blob: c0a0947f43bbb71cdc8f5c09e4255659c9149679 [file] [log] [blame]
/*
* pseries Memory Hotplug infrastructure.
*
* Copyright (C) 2008 Badari Pulavarty, IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "pseries-hotplug-mem: " fmt
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/slab.h>
#include <asm/firmware.h>
#include <asm/machdep.h>
#include <asm/prom.h>
#include <asm/sparsemem.h>
#include "pseries.h"
static bool rtas_hp_event;
unsigned long pseries_memory_block_size(void)
{
struct device_node *np;
unsigned int memblock_size = MIN_MEMORY_BLOCK_SIZE;
struct resource r;
np = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (np) {
const __be64 *size;
size = of_get_property(np, "ibm,lmb-size", NULL);
if (size)
memblock_size = be64_to_cpup(size);
of_node_put(np);
} else if (machine_is(pseries)) {
/* This fallback really only applies to pseries */
unsigned int memzero_size = 0;
np = of_find_node_by_path("/memory@0");
if (np) {
if (!of_address_to_resource(np, 0, &r))
memzero_size = resource_size(&r);
of_node_put(np);
}
if (memzero_size) {
/* We now know the size of memory@0, use this to find
* the first memoryblock and get its size.
*/
char buf[64];
sprintf(buf, "/memory@%x", memzero_size);
np = of_find_node_by_path(buf);
if (np) {
if (!of_address_to_resource(np, 0, &r))
memblock_size = resource_size(&r);
of_node_put(np);
}
}
}
return memblock_size;
}
static void dlpar_free_property(struct property *prop)
{
kfree(prop->name);
kfree(prop->value);
kfree(prop);
}
static struct property *dlpar_clone_property(struct property *prop,
u32 prop_size)
{
struct property *new_prop;
new_prop = kzalloc(sizeof(*new_prop), GFP_KERNEL);
if (!new_prop)
return NULL;
new_prop->name = kstrdup(prop->name, GFP_KERNEL);
new_prop->value = kzalloc(prop_size, GFP_KERNEL);
if (!new_prop->name || !new_prop->value) {
dlpar_free_property(new_prop);
return NULL;
}
memcpy(new_prop->value, prop->value, prop->length);
new_prop->length = prop_size;
of_property_set_flag(new_prop, OF_DYNAMIC);
return new_prop;
}
static struct property *dlpar_clone_drconf_property(struct device_node *dn)
{
struct property *prop, *new_prop;
struct of_drconf_cell *lmbs;
u32 num_lmbs, *p;
int i;
prop = of_find_property(dn, "ibm,dynamic-memory", NULL);
if (!prop)
return NULL;
new_prop = dlpar_clone_property(prop, prop->length);
if (!new_prop)
return NULL;
/* Convert the property to cpu endian-ness */
p = new_prop->value;
*p = be32_to_cpu(*p);
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
for (i = 0; i < num_lmbs; i++) {
lmbs[i].base_addr = be64_to_cpu(lmbs[i].base_addr);
lmbs[i].drc_index = be32_to_cpu(lmbs[i].drc_index);
lmbs[i].aa_index = be32_to_cpu(lmbs[i].aa_index);
lmbs[i].flags = be32_to_cpu(lmbs[i].flags);
}
return new_prop;
}
static void dlpar_update_drconf_property(struct device_node *dn,
struct property *prop)
{
struct of_drconf_cell *lmbs;
u32 num_lmbs, *p;
int i;
/* Convert the property back to BE */
p = prop->value;
num_lmbs = *p;
*p = cpu_to_be32(*p);
p++;
lmbs = (struct of_drconf_cell *)p;
for (i = 0; i < num_lmbs; i++) {
lmbs[i].base_addr = cpu_to_be64(lmbs[i].base_addr);
lmbs[i].drc_index = cpu_to_be32(lmbs[i].drc_index);
lmbs[i].aa_index = cpu_to_be32(lmbs[i].aa_index);
lmbs[i].flags = cpu_to_be32(lmbs[i].flags);
}
rtas_hp_event = true;
of_update_property(dn, prop);
rtas_hp_event = false;
}
static int dlpar_update_device_tree_lmb(struct of_drconf_cell *lmb)
{
struct device_node *dn;
struct property *prop;
struct of_drconf_cell *lmbs;
u32 *p, num_lmbs;
int i;
dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (!dn)
return -ENODEV;
prop = dlpar_clone_drconf_property(dn);
if (!prop) {
of_node_put(dn);
return -ENODEV;
}
p = prop->value;
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
for (i = 0; i < num_lmbs; i++) {
if (lmbs[i].drc_index == lmb->drc_index) {
lmbs[i].flags = lmb->flags;
lmbs[i].aa_index = lmb->aa_index;
dlpar_update_drconf_property(dn, prop);
break;
}
}
of_node_put(dn);
return 0;
}
static u32 find_aa_index(struct device_node *dr_node,
struct property *ala_prop, const u32 *lmb_assoc)
{
u32 *assoc_arrays;
u32 aa_index;
int aa_arrays, aa_array_entries, aa_array_sz;
int i, index;
/*
* The ibm,associativity-lookup-arrays property is defined to be
* a 32-bit value specifying the number of associativity arrays
* followed by a 32-bitvalue specifying the number of entries per
* array, followed by the associativity arrays.
*/
assoc_arrays = ala_prop->value;
aa_arrays = be32_to_cpu(assoc_arrays[0]);
aa_array_entries = be32_to_cpu(assoc_arrays[1]);
aa_array_sz = aa_array_entries * sizeof(u32);
aa_index = -1;
for (i = 0; i < aa_arrays; i++) {
index = (i * aa_array_entries) + 2;
if (memcmp(&assoc_arrays[index], &lmb_assoc[1], aa_array_sz))
continue;
aa_index = i;
break;
}
if (aa_index == -1) {
struct property *new_prop;
u32 new_prop_size;
new_prop_size = ala_prop->length + aa_array_sz;
new_prop = dlpar_clone_property(ala_prop, new_prop_size);
if (!new_prop)
return -1;
assoc_arrays = new_prop->value;
/* increment the number of entries in the lookup array */
assoc_arrays[0] = cpu_to_be32(aa_arrays + 1);
/* copy the new associativity into the lookup array */
index = aa_arrays * aa_array_entries + 2;
memcpy(&assoc_arrays[index], &lmb_assoc[1], aa_array_sz);
of_update_property(dr_node, new_prop);
/*
* The associativity lookup array index for this lmb is
* number of entries - 1 since we added its associativity
* to the end of the lookup array.
*/
aa_index = be32_to_cpu(assoc_arrays[0]) - 1;
}
return aa_index;
}
static u32 lookup_lmb_associativity_index(struct of_drconf_cell *lmb)
{
struct device_node *parent, *lmb_node, *dr_node;
struct property *ala_prop;
const u32 *lmb_assoc;
u32 aa_index;
parent = of_find_node_by_path("/");
if (!parent)
return -ENODEV;
lmb_node = dlpar_configure_connector(cpu_to_be32(lmb->drc_index),
parent);
of_node_put(parent);
if (!lmb_node)
return -EINVAL;
lmb_assoc = of_get_property(lmb_node, "ibm,associativity", NULL);
if (!lmb_assoc) {
dlpar_free_cc_nodes(lmb_node);
return -ENODEV;
}
dr_node = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (!dr_node) {
dlpar_free_cc_nodes(lmb_node);
return -ENODEV;
}
ala_prop = of_find_property(dr_node, "ibm,associativity-lookup-arrays",
NULL);
if (!ala_prop) {
of_node_put(dr_node);
dlpar_free_cc_nodes(lmb_node);
return -ENODEV;
}
aa_index = find_aa_index(dr_node, ala_prop, lmb_assoc);
dlpar_free_cc_nodes(lmb_node);
return aa_index;
}
static int dlpar_add_device_tree_lmb(struct of_drconf_cell *lmb)
{
int aa_index;
lmb->flags |= DRCONF_MEM_ASSIGNED;
aa_index = lookup_lmb_associativity_index(lmb);
if (aa_index < 0) {
pr_err("Couldn't find associativity index for drc index %x\n",
lmb->drc_index);
return aa_index;
}
lmb->aa_index = aa_index;
return dlpar_update_device_tree_lmb(lmb);
}
static int dlpar_remove_device_tree_lmb(struct of_drconf_cell *lmb)
{
lmb->flags &= ~DRCONF_MEM_ASSIGNED;
lmb->aa_index = 0xffffffff;
return dlpar_update_device_tree_lmb(lmb);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static int pseries_remove_memblock(unsigned long base, unsigned int memblock_size)
