
| |
| return TX_CONTINUE; |
| } |
| |
| /* actual transmit path */ |
| |
| static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, |
| struct sk_buff *skb, |
| struct ieee80211_tx_info *info, |
| struct tid_ampdu_tx *tid_tx, |
| int tid) |
| { |
| bool queued = false; |
| bool reset_agg_timer = false; |
| struct sk_buff *purge_skb = NULL; |
| |
| if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| info->flags |= IEEE80211_TX_CTL_AMPDU; |
| reset_agg_timer = true; |
| } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { |
| /* |
| * nothing -- this aggregation session is being started |
| * but that might still fail with the driver |
| */ |
| } else if (!tx->sta->sta.txq[tid]) { |
| spin_lock(&tx->sta->lock); |
| /* |
| * Need to re-check now, because we may get here |
| * |
| * 1) in the window during which the setup is actually |
| * already done, but not marked yet because not all |
| * packets are spliced over to the driver pending |
| * queue yet -- if this happened we acquire the lock |
| * either before or after the splice happens, but |
| * need to recheck which of these cases happened. |
| * |
| * 2) during session teardown, if the OPERATIONAL bit |
| * was cleared due to the teardown but the pointer |
| * hasn't been assigned NULL yet (or we loaded it |
| * before it was assigned) -- in this case it may |
| * now be NULL which means we should just let the |
| * packet pass through because splicing the frames |
| * back is already done. |
| */ |
| tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); |
| |
| if (!tid_tx) { |
| /* do nothing, let packet pass through */ |
| } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| info->flags |= IEEE80211_TX_CTL_AMPDU; |
| reset_agg_timer = true; |
| } else { |
| queued = true; |
| if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) { |
| clear_sta_flag(tx->sta, WLAN_STA_SP); |
| ps_dbg(tx->sta->sdata, |
| "STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n", |
| tx->sta->sta.addr, tx->sta->sta.aid); |
| } |
| info->control.vif = &tx->sdata->vif; |
| info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; |
| __skb_queue_tail(&tid_tx->pending, skb); |
| if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER) |
| purge_skb = __skb_dequeue(&tid_tx->pending); |
| } |
| spin_unlock(&tx->sta->lock); |
| |
| if (purge_skb) |
| ieee80211_free_txskb(&tx->local->hw, purge_skb); |
| } |
| |
| /* reset session timer */ |
| if (reset_agg_timer) |
| tid_tx->last_tx = jiffies; |
| |
| return queued; |
| } |
| |
| /* |
| * initialises @tx |
| * pass %NULL for the station if unknown, a valid pointer if known |
| * or an ERR_PTR() if the station is known not to exist |
| */ |
| static ieee80211_tx_result |
| ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_tx_data *tx, |
| struct sta_info *sta, struct sk_buff *skb) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int tid; |
| u8 *qc; |
| |
| memset(tx, 0, sizeof(*tx)); |
| tx->skb = skb; |
| tx->local = local; |
| tx->sdata = sdata; |
| __skb_queue_head_init(&tx->skbs); |
| |
| /* |
| * If this flag is set to true anywhere, and we get here, |
| * we are doing the needed processing, so remove the flag |
| * now. |
| */ |
| info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (likely(sta)) { |
| if (!IS_ERR(sta)) |
| tx->sta = sta; |
| } else { |
| if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| tx->sta = rcu_dereference(sdata->u.vlan.sta); |
| if (!tx->sta && sdata->wdev.use_4addr) |
| return TX_DROP; |
| } else if (info->flags & (IEEE80211_TX_INTFL_NL80211_FRAME_TX | |
| IEEE80211_TX_CTL_INJECTED) || |
| tx->sdata->control_port_protocol == tx->skb->protocol) { |
| tx->sta = sta_info_get_bss(sdata, hdr->addr1); |
| } |
| if (!tx->sta && !is_multicast_ether_addr(hdr->addr1)) |
| tx->sta = sta_info_get(sdata, hdr->addr1); |
| } |
| |
| if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && |
| !ieee80211_is_qos_nullfunc(hdr->frame_control) && |
| ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && |
| !ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) { |
| struct tid_ampdu_tx *tid_tx; |
| |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| |
| tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); |
| if (tid_tx) { |
| bool queued; |
| |
| queued = ieee80211_tx_prep_agg(tx, skb, info, |
| tid_tx, tid); |
| |
| if (unlikely(queued)) |
| return TX_QUEUED; |
| } |
| } |
| |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| tx->flags &= ~IEEE80211_TX_UNICAST; |
| info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| } else |
| tx->flags |= IEEE80211_TX_UNICAST; |
| |
| if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { |
| if (!(tx->flags & IEEE80211_TX_UNICAST) || |
| skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || |
| info->flags & IEEE80211_TX_CTL_AMPDU) |
| info->flags |= IEEE80211_TX_CTL_DONTFRAG; |
| } |
| |
| if (!tx->sta) |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) { |
| info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| ieee80211_check_fast_xmit(tx->sta); |
| } |
| |
| info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; |
| |
| return TX_CONTINUE; |
| } |
| |
| static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local, |
| struct ieee80211_vif *vif, |
| struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_txq *txq = NULL; |
| |
| if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) || |
| (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) |
| return NULL; |
| |
| if (!ieee80211_is_data(hdr->frame_control)) |
| return NULL; |
| |
| if (sta) { |
| u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; |
| |
| if (!sta->uploaded) |
| return NULL; |
| |
| txq = sta->sta.txq[tid]; |
| } else if (vif) { |
| txq = vif->txq; |
| } |
| |
| if (!txq) |
| return NULL; |
| |
| return to_txq_info(txq); |
| } |
| |
| static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb) |
| { |
| IEEE80211_SKB_CB(skb)->control.enqueue_time = codel_get_time(); |
| } |
| |
| static u32 codel_skb_len_func(const struct sk_buff *skb) |
| { |
| return skb->len; |
| } |
| |
| static codel_time_t codel_skb_time_func(const struct sk_buff *skb) |
| { |
| const struct ieee80211_tx_info *info; |
| |
| info = (const struct ieee80211_tx_info *)skb->cb; |
| return info->control.enqueue_time; |
| } |
| |
| static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars, |
| void *ctx) |
| { |
| struct ieee80211_local *local; |
| struct txq_info *txqi; |
| struct fq *fq; |
| struct fq_flow *flow; |
| |
| txqi = ctx; |
| local = vif_to_sdata(txqi->txq.vif)->local; |
| fq = &local->fq; |
| |
| if (cvars == &txqi->def_cvars) |
| flow = &txqi->def_flow; |
| else |
| flow = &fq->flows[cvars - local->cvars]; |
| |
| return fq_flow_dequeue(fq, flow); |
| } |
| |
| static void codel_drop_func(struct sk_buff *skb, |
| void *ctx) |