{
unsigned long block_sz, start_pfn;
int sections_per_block;
int i, nid;
start_pfn = base >> PAGE_SHIFT;
lock_device_hotplug();
if (!pfn_valid(start_pfn))
goto out;
block_sz = pseries_memory_block_size();
sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
nid = memory_add_physaddr_to_nid(base);
for (i = 0; i < sections_per_block; i++) {
remove_memory(nid, base, MIN_MEMORY_BLOCK_SIZE);
base += MIN_MEMORY_BLOCK_SIZE;
}
out:
/* Update memory regions for memory remove */
memblock_remove(base, memblock_size);
unlock_device_hotplug();
return 0;
}
static int pseries_remove_mem_node(struct device_node *np)
{
const char *type;
const __be32 *regs;
unsigned long base;
unsigned int lmb_size;
int ret = -EINVAL;
/*
* Check to see if we are actually removing memory
*/
type = of_get_property(np, "device_type", NULL);
if (type == NULL || strcmp(type, "memory") != 0)
return 0;
/*
* Find the base address and size of the memblock
*/
regs = of_get_property(np, "reg", NULL);
if (!regs)
return ret;
base = be64_to_cpu(*(unsigned long *)regs);
lmb_size = be32_to_cpu(regs[3]);
pseries_remove_memblock(base, lmb_size);
return 0;
}
static bool lmb_is_removable(struct of_drconf_cell *lmb)
{
int i, scns_per_block;
int rc = 1;
unsigned long pfn, block_sz;
u64 phys_addr;
if (!(lmb->flags & DRCONF_MEM_ASSIGNED))
return false;
block_sz = memory_block_size_bytes();
scns_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
phys_addr = lmb->base_addr;
for (i = 0; i < scns_per_block; i++) {
pfn = PFN_DOWN(phys_addr);
if (!pfn_present(pfn))
continue;
rc &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
phys_addr += MIN_MEMORY_BLOCK_SIZE;
}
return rc ? true : false;
}
static int dlpar_add_lmb(struct of_drconf_cell *);
static struct memory_block *lmb_to_memblock(struct of_drconf_cell *lmb)
{
unsigned long section_nr;
struct mem_section *mem_sect;
struct memory_block *mem_block;
section_nr = pfn_to_section_nr(PFN_DOWN(lmb->base_addr));
mem_sect = __nr_to_section(section_nr);
mem_block = find_memory_block(mem_sect);
return mem_block;
}
static int dlpar_remove_lmb(struct of_drconf_cell *lmb)
{
struct memory_block *mem_block;
unsigned long block_sz;
int nid, rc;
if (!lmb_is_removable(lmb))
return -EINVAL;
mem_block = lmb_to_memblock(lmb);
if (!mem_block)
return -EINVAL;
rc = device_offline(&mem_block->dev);
put_device(&mem_block->dev);
if (rc)
return rc;
block_sz = pseries_memory_block_size();
nid = memory_add_physaddr_to_nid(lmb->base_addr);
remove_memory(nid, lmb->base_addr, block_sz);
/* Update memory regions for memory remove */
memblock_remove(lmb->base_addr, block_sz);
dlpar_release_drc(lmb->drc_index);
dlpar_remove_device_tree_lmb(lmb);
return 0;
}
static int dlpar_memory_remove_by_count(u32 lmbs_to_remove,
struct property *prop)
{
struct of_drconf_cell *lmbs;
int lmbs_removed = 0;
int lmbs_available = 0;
u32 num_lmbs, *p;
int i, rc;
pr_info("Attempting to hot-remove %d LMB(s)\n", lmbs_to_remove);
if (lmbs_to_remove == 0)
return -EINVAL;
p = prop->value;
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
/* Validate that there are enough LMBs to satisfy the request */
for (i = 0; i < num_lmbs; i++) {
if (lmbs[i].flags & DRCONF_MEM_ASSIGNED)
lmbs_available++;
}
if (lmbs_available < lmbs_to_remove)
return -EINVAL;
for (i = 0; i < num_lmbs && lmbs_removed < lmbs_to_remove; i++) {
rc = dlpar_remove_lmb(&lmbs[i]);
if (rc)
continue;
lmbs_removed++;
/* Mark this lmb so we can add it later if all of the
* requested LMBs cannot be removed.
*/
lmbs[i].reserved = 1;
}
if (lmbs_removed != lmbs_to_remove) {
pr_err("Memory hot-remove failed, adding LMB's back\n");
for (i = 0; i < num_lmbs; i++) {
if (!lmbs[i].reserved)
continue;
rc = dlpar_add_lmb(&lmbs[i]);
if (rc)
pr_err("Failed to add LMB back, drc index %x\n",
lmbs[i].drc_index);
lmbs[i].reserved = 0;
}
rc = -EINVAL;
} else {
for (i = 0; i < num_lmbs; i++) {
if (!lmbs[i].reserved)
continue;
pr_info("Memory at %llx was hot-removed\n",
lmbs[i].base_addr);
lmbs[i].reserved = 0;
}
rc = 0;
}
return rc;
}
static int dlpar_memory_remove_by_index(u32 drc_index, struct property *prop)
{
struct of_drconf_cell *lmbs;
u32 num_lmbs, *p;
int lmb_found;
int i, rc;
pr_info("Attempting to hot-remove LMB, drc index %x\n", drc_index);
p = prop->value;
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
lmb_found = 0;
for (i = 0; i < num_lmbs; i++) {
if (lmbs[i].drc_index == drc_index) {
lmb_found = 1;
rc = dlpar_remove_lmb(&lmbs[i]);
break;
}
}
if (!lmb_found)
rc = -EINVAL;
if (rc)
pr_info("Failed to hot-remove memory at %llx\n",
lmbs[i].base_addr);
else
pr_info("Memory at %llx was hot-removed\n", lmbs[i].base_addr);
return rc;
}
#else
static inline int pseries_remove_memblock(unsigned long base,
unsigned int memblock_size)
{
return -EOPNOTSUPP;
}
static inline int pseries_remove_mem_node(struct device_node *np)
{
return 0;
}
static inline int dlpar_memory_remove(struct pseries_hp_errorlog *hp_elog)
{
return -EOPNOTSUPP;
}
static int dlpar_remove_lmb(struct of_drconf_cell *lmb)
{
return -EOPNOTSUPP;
}
static int dlpar_memory_remove_by_count(u32 lmbs_to_remove,
struct property *prop)
{
return -EOPNOTSUPP;
}
static int dlpar_memory_remove_by_index(u32 drc_index, struct property *prop)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
static int dlpar_add_lmb(struct of_drconf_cell *lmb)
{
unsigned long block_sz;
int nid, rc;
if (lmb->flags & DRCONF_MEM_ASSIGNED)
return -EINVAL;
rc = dlpar_acquire_drc(lmb->drc_index);
if (rc)
return rc;
rc = dlpar_add_device_tree_lmb(lmb);
if (rc) {
pr_err("Couldn't update device tree for drc index %x\n",
lmb->drc_index);
dlpar_release_drc(lmb->drc_index);
return rc;
}
block_sz = memory_block_size_bytes();
/* Find the node id for this address */
nid = memory_add_physaddr_to_nid(lmb->base_addr);
/* Add the memory */
rc = add_memory(nid, lmb->base_addr, block_sz);
if (rc) {
dlpar_remove_device_tree_lmb(lmb);
dlpar_release_drc(lmb->drc_index);
} else {
lmb->flags |= DRCONF_MEM_ASSIGNED;
}
return rc;
}
static int dlpar_memory_add_by_count(u32 lmbs_to_add, struct property *prop)
{
struct of_drconf_cell *lmbs;
u32 num_lmbs, *p;
int lmbs_available = 0;
int lmbs_added = 0;
int i, rc;
pr_info("Attempting to hot-add %d LMB(s)\n", lmbs_to_add);
if (lmbs_to_add == 0)
return -EINVAL;