| { |
| struct ieee80211_local *local; |
| struct ieee80211_hw *hw; |
| struct txq_info *txqi; |
| |
| txqi = ctx; |
| local = vif_to_sdata(txqi->txq.vif)->local; |
| hw = &local->hw; |
| |
| ieee80211_free_txskb(hw, skb); |
| } |
| |
| static struct sk_buff *fq_tin_dequeue_func(struct fq *fq, |
| struct fq_tin *tin, |
| struct fq_flow *flow) |
| { |
| struct ieee80211_local *local; |
| struct txq_info *txqi; |
| struct codel_vars *cvars; |
| struct codel_params *cparams; |
| struct codel_stats *cstats; |
| |
| local = container_of(fq, struct ieee80211_local, fq); |
| txqi = container_of(tin, struct txq_info, tin); |
| cstats = &txqi->cstats; |
| |
| if (txqi->txq.sta) { |
| struct sta_info *sta = container_of(txqi->txq.sta, |
| struct sta_info, sta); |
| cparams = &sta->cparams; |
| } else { |
| cparams = &local->cparams; |
| } |
| |
| if (flow == &txqi->def_flow) |
| cvars = &txqi->def_cvars; |
| else |
| cvars = &local->cvars[flow - fq->flows]; |
| |
| return codel_dequeue(txqi, |
| &flow->backlog, |
| cparams, |
| cvars, |
| cstats, |
| codel_skb_len_func, |
| codel_skb_time_func, |
| codel_drop_func, |
| codel_dequeue_func); |
| } |
| |
| static void fq_skb_free_func(struct fq *fq, |
| struct fq_tin *tin, |
| struct fq_flow *flow, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_local *local; |
| |
| local = container_of(fq, struct ieee80211_local, fq); |
| ieee80211_free_txskb(&local->hw, skb); |
| } |
| |
| static struct fq_flow *fq_flow_get_default_func(struct fq *fq, |
| struct fq_tin *tin, |
| int idx, |
| struct sk_buff *skb) |
| { |
| struct txq_info *txqi; |
| |
| txqi = container_of(tin, struct txq_info, tin); |
| return &txqi->def_flow; |
| } |
| |
| static void ieee80211_txq_enqueue(struct ieee80211_local *local, |
| struct txq_info *txqi, |
| struct sk_buff *skb) |
| { |
| struct fq *fq = &local->fq; |
| struct fq_tin *tin = &txqi->tin; |
| |
| ieee80211_set_skb_enqueue_time(skb); |
| fq_tin_enqueue(fq, tin, skb, |
| fq_skb_free_func, |
| fq_flow_get_default_func); |
| } |
| |
| void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, |
| struct txq_info *txqi, int tid) |
| { |
| fq_tin_init(&txqi->tin); |
| fq_flow_init(&txqi->def_flow); |
| codel_vars_init(&txqi->def_cvars); |
| codel_stats_init(&txqi->cstats); |
| __skb_queue_head_init(&txqi->frags); |
| |
| txqi->txq.vif = &sdata->vif; |
| |
| if (sta) { |
| txqi->txq.sta = &sta->sta; |
| sta->sta.txq[tid] = &txqi->txq; |
| txqi->txq.tid = tid; |
| txqi->txq.ac = ieee80211_ac_from_tid(tid); |
| } else { |
| sdata->vif.txq = &txqi->txq; |
| txqi->txq.tid = 0; |
| txqi->txq.ac = IEEE80211_AC_BE; |
| } |
| } |
| |
| void ieee80211_txq_purge(struct ieee80211_local *local, |
| struct txq_info *txqi) |
| { |
| struct fq *fq = &local->fq; |
| struct fq_tin *tin = &txqi->tin; |
| |
| fq_tin_reset(fq, tin, fq_skb_free_func); |
| ieee80211_purge_tx_queue(&local->hw, &txqi->frags); |
| } |
| |
| int ieee80211_txq_setup_flows(struct ieee80211_local *local) |
| { |
| struct fq *fq = &local->fq; |
| int ret; |
| int i; |
| bool supp_vht = false; |
| enum nl80211_band band; |
| |
| if (!local->ops->wake_tx_queue) |
| return 0; |
| |
| ret = fq_init(fq, 4096); |
| if (ret) |
| return ret; |
| |
| /* |
| * If the hardware doesn't support VHT, it is safe to limit the maximum |
| * queue size. 4 Mbytes is 64 max-size aggregates in 802.11n. |
| */ |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| struct ieee80211_supported_band *sband; |
| |
| sband = local->hw.wiphy->bands[band]; |
| if (!sband) |
| continue; |
| |
| supp_vht = supp_vht || sband->vht_cap.vht_supported; |
| } |
| |
| if (!supp_vht) |
| fq->memory_limit = 4 << 20; /* 4 Mbytes */ |
| |
| codel_params_init(&local->cparams); |
| local->cparams.interval = MS2TIME(100); |
| local->cparams.target = MS2TIME(20); |
| local->cparams.ecn = true; |
| |
| local->cvars = kcalloc(fq->flows_cnt, sizeof(local->cvars[0]), |
| GFP_KERNEL); |
| if (!local->cvars) { |
| spin_lock_bh(&fq->lock); |
| fq_reset(fq, fq_skb_free_func); |
| spin_unlock_bh(&fq->lock); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < fq->flows_cnt; i++) |
| codel_vars_init(&local->cvars[i]); |
| |
| return 0; |
| } |
| |
| void ieee80211_txq_teardown_flows(struct ieee80211_local *local) |
| { |
| struct fq *fq = &local->fq; |
| |
| if (!local->ops->wake_tx_queue) |
| return; |
| |
| kfree(local->cvars); |
| local->cvars = NULL; |
| |
| spin_lock_bh(&fq->lock); |
| fq_reset(fq, fq_skb_free_func); |
| spin_unlock_bh(&fq->lock); |
| } |
| |
| static bool ieee80211_queue_skb(struct ieee80211_local *local, |
| struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| struct fq *fq = &local->fq; |
| struct ieee80211_vif *vif; |
| struct txq_info *txqi; |
| |
| if (!local->ops->wake_tx_queue || |
| sdata->vif.type == NL80211_IFTYPE_MONITOR) |
| return false; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) |
| sdata = container_of(sdata->bss, |
| struct ieee80211_sub_if_data, u.ap); |
| |
| vif = &sdata->vif; |
| txqi = ieee80211_get_txq(local, vif, sta, skb); |
| |
| if (!txqi) |
| return false; |
| |
| spin_lock_bh(&fq->lock); |
| ieee80211_txq_enqueue(local, txqi, skb); |
| spin_unlock_bh(&fq->lock); |
| |
| drv_wake_tx_queue(local, txqi); |
| |
| return true; |
| } |
| |
| static bool ieee80211_tx_frags(struct ieee80211_local *local, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct sk_buff_head *skbs, |
| bool txpending) |
| { |
| struct ieee80211_tx_control control = {}; |
| struct sk_buff *skb, *tmp; |
| unsigned long flags; |
| |
| skb_queue_walk_safe(skbs, skb, tmp) { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| int q = info->hw_queue; |
| |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| if (WARN_ON_ONCE(q >= local->hw.queues)) { |
| __skb_unlink(skb, skbs); |
| ieee80211_free_txskb(&local->hw, skb); |
| continue; |
| } |
| #endif |
| |
| spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| if (local->queue_stop_reasons[q] || |
| (!txpending && !skb_queue_empty(&local->pending[q]))) { |
| if (unlikely(info->flags & |
| IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) { |
| if (local->queue_stop_reasons[q] & |
| ~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) { |
| /* |
| * Drop off-channel frames if queues |
| * are stopped for any reason other |
| * than off-channel operation. Never |
| * queue them. |
| */ |
| spin_unlock_irqrestore( |
| &local->queue_stop_reason_lock, |
| flags); |
| ieee80211_purge_tx_queue(&local->hw, |
| skbs); |
| return true; |
| } |
| } else { |
| |
| /* |
| * Since queue is stopped, queue up frames for |
| * later transmission from the tx-pending |
| * tasklet when the queue is woken again. |
| */ |
| if (txpending) |
| skb_queue_splice_init(skbs, |
| &local->pending[q]); |
| else |
| skb_queue_splice_tail_init(skbs, |
| &local->pending[q]); |