p = prop->value;
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
/* Validate that there are enough LMBs to satisfy the request */
for (i = 0; i < num_lmbs; i++) {
if (!(lmbs[i].flags & DRCONF_MEM_ASSIGNED))
lmbs_available++;
}
if (lmbs_available < lmbs_to_add)
return -EINVAL;
for (i = 0; i < num_lmbs && lmbs_to_add != lmbs_added; i++) {
rc = dlpar_add_lmb(&lmbs[i]);
if (rc)
continue;
lmbs_added++;
/* Mark this lmb so we can remove it later if all of the
* requested LMBs cannot be added.
*/
lmbs[i].reserved = 1;
}
if (lmbs_added != lmbs_to_add) {
pr_err("Memory hot-add failed, removing any added LMBs\n");
for (i = 0; i < num_lmbs; i++) {
if (!lmbs[i].reserved)
continue;
rc = dlpar_remove_lmb(&lmbs[i]);
if (rc)
pr_err("Failed to remove LMB, drc index %x\n",
be32_to_cpu(lmbs[i].drc_index));
}
rc = -EINVAL;
} else {
for (i = 0; i < num_lmbs; i++) {
if (!lmbs[i].reserved)
continue;
pr_info("Memory at %llx (drc index %x) was hot-added\n",
lmbs[i].base_addr, lmbs[i].drc_index);
lmbs[i].reserved = 0;
}
}
return rc;
}
static int dlpar_memory_add_by_index(u32 drc_index, struct property *prop)
{
struct of_drconf_cell *lmbs;
u32 num_lmbs, *p;
int i, lmb_found;
int rc;
pr_info("Attempting to hot-add LMB, drc index %x\n", drc_index);
p = prop->value;
num_lmbs = *p++;
lmbs = (struct of_drconf_cell *)p;
lmb_found = 0;
for (i = 0; i < num_lmbs; i++) {
if (lmbs[i].drc_index == drc_index) {
lmb_found = 1;
rc = dlpar_add_lmb(&lmbs[i]);
break;
}
}
if (!lmb_found)
rc = -EINVAL;
if (rc)
pr_info("Failed to hot-add memory, drc index %x\n", drc_index);
else
pr_info("Memory at %llx (drc index %x) was hot-added\n",
lmbs[i].base_addr, drc_index);
return rc;
}
int dlpar_memory(struct pseries_hp_errorlog *hp_elog)
{
struct device_node *dn;
struct property *prop;
u32 count, drc_index;
int rc;
count = hp_elog->_drc_u.drc_count;
drc_index = hp_elog->_drc_u.drc_index;
lock_device_hotplug();
dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (!dn) {
rc = -EINVAL;
goto dlpar_memory_out;
}
prop = dlpar_clone_drconf_property(dn);
if (!prop) {
rc = -EINVAL;
goto dlpar_memory_out;
}
switch (hp_elog->action) {
case PSERIES_HP_ELOG_ACTION_ADD:
if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_COUNT)
rc = dlpar_memory_add_by_count(count, prop);
else if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_INDEX)
rc = dlpar_memory_add_by_index(drc_index, prop);
else
rc = -EINVAL;
break;
case PSERIES_HP_ELOG_ACTION_REMOVE:
if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_COUNT)
rc = dlpar_memory_remove_by_count(count, prop);
else if (hp_elog->id_type == PSERIES_HP_ELOG_ID_DRC_INDEX)
rc = dlpar_memory_remove_by_index(drc_index, prop);
else
rc = -EINVAL;
break;
default:
pr_err("Invalid action (%d) specified\n", hp_elog->action);
rc = -EINVAL;
break;
}
dlpar_free_property(prop);
dlpar_memory_out:
of_node_put(dn);
unlock_device_hotplug();
return rc;
}
static int pseries_add_mem_node(struct device_node *np)
{
const char *type;
const __be32 *regs;
unsigned long base;
unsigned int lmb_size;
int ret = -EINVAL;
/*
* Check to see if we are actually adding memory
*/
type = of_get_property(np, "device_type", NULL);
if (type == NULL || strcmp(type, "memory") != 0)
return 0;
/*
* Find the base and size of the memblock
*/
regs = of_get_property(np, "reg", NULL);
if (!regs)
return ret;
base = be64_to_cpu(*(unsigned long *)regs);
lmb_size = be32_to_cpu(regs[3]);
/*
* Update memory region to represent the memory add
*/
ret = memblock_add(base, lmb_size);
return (ret < 0) ? -EINVAL : 0;
}
static int pseries_update_drconf_memory(struct of_reconfig_data *pr)
{
struct of_drconf_cell *new_drmem, *old_drmem;
unsigned long memblock_size;
u32 entries;
__be32 *p;
int i, rc = -EINVAL;
if (rtas_hp_event)
return 0;
memblock_size = pseries_memory_block_size();
if (!memblock_size)
return -EINVAL;
p = (__be32 *) pr->old_prop->value;
if (!p)
return -EINVAL;
/* The first int of the property is the number of lmb's described
* by the property. This is followed by an array of of_drconf_cell
* entries. Get the number of entries and skip to the array of
* of_drconf_cell's.
*/
entries = be32_to_cpu(*p++);
old_drmem = (struct of_drconf_cell *)p;
p = (__be32 *)pr->prop->value;
p++;
new_drmem = (struct of_drconf_cell *)p;
for (i = 0; i < entries; i++) {
if ((be32_to_cpu(old_drmem[i].flags) & DRCONF_MEM_ASSIGNED) &&
(!(be32_to_cpu(new_drmem[i].flags) & DRCONF_MEM_ASSIGNED))) {
rc = pseries_remove_memblock(
be64_to_cpu(old_drmem[i].base_addr),
memblock_size);
break;
} else if ((!(be32_to_cpu(old_drmem[i].flags) &
DRCONF_MEM_ASSIGNED)) &&
(be32_to_cpu(new_drmem[i].flags) &
DRCONF_MEM_ASSIGNED)) {
rc = memblock_add(be64_to_cpu(old_drmem[i].base_addr),
memblock_size);
rc = (rc < 0) ? -EINVAL : 0;
break;
}
}
return rc;
}
static int pseries_memory_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct of_reconfig_data *rd = data;
int err = 0;
switch (action) {
case OF_RECONFIG_ATTACH_NODE:
err = pseries_add_mem_node(rd->dn);
break;
case OF_RECONFIG_DETACH_NODE:
err = pseries_remove_mem_node(rd->dn);
break;
case OF_RECONFIG_UPDATE_PROPERTY:
if (!strcmp(rd->prop->name, "ibm,dynamic-memory"))
err = pseries_update_drconf_memory(rd);
break;
}
return notifier_from_errno(err);
}
static struct notifier_block pseries_mem_nb = {
.notifier_call = pseries_memory_notifier,
};
static int __init pseries_memory_hotplug_init(void)
{
if (firmware_has_feature(FW_FEATURE_LPAR))
of_reconfig_notifier_register(&pseries_mem_nb);
return 0;
}
machine_device_initcall(pseries, pseries_memory_hotplug_init);