| |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| flags); |
| return false; |
| } |
| } |
| spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); |
| |
| info->control.vif = vif; |
| control.sta = sta; |
| |
| __skb_unlink(skb, skbs); |
| drv_tx(local, &control, skb); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Returns false if the frame couldn't be transmitted but was queued instead. |
| */ |
| static bool __ieee80211_tx(struct ieee80211_local *local, |
| struct sk_buff_head *skbs, int led_len, |
| struct sta_info *sta, bool txpending) |
| { |
| struct ieee80211_tx_info *info; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_vif *vif; |
| struct ieee80211_sta *pubsta; |
| struct sk_buff *skb; |
| bool result = true; |
| __le16 fc; |
| |
| if (WARN_ON(skb_queue_empty(skbs))) |
| return true; |
| |
| skb = skb_peek(skbs); |
| fc = ((struct ieee80211_hdr *)skb->data)->frame_control; |
| info = IEEE80211_SKB_CB(skb); |
| sdata = vif_to_sdata(info->control.vif); |
| if (sta && !sta->uploaded) |
| sta = NULL; |
| |
| if (sta) |
| pubsta = &sta->sta; |
| else |
| pubsta = NULL; |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_MONITOR: |
| if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { |
| vif = &sdata->vif; |
| break; |
| } |
| sdata = rcu_dereference(local->monitor_sdata); |
| if (sdata) { |
| vif = &sdata->vif; |
| info->hw_queue = |
| vif->hw_queue[skb_get_queue_mapping(skb)]; |
| } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { |
| ieee80211_purge_tx_queue(&local->hw, skbs); |
| return true; |
| } else |
| vif = NULL; |
| break; |
| case NL80211_IFTYPE_AP_VLAN: |
| sdata = container_of(sdata->bss, |
| struct ieee80211_sub_if_data, u.ap); |
| /* fall through */ |
| default: |
| vif = &sdata->vif; |
| break; |
| } |
| |
| result = ieee80211_tx_frags(local, vif, pubsta, skbs, |
| txpending); |
| |
| ieee80211_tpt_led_trig_tx(local, fc, led_len); |
| |
| WARN_ON_ONCE(!skb_queue_empty(skbs)); |
| |
| return result; |
| } |
| |
| /* |
| * Invoke TX handlers, return 0 on success and non-zero if the |
| * frame was dropped or queued. |
| * |
| * The handlers are split into an early and late part. The latter is everything |
| * that can be sensitive to reordering, and will be deferred to after packets |
| * are dequeued from the intermediate queues (when they are enabled). |
| */ |
| static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx) |
| { |
| ieee80211_tx_result res = TX_DROP; |
| |
| #define CALL_TXH(txh) \ |
| do { \ |
| res = txh(tx); \ |
| if (res != TX_CONTINUE) \ |
| goto txh_done; \ |
| } while (0) |
| |
| CALL_TXH(ieee80211_tx_h_dynamic_ps); |
| CALL_TXH(ieee80211_tx_h_check_assoc); |
| CALL_TXH(ieee80211_tx_h_ps_buf); |
| CALL_TXH(ieee80211_tx_h_check_control_port_protocol); |
| CALL_TXH(ieee80211_tx_h_select_key); |
| if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) |
| CALL_TXH(ieee80211_tx_h_rate_ctrl); |
| |
| txh_done: |
| if (unlikely(res == TX_DROP)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop); |
| if (tx->skb) |
| ieee80211_free_txskb(&tx->local->hw, tx->skb); |
| else |
| ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); |
| return -1; |
| } else if (unlikely(res == TX_QUEUED)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_queued); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Late handlers can be called while the sta lock is held. Handlers that can |
| * cause packets to be generated will cause deadlock! |
| */ |
| static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx) |
| { |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| ieee80211_tx_result res = TX_CONTINUE; |
| |
| if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { |
| __skb_queue_tail(&tx->skbs, tx->skb); |
| tx->skb = NULL; |
| goto txh_done; |
| } |
| |
| CALL_TXH(ieee80211_tx_h_michael_mic_add); |
| CALL_TXH(ieee80211_tx_h_sequence); |
| CALL_TXH(ieee80211_tx_h_fragment); |
| /* handlers after fragment must be aware of tx info fragmentation! */ |
| CALL_TXH(ieee80211_tx_h_stats); |
| CALL_TXH(ieee80211_tx_h_encrypt); |
| if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) |
| CALL_TXH(ieee80211_tx_h_calculate_duration); |
| #undef CALL_TXH |
| |
| txh_done: |
| if (unlikely(res == TX_DROP)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop); |
| if (tx->skb) |
| ieee80211_free_txskb(&tx->local->hw, tx->skb); |
| else |
| ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); |
| return -1; |
| } else if (unlikely(res == TX_QUEUED)) { |
| I802_DEBUG_INC(tx->local->tx_handlers_queued); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int invoke_tx_handlers(struct ieee80211_tx_data *tx) |
| { |
| int r = invoke_tx_handlers_early(tx); |
| |
| if (r) |
| return r; |
| return invoke_tx_handlers_late(tx); |
| } |
| |
| bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, struct sk_buff *skb, |
| int band, struct ieee80211_sta **sta) |
| { |
| struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_tx_data tx; |
| struct sk_buff *skb2; |
| |
| if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP) |
| return false; |
| |
| info->band = band; |
| info->control.vif = vif; |
| info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; |
| |
| if (invoke_tx_handlers(&tx)) |
| return false; |
| |
| if (sta) { |
| if (tx.sta) |
| *sta = &tx.sta->sta; |
| else |
| *sta = NULL; |
| } |
| |
| /* this function isn't suitable for fragmented data frames */ |
| skb2 = __skb_dequeue(&tx.skbs); |
| if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) { |
| ieee80211_free_txskb(hw, skb2); |
| ieee80211_purge_tx_queue(hw, &tx.skbs); |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(ieee80211_tx_prepare_skb); |
| |
| /* |
| * Returns false if the frame couldn't be transmitted but was queued instead. |
| */ |
| static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, struct sk_buff *skb, |
| bool txpending) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_data tx; |
| ieee80211_tx_result res_prepare; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| bool result = true; |
| int led_len; |
| |
| if (unlikely(skb->len < 10)) { |
| dev_kfree_skb(skb); |
| return true; |
| } |
| |
| /* initialises tx */ |
| led_len = skb->len; |
| res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb); |
| |
| if (unlikely(res_prepare == TX_DROP)) { |
| ieee80211_free_txskb(&local->hw, skb); |
| return true; |
| } else if (unlikely(res_prepare == TX_QUEUED)) { |
| return true; |
| } |
| |
| /* set up hw_queue value early */ |
| if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) || |
| !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) |
| info->hw_queue = |
| sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; |
| |
| if (invoke_tx_handlers_early(&tx)) |
| return true; |
| |
| if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb)) |
| return true; |
| |
| if (!invoke_tx_handlers_late(&tx)) |
| result = __ieee80211_tx(local, &tx.skbs, led_len, |
| tx.sta, txpending); |
| |
| return result; |
| } |
| |
| /* device xmit handlers */ |
| |
| static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb, |
| int head_need, bool may_encrypt) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_hdr *hdr; |
| bool enc_tailroom; |
| int tail_need = 0; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| enc_tailroom = may_encrypt && |
| (sdata->crypto_tx_tailroom_needed_cnt || |
| ieee80211_is_mgmt(hdr->frame_control)); |
| |
| if (enc_tailroom) { |
| tail_need = IEEE80211_ENCRYPT_TAILROOM; |
| tail_need -= skb_tailroom(skb); |
| tail_need = max_t(int, tail_need, 0); |
| } |
| |
| if (skb_cloned(skb) && |
| (!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) || |
| !skb_clone_writable(skb, ETH_HLEN) || enc_tailroom)) |
| I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| else if (head_need || tail_need) |
| I802_DEBUG_INC(local->tx_expand_skb_head); |
| else |
| return 0; |
| |
| if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { |
| wiphy_debug(local->hw.wiphy, |
| "failed to reallocate TX buffer\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, struct sk_buff *skb) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| int headroom; |
| bool may_encrypt; |
| |
| may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); |
| |
| headroom = local->tx_headroom; |
| if (may_encrypt) |
| headroom += sdata->encrypt_headroom; |
| headroom -= skb_headroom(skb); |
| headroom = max_t(int, 0, headroom); |
| |
| if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) { |
| ieee80211_free_txskb(&local->hw, skb); |
| return; |
| } |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| info->control.vif = &sdata->vif; |
| |
| if (ieee80211_vif_is_mesh(&sdata->vif)) { |
| if (ieee80211_is_data(hdr->frame_control) && |
| is_unicast_ether_addr(hdr->addr1)) { |
| if (mesh_nexthop_resolve(sdata, skb)) |
| return; /* skb queued: don't free */ |
| } else { |
| ieee80211_mps_set_frame_flags(sdata, NULL, hdr); |
| } |
| } |
| |
| ieee80211_set_qos_hdr(sdata, skb); |
| ieee80211_tx(sdata, sta, skb, false); |
| } |
| |
| static bool ieee80211_parse_tx_radiotap(struct ieee80211_local *local, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_radiotap_iterator iterator; |
| struct ieee80211_radiotap_header *rthdr = |
| (struct ieee80211_radiotap_header *) skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_supported_band *sband = |
| local->hw.wiphy->bands[info->band]; |
| int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, |
| NULL); |
| u16 txflags; |
| u16 rate = 0; |
| bool rate_found = false; |
| u8 rate_retries = 0; |
| u16 rate_flags = 0; |
| u8 mcs_known, mcs_flags, mcs_bw; |
| u16 vht_known; |
| u8 vht_mcs = 0, vht_nss = 0; |
| int i; |
| |
| info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | |
| IEEE80211_TX_CTL_DONTFRAG; |
| |
| /* |
| * for every radiotap entry that is present |
| * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| * entries present, or -EINVAL on error) |
| */ |
| |
| while (!ret) { |
| ret = ieee80211_radiotap_iterator_next(&iterator); |
| |
| if (ret) |
| continue; |
| |
| /* see if this argument is something we can use */ |
| switch (iterator.this_arg_index) { |
| /* |
| * You must take care when dereferencing iterator.this_arg |
| * for multibyte types... the pointer is not aligned. Use |
| * get_unaligned((type *)iterator.this_arg) to dereference |
| * iterator.this_arg for type "type" safely on all arches. |
| */ |
| case IEEE80211_RADIOTAP_FLAGS: |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| /* |
| * this indicates that the skb we have been |
| * handed has the 32-bit FCS CRC at the end... |
| * we should react to that by snipping it off |
| * because it will be recomputed and added |
| * on transmission |
| */ |
| if (skb->len < (iterator._max_length + FCS_LEN)) |
| return false; |
| |
| skb_trim(skb, skb->len - FCS_LEN); |
| } |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) |
| info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) |
| info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; |
| break; |
| |
| case IEEE80211_RADIOTAP_TX_FLAGS: |
| txflags = get_unaligned_le16(iterator.this_arg); |
| if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) |
| info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| break; |
| |
| case IEEE80211_RADIOTAP_RATE: |
| rate = *iterator.this_arg; |
| rate_flags = 0; |
| rate_found = true; |
| break; |
| |
| case IEEE80211_RADIOTAP_DATA_RETRIES: |
| rate_retries = *iterator.this_arg; |
| break; |
| |
| case IEEE80211_RADIOTAP_MCS: |
| mcs_known = iterator.this_arg[0]; |
| mcs_flags = iterator.this_arg[1]; |
| if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS)) |
| break; |
| |
| rate_found = true; |
| rate = iterator.this_arg[2]; |
| rate_flags = IEEE80211_TX_RC_MCS; |
| |
| if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI && |
| mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) |
| rate_flags |= IEEE80211_TX_RC_SHORT_GI; |
| |
| mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK; |
| if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW && |
| mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40) |
| rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; |
| break; |
| |
| case IEEE80211_RADIOTAP_VHT: |
| vht_known = get_unaligned_le16(iterator.this_arg); |
| rate_found = true; |
| |
| rate_flags = IEEE80211_TX_RC_VHT_MCS; |
| if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) && |
| (iterator.this_arg[2] & |
| IEEE80211_RADIOTAP_VHT_FLAG_SGI)) |
| rate_flags |= IEEE80211_TX_RC_SHORT_GI; |
| if (vht_known & |
| IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) { |
| if (iterator.this_arg[3] == 1) |
| rate_flags |= |
| IEEE80211_TX_RC_40_MHZ_WIDTH; |
| else if (iterator.this_arg[3] == 4) |
| rate_flags |= |
| IEEE80211_TX_RC_80_MHZ_WIDTH; |
| else if (iterator.this_arg[3] == 11) |
| rate_flags |= |
| IEEE80211_TX_RC_160_MHZ_WIDTH; |
| } |
| |
| vht_mcs = iterator.this_arg[4] >> 4; |
| vht_nss = iterator.this_arg[4] & 0xF; |
| break; |
| |
| /* |
| * Please update the file |
| * Documentation/networking/mac80211-injection.txt |
| * when parsing new fields here. |
| */ |
| |
| default: |
| break; |
| } |
| } |
| |
| if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| return false; |
| |
| if (rate_found) { |
| info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT; |
| |
| for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { |
| info->control.rates[i].idx = -1; |
| info->control.rates[i].flags = 0; |
| info->control.rates[i].count = 0; |
| } |
| |
| if (rate_flags & IEEE80211_TX_RC_MCS) { |
| info->control.rates[0].idx = rate; |
| } else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) { |
| ieee80211_rate_set_vht(info->control.rates, vht_mcs, |
| vht_nss); |
| } else { |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (rate * 5 != sband->bitrates[i].bitrate) |
| continue; |
| |
| info->control.rates[0].idx = i; |
| break; |
| } |
| } |
| |
| if (info->control.rates[0].idx < 0) |
| info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT; |
| |
| info->control.rates[0].flags = rate_flags; |
| info->control.rates[0].count = min_t(u8, rate_retries + 1, |
| local->hw.max_rate_tries); |
| } |
| |
| /* |
| * remove the radiotap header |
| * iterator->_max_length was sanity-checked against |
| * skb->len by iterator init |
| */ |
| skb_pull(skb, iterator._max_length); |
| |
| return true; |
| } |
| |
| netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_chanctx_conf *chanctx_conf; |
| struct ieee80211_radiotap_header *prthdr = |
| (struct ieee80211_radiotap_header *)skb->data; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr; |
| struct ieee80211_sub_if_data *tmp_sdata, *sdata; |
| struct cfg80211_chan_def *chandef; |
| u16 len_rthdr; |
| int hdrlen; |
| |
| /* check for not even having the fixed radiotap header part */ |
| if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) |
| goto fail; /* too short to be possibly valid */ |
| |
| /* is it a header version we can trust to find length from? */ |
| if (unlikely(prthdr->it_version)) |
| goto fail; /* only version 0 is supported */ |
| |
| /* then there must be a radiotap header with a length we can use */ |
| len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| |
| /* does the skb contain enough to deliver on the alleged length? */ |
| if (unlikely(skb->len < len_rthdr)) |
| goto fail; /* skb too short for claimed rt header extent */ |
| |
| /* |
| * fix up the pointers accounting for the radiotap |
| * header still being in there. We are being given |
| * a precooked IEEE80211 header so no need for |
| * normal processing |
| */ |
| skb_set_mac_header(skb, len_rthdr); |
| /* |
| * these are just fixed to the end of the rt area since we |
| * don't have any better information and at this point, nobody cares |
| */ |
| skb_set_network_header(skb, len_rthdr); |
| skb_set_transport_header(skb, len_rthdr); |
| |
| if (skb->len < len_rthdr + 2) |
| goto fail; |
| |
| hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| if (skb->len < len_rthdr + hdrlen) |
| goto fail; |
| |
| /* |
| * Initialize skb->protocol if the injected frame is a data frame |
| * carrying a rfc1042 header |
| */ |
| if (ieee80211_is_data(hdr->frame_control) && |
| skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { |
| u8 *payload = (u8 *)hdr + hdrlen; |
| |
| if (ether_addr_equal(payload, rfc1042_header)) |
| skb->protocol = cpu_to_be16((payload[6] << 8) | |
| payload[7]); |
| } |
| |
| memset(info, 0, sizeof(*info)); |
| |
| info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | |
| IEEE80211_TX_CTL_INJECTED; |
| |
| rcu_read_lock(); |
| |
| /* |
| * We process outgoing injected frames that have a local address |
| * we handle as though they are non-injected frames. |
| * This code here isn't entirely correct, the local MAC address |
| * isn't always enough to find the interface to use; for proper |
| * VLAN/WDS support we will need a different mechanism (which |
| * likely isn't going to be monitor interfaces). |
| */ |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { |
| if (!ieee80211_sdata_running(tmp_sdata)) |
| continue; |
| if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || |
| tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN || |
| tmp_sdata->vif.type == NL80211_IFTYPE_WDS) |
| continue; |
| if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) { |
| sdata = tmp_sdata; |
| break; |
| } |
| } |
| |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| tmp_sdata = rcu_dereference(local->monitor_sdata); |
| if (tmp_sdata) |
| chanctx_conf = |
| rcu_dereference(tmp_sdata->vif.chanctx_conf); |
| } |
| |
| if (chanctx_conf) |
| chandef = &chanctx_conf->def; |
| else if (!local->use_chanctx) |
| chandef = &local->_oper_chandef; |
| else |
| goto fail_rcu; |
| |
| /* |
| * Frame injection is not allowed if beaconing is not allowed |
| * or if we need radar detection. Beaconing is usually not allowed when |
| * the mode or operation (Adhoc, AP, Mesh) does not support DFS. |
| * Passive scan is also used in world regulatory domains where |
| * your country is not known and as such it should be treated as |
| * NO TX unless the channel is explicitly allowed in which case |
| * your current regulatory domain would not have the passive scan |
| * flag. |
| * |
| * Since AP mode uses monitor interfaces to inject/TX management |
| * frames we can make AP mode the exception to this rule once it |
| * supports radar detection as its implementation can deal with |
| * radar detection by itself. We can do that later by adding a |
| * monitor flag interfaces used for AP support. |
| */ |
| if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef, |
| sdata->vif.type)) |
| goto fail_rcu; |
| |
| info->band = chandef->chan->band; |
| |
| /* process and remove the injection radiotap header */ |
| if (!ieee80211_parse_tx_radiotap(local, skb)) |
| goto fail_rcu; |
| |
| ieee80211_xmit(sdata, NULL, skb); |
| rcu_read_unlock(); |
| |
| return NETDEV_TX_OK; |
| |
| fail_rcu: |
| rcu_read_unlock(); |
| fail: |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; /* meaning, we dealt with the skb */ |
| } |
| |
| static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb) |
| { |
| u16 ethertype = (skb->data[12] << 8) | skb->data[13]; |
| |
| return ethertype == ETH_P_TDLS && |
| skb->len > 14 && |
| skb->data[14] == WLAN_TDLS_SNAP_RFTYPE; |
| } |
| |
| static int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb, |
| struct sta_info **sta_out) |
| { |
| struct sta_info *sta; |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_AP_VLAN: |
| sta = rcu_dereference(sdata->u.vlan.sta); |
| if (sta) { |
| *sta_out = sta; |
| return 0; |
| } else if (sdata->wdev.use_4addr) { |
| return -ENOLINK; |
| } |
| /* fall through */ |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_OCB: |
| case NL80211_IFTYPE_ADHOC: |
| if (is_multicast_ether_addr(skb->data)) { |
| *sta_out = ERR_PTR(-ENOENT); |
| return 0; |
| } |
| sta = sta_info_get_bss(sdata, skb->data); |
| break; |
| case NL80211_IFTYPE_WDS: |
| sta = sta_info_get(sdata, sdata->u.wds.remote_addr); |
| break; |
| #ifdef CONFIG_MAC80211_MESH |
| case NL80211_IFTYPE_MESH_POINT: |
| /* determined much later */ |
| *sta_out = NULL; |
| return 0; |
| #endif |
| case NL80211_IFTYPE_STATION: |
| if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { |
| sta = sta_info_get(sdata, skb->data); |
| if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { |
| if (test_sta_flag(sta, |
| WLAN_STA_TDLS_PEER_AUTH)) { |
| *sta_out = sta; |
| return 0; |
| } |
| |
| /* |
| * TDLS link during setup - throw out frames to |
| * peer. Allow TDLS-setup frames to unauthorized |
| * peers for the special case of a link teardown |
| * after a TDLS sta is removed due to being |
| * unreachable. |
| */ |
| if (!ieee80211_is_tdls_setup(skb)) |
| return -EINVAL; |
| } |
| |
| } |
| |
| sta = sta_info_get(sdata, sdata->u.mgd.bssid); |
| if (!sta) |
| return -ENOLINK; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *sta_out = sta ?: ERR_PTR(-ENOENT); |
| return 0; |
| } |
| |
| /** |
| * ieee80211_build_hdr - build 802.11 header in the given frame |
| * @sdata: virtual interface to build the header for |
| * @skb: the skb to build the header in |
| * @info_flags: skb flags to set |
| * |
| * This function takes the skb with 802.3 header and reformats the header to |
| * the appropriate IEEE 802.11 header based on which interface the packet is |
| * being transmitted on. |
| * |
| * Note that this function also takes care of the TX status request and |
| * potential unsharing of the SKB - this needs to be interleaved with the |
| * header building. |
| * |
| * The function requires the read-side RCU lock held |
| * |
| * Returns: the (possibly reallocated) skb or an ERR_PTR() code |
| */ |
| static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb, u32 info_flags, |
| struct sta_info *sta) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_tx_info *info; |
| int head_need; |
| u16 ethertype, hdrlen, meshhdrlen = 0; |
| __le16 fc; |
| struct ieee80211_hdr hdr; |
| struct ieee80211s_hdr mesh_hdr __maybe_unused; |
| struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL; |
| const u8 *encaps_data; |
| int encaps_len, skip_header_bytes; |
| bool wme_sta = false, authorized = false; |
| bool tdls_peer; |
| bool multicast; |
| u16 info_id = 0; |
| struct ieee80211_chanctx_conf *chanctx_conf; |
| struct ieee80211_sub_if_data *ap_sdata; |
| enum nl80211_band band; |
| int ret; |
| |
| if (IS_ERR(sta)) |
| sta = NULL; |
| |
| /* convert Ethernet header to proper 802.11 header (based on |
| * operation mode) */ |
| ethertype = (skb->data[12] << 8) | skb->data[13]; |
| fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_AP_VLAN: |
| if (sdata->wdev.use_4addr) { |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); |
| wme_sta = sta->sta.wme; |
| } |
| ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, |
| u.ap); |
| chanctx_conf = rcu_dereference(ap_sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| band = chanctx_conf->def.chan->band; |
| if (sdata->wdev.use_4addr) |
| break; |
| /* fall through */ |
| case NL80211_IFTYPE_AP: |
| if (sdata->vif.type == NL80211_IFTYPE_AP) |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); |
| /* DA BSSID SA */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 24; |
| band = chanctx_conf->def.chan->band; |
| break; |
| case NL80211_IFTYPE_WDS: |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| /* |
| * This is the exception! WDS style interfaces are prohibited |
| * when channel contexts are in used so this must be valid |
| */ |
| band = local->hw.conf.chandef.chan->band; |
| break; |
| #ifdef CONFIG_MAC80211_MESH |
| case NL80211_IFTYPE_MESH_POINT: |
| if (!is_multicast_ether_addr(skb->data)) { |
| struct sta_info *next_hop; |
| bool mpp_lookup = true; |
| |
| mpath = mesh_path_lookup(sdata, skb->data); |
| if (mpath) { |
| mpp_lookup = false; |
| next_hop = rcu_dereference(mpath->next_hop); |
| if (!next_hop || |
| !(mpath->flags & (MESH_PATH_ACTIVE | |
| MESH_PATH_RESOLVING))) |
| mpp_lookup = true; |
| } |
| |
| if (mpp_lookup) { |
| mppath = mpp_path_lookup(sdata, skb->data); |
| if (mppath) |
| mppath->exp_time = jiffies; |
| } |
| |
| if (mppath && mpath) |
| mesh_path_del(sdata, mpath->dst); |
| } |
| |
| /* |
| * Use address extension if it is a packet from |
| * another interface or if we know the destination |
| * is being proxied by a portal (i.e. portal address |
| * differs from proxied address) |
| */ |
| if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) && |
| !(mppath && !ether_addr_equal(mppath->mpp, skb->data))) { |
| hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| skb->data, skb->data + ETH_ALEN); |
| meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr, |
| NULL, NULL); |
| } else { |
| /* DS -> MBSS (802.11-2012 13.11.3.3). |
| * For unicast with unknown forwarding information, |
| * destination might be in the MBSS or if that fails |
| * forwarded to another mesh gate. In either case |
| * resolution will be handled in ieee80211_xmit(), so |
| * leave the original DA. This also works for mcast */ |
| const u8 *mesh_da = skb->data; |
| |
| if (mppath) |
| mesh_da = mppath->mpp; |
| else if (mpath) |
| mesh_da = mpath->dst; |
| |
| hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| mesh_da, sdata->vif.addr); |
| if (is_multicast_ether_addr(mesh_da)) |
| /* DA TA mSA AE:SA */ |
| meshhdrlen = ieee80211_new_mesh_header( |
| sdata, &mesh_hdr, |
| skb->data + ETH_ALEN, NULL); |
| else |
| /* RA TA mDA mSA AE:DA SA */ |
| meshhdrlen = ieee80211_new_mesh_header( |
| sdata, &mesh_hdr, skb->data, |
| skb->data + ETH_ALEN); |
| |
| } |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| band = chanctx_conf->def.chan->band; |
| break; |
| #endif |
| case NL80211_IFTYPE_STATION: |
| /* we already did checks when looking up the RA STA */ |
| tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER); |
| |
| if (tdls_peer) { |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN); |
| hdrlen = 24; |
| } else if (sdata->u.mgd.use_4addr && |
| cpu_to_be16(ethertype) != sdata->control_port_protocol) { |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | |
| IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| } else { |
| fc |= cpu_to_le16(IEEE80211_FCTL_TODS); |
| /* BSSID SA DA */ |
| memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| hdrlen = 24; |
| } |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| band = chanctx_conf->def.chan->band; |
| break; |
| case NL80211_IFTYPE_OCB: |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| eth_broadcast_addr(hdr.addr3); |
| hdrlen = 24; |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| band = chanctx_conf->def.chan->band; |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); |
| hdrlen = 24; |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| ret = -ENOTCONN; |
| goto free; |
| } |
| band = chanctx_conf->def.chan->band; |
| break; |
| default: |
| ret = -EINVAL; |
| goto free; |
| } |
| |
| multicast = is_multicast_ether_addr(hdr.addr1); |
| |
| /* sta is always NULL for mesh */ |
| if (sta) { |
| authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); |
| wme_sta = sta->sta.wme; |
| } else if (ieee80211_vif_is_mesh(&sdata->vif)) { |
| /* For mesh, the use of the QoS header is mandatory */ |
| wme_sta = true; |
| } |
| |
| /* receiver does QoS (which also means we do) use it */ |
| if (wme_sta) { |
| fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); |
| hdrlen += 2; |
| } |
| |
| /* |
| * Drop unicast frames to unauthorised stations unless they are |
| * EAPOL frames from the local station. |
| */ |
| if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && |
| (sdata->vif.type != NL80211_IFTYPE_OCB) && |
| !multicast && !authorized && |
| (cpu_to_be16(ethertype) != sdata->control_port_protocol || |
| !ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN)))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n", |
| sdata->name, hdr.addr1); |
| #endif |
| |
| I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); |
| |
| ret = -EPERM; |
| goto free; |
| } |
| |
| if (unlikely(!multicast && skb->sk && |
| skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) { |
| struct sk_buff *ack_skb = skb_clone_sk(skb); |
| |
| if (ack_skb) { |
| unsigned long flags; |
| int id; |
| |
| spin_lock_irqsave(&local->ack_status_lock, flags); |
| id = idr_alloc(&local->ack_status_frames, ack_skb, |
| 1, 0x10000, GFP_ATOMIC); |
| spin_unlock_irqrestore(&local->ack_status_lock, flags); |
| |
| if (id >= 0) { |
| info_id = id; |
| info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; |
| } else { |
| kfree_skb(ack_skb); |
| } |
| } |
| } |
| |
| /* |
| * If the skb is shared we need to obtain our own copy. |
| */ |
| if (skb_shared(skb)) { |
| struct sk_buff *tmp_skb = skb; |
| |
| /* can't happen -- skb is a clone if info_id != 0 */ |
| WARN_ON(info_id); |
| |
| skb = skb_clone(skb, GFP_ATOMIC); |
| kfree_skb(tmp_skb); |
| |
| if (!skb) { |
| ret = -ENOMEM; |
| goto free; |
| } |
| } |
| |
| hdr.frame_control = fc; |
| hdr.duration_id = 0; |
| hdr.seq_ctrl = 0; |
| |
| skip_header_bytes = ETH_HLEN; |
| if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| encaps_data = bridge_tunnel_header; |
| encaps_len = sizeof(bridge_tunnel_header); |
| skip_header_bytes -= 2; |
| } else if (ethertype >= ETH_P_802_3_MIN) { |
| encaps_data = rfc1042_header; |
| encaps_len = sizeof(rfc1042_header); |
| skip_header_bytes -= 2; |
| } else { |
| encaps_data = NULL; |
| encaps_len = 0; |
| } |
| |
| skb_pull(skb, skip_header_bytes); |
| head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); |
| |
| /* |
| * So we need to modify the skb header and hence need a copy of |
| * that. The head_need variable above doesn't, so far, include |
| * the needed header space that we don't need right away. If we |
| * can, then we don't reallocate right now but only after the |
| * frame arrives at the master device (if it does...) |
| * |
| * If we cannot, however, then we will reallocate to include all |
| * the ever needed space. Also, if we need to reallocate it anyway, |
| * make it big enough for everything we may ever need. |
| */ |
| |
| if (head_need > 0 || skb_cloned(skb)) { |
| head_need += sdata->encrypt_headroom; |
| head_need += local->tx_headroom; |
| head_need = max_t(int, 0, head_need); |
| if (ieee80211_skb_resize(sdata, skb, head_need, true)) { |
| ieee80211_free_txskb(&local->hw, skb); |
| skb = NULL; |
| return ERR_PTR(-ENOMEM); |
| } |
| } |
| |
| if (encaps_data) |
| memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| |
| #ifdef CONFIG_MAC80211_MESH |
| if (meshhdrlen > 0) |
| memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); |
| #endif |
| |
| if (ieee80211_is_data_qos(fc)) { |
| __le16 *qos_control; |
| |
| qos_control = skb_push(skb, 2); |
| memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); |
| /* |
| * Maybe we could actually set some fields here, for now just |
| * initialise to zero to indicate no special operation. |
| */ |
| *qos_control = 0; |
| } else |
| memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| |
| skb_reset_mac_header(skb); |
| |
| info = IEEE80211_SKB_CB(skb); |
| memset(info, 0, sizeof(*info)); |
| |
| info->flags = info_flags; |
| info->ack_frame_id = info_id; |
| info->band = band; |
| |
| return skb; |
| free: |
| kfree_skb(skb); |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * fast-xmit overview |
| * |
| * The core idea of this fast-xmit is to remove per-packet checks by checking |
| * them out of band. ieee80211_check_fast_xmit() implements the out-of-band |
| * checks that are needed to get the sta->fast_tx pointer assigned, after which |
| * much less work can be done per packet. For example, fragmentation must be |
| * disabled or the fast_tx pointer will not be set. All the conditions are seen |
| * in the code here. |
| * |
| * Once assigned, the fast_tx data structure also caches the per-packet 802.11 |
| * header and other data to aid packet processing in ieee80211_xmit_fast(). |
| * |
| * The most difficult part of this is that when any of these assumptions |
| * change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(), |
| * ieee80211_check_fast_xmit() or friends) is required to reset the data, |
| * since the per-packet code no longer checks the conditions. This is reflected |
| * by the calls to these functions throughout the rest of the code, and must be |
| * maintained if any of the TX path checks change. |
| */ |
| |
| void ieee80211_check_fast_xmit(struct sta_info *sta) |
| { |
| struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old; |
| struct ieee80211_local *local = sta->local; |
| struct ieee80211_sub_if_data *sdata = sta->sdata; |
| struct ieee80211_hdr *hdr = (void *)build.hdr; |
| struct ieee80211_chanctx_conf *chanctx_conf; |
| __le16 fc; |
| |
| if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT)) |
| return; |
| |
| /* Locking here protects both the pointer itself, and against concurrent |
| * invocations winning data access races to, e.g., the key pointer that |
| * is used. |
| * Without it, the invocation of this function right after the key |
| * pointer changes wouldn't be sufficient, as another CPU could access |
| * the pointer, then stall, and then do the cache update after the CPU |
| * that invalidated the key. |
| * With the locking, such scenarios cannot happen as the check for the |
| * key and the fast-tx assignment are done atomically, so the CPU that |
| * modifies the key will either wait or other one will see the key |
| * cleared/changed already. |
| */ |
| spin_lock_bh(&sta->lock); |
| if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && |
| !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && |
| sdata->vif.type == NL80211_IFTYPE_STATION) |
| goto out; |
| |
| if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) |
| goto out; |
| |
| if (test_sta_flag(sta, WLAN_STA_PS_STA) || |
| test_sta_flag(sta, WLAN_STA_PS_DRIVER) || |
| test_sta_flag(sta, WLAN_STA_PS_DELIVER) || |
| test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT)) |
| goto out; |
| |
| if (sdata->noack_map) |
| goto out; |
| |
| /* fast-xmit doesn't handle fragmentation at all */ |
| if (local->hw.wiphy->frag_threshold != (u32)-1 && |
| !ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG)) |
| goto out; |
| |
| rcu_read_lock(); |
| chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); |
| if (!chanctx_conf) { |
| rcu_read_unlock(); |
| goto out; |
| } |
| build.band = chanctx_conf->def.chan->band; |
| rcu_read_unlock(); |
| |
| fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); |
| |
| switch (sdata->vif.type) { |
| case NL80211_IFTYPE_ADHOC: |
| /* DA SA BSSID */ |
| build.da_offs = offsetof(struct ieee80211_hdr, addr1); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr2); |
| memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN); |
| build.hdr_len = 24; |
| break; |
| case NL80211_IFTYPE_STATION: |
| if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { |
| /* DA SA BSSID */ |
| build.da_offs = offsetof(struct ieee80211_hdr, addr1); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr2); |
| memcpy(hdr->addr3, sdata->u.mgd.bssid, ETH_ALEN); |
| build.hdr_len = 24; |
| break; |
| } |
| |
| if (sdata->u.mgd.use_4addr) { |
| /* non-regular ethertype cannot use the fastpath */ |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | |
| IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); |
| build.da_offs = offsetof(struct ieee80211_hdr, addr3); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr4); |
| build.hdr_len = 30; |
| break; |
| } |
| fc |= cpu_to_le16(IEEE80211_FCTL_TODS); |
| /* BSSID SA DA */ |
| memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| build.da_offs = offsetof(struct ieee80211_hdr, addr3); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr2); |
| build.hdr_len = 24; |
| break; |
| case NL80211_IFTYPE_AP_VLAN: |
| if (sdata->wdev.use_4addr) { |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | |
| IEEE80211_FCTL_TODS); |
| /* RA TA DA SA */ |
| memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); |
| memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); |
| build.da_offs = offsetof(struct ieee80211_hdr, addr3); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr4); |
| build.hdr_len = 30; |
| break; |
| } |
| /* fall through */ |
| case NL80211_IFTYPE_AP: |
| fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); |
| /* DA BSSID SA */ |
| build.da_offs = offsetof(struct ieee80211_hdr, addr1); |
| memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); |
| build.sa_offs = offsetof(struct ieee80211_hdr, addr3); |
| build.hdr_len = 24; |
| break; |
| default: |
| /* not handled on fast-xmit */ |
| goto out; |
| } |
| |
| if (sta->sta.wme) { |
| build.hdr_len += 2; |
| fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); |
| } |
| |
| /* We store the key here so there's no point in using rcu_dereference() |
| * but that's fine because the code that changes the pointers will call |
| * this function after doing so. For a single CPU that would be enough, |
| * for multiple see the comment above. |
| */ |
| build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); |
| if (!build.key) |
| build.key = rcu_access_pointer(sdata->default_unicast_key); |
| if (build.key) { |
| bool gen_iv, iv_spc, mmic; |
| |
| gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; |
| iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; |
| mmic = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC; |
| |
| /* don't handle software crypto */ |
| if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| goto out; |
| |
| switch (build.key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| /* add fixed key ID */ |
| if (gen_iv) { |
| (build.hdr + build.hdr_len)[3] = |
| 0x20 | (build.key->conf.keyidx << 6); |
| build.pn_offs = build.hdr_len; |
| } |
| if (gen_iv || iv_spc) |
| build.hdr_len += IEEE80211_CCMP_HDR_LEN; |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| /* add fixed key ID */ |
| if (gen_iv) { |
| (build.hdr + build.hdr_len)[3] = |
| 0x20 | (build.key->conf.keyidx << 6); |
| build.pn_offs = build.hdr_len; |
| } |
| if (gen_iv || iv_spc) |
| build.hdr_len += IEEE80211_GCMP_HDR_LEN; |
| break; |
| case WLAN_CIPHER_SUITE_TKIP: |
| /* cannot handle MMIC or IV generation in xmit-fast */ |
| if (mmic || gen_iv) |
| goto out; |
| if (iv_spc) |
| build.hdr_len += IEEE80211_TKIP_IV_LEN; |
| break; |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| /* cannot handle IV generation in fast-xmit */ |
| if (gen_iv) |
| goto out; |
| if (iv_spc) |
| build.hdr_len += IEEE80211_WEP_IV_LEN; |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| WARN(1, |
| "management cipher suite 0x%x enabled for data\n", |
| build.key->conf.cipher); |
| goto out; |
| default: |
| /* we don't know how to generate IVs for this at all */ |
| if (WARN_ON(gen_iv)) |
| goto out; |
| /* pure hardware keys are OK, of course */ |
| if (!(build.key->flags & KEY_FLAG_CIPHER_SCHEME)) |
| break; |
| /* cipher scheme might require space allocation */ |
| if (iv_spc && |
| build.key->conf.iv_len > IEEE80211_FAST_XMIT_MAX_IV) |
| goto out; |
| if (iv_spc) |
| build.hdr_len += build.key->conf.iv_len; |
| } |
| |
| fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); |
| } |
| |
| hdr->frame_control = fc; |
| |
| memcpy(build.hdr + build.hdr_len, |
| rfc1042_header, sizeof(rfc1042_header)); |
| build.hdr_len += sizeof(rfc1042_header); |
| |
| fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC); |
| /* if the kmemdup fails, continue w/o fast_tx */ |
| if (!fast_tx) |
| goto out; |
| |
| out: |
| /* we might have raced against another call to this function */ |
| old = rcu_dereference_protected(sta->fast_tx, |
| lockdep_is_held(&sta->lock)); |
| rcu_assign_pointer(sta->fast_tx, fast_tx); |
| if (old) |
| kfree_rcu(old, rcu_head); |
| spin_unlock_bh(&sta->lock); |
| } |
| |
| void ieee80211_check_fast_xmit_all(struct ieee80211_local *local) |
| { |
| struct sta_info *sta; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(sta, &local->sta_list, list) |
| ieee80211_check_fast_xmit(sta); |
| rcu_read_unlock(); |
| } |
| |
| void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct sta_info *sta; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(sta, &local->sta_list, list) { |
| if (sdata != sta->sdata && |
| (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) |
| continue; |
| ieee80211_check_fast_xmit(sta); |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| void ieee80211_clear_fast_xmit(struct sta_info *sta) |
| { |
| struct ieee80211_fast_tx *fast_tx; |
| |
| spin_lock_bh(&sta->lock); |
| fast_tx = rcu_dereference_protected(sta->fast_tx, |
| lockdep_is_held(&sta->lock)); |
| RCU_INIT_POINTER(sta->fast_tx, NULL); |
| spin_unlock_bh(&sta->lock); |
| |
| if (fast_tx) |
|