blob: 7e9a44cee4250afbbe6ff9147d379298a94f0448 [file] [log] [blame]
/*
* Cryptographic API.
*
* Support for OMAP SHA1/MD5 HW acceleration.
*
* Copyright (c) 2010 Nokia Corporation
* Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
* Copyright (c) 2011 Texas Instruments Incorporated
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Some ideas are from old omap-sha1-md5.c driver.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/err.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/omap-dma.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#define MD5_DIGEST_SIZE 16
#define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
#define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
#define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
#define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
#define SHA_REG_CTRL 0x18
#define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
#define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
#define SHA_REG_CTRL_ALGO_CONST (1 << 3)
#define SHA_REG_CTRL_ALGO (1 << 2)
#define SHA_REG_CTRL_INPUT_READY (1 << 1)
#define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
#define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs)
#define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs)
#define SHA_REG_MASK_DMA_EN (1 << 3)
#define SHA_REG_MASK_IT_EN (1 << 2)
#define SHA_REG_MASK_SOFTRESET (1 << 1)
#define SHA_REG_AUTOIDLE (1 << 0)
#define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
#define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
#define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
#define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
#define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
#define SHA_REG_MODE_CLOSE_HASH (1 << 4)
#define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
#define SHA_REG_MODE_ALGO_MASK (7 << 0)
#define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
#define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
#define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
#define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
#define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
#define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
#define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
#define SHA_REG_IRQSTATUS 0x118
#define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
#define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
#define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1)
#define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0)
#define SHA_REG_IRQENA 0x11C
#define SHA_REG_IRQENA_CTX_RDY (1 << 3)
#define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2)
#define SHA_REG_IRQENA_INPUT_RDY (1 << 1)
#define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0)
#define DEFAULT_TIMEOUT_INTERVAL HZ
/* mostly device flags */
#define FLAGS_BUSY 0
#define FLAGS_FINAL 1
#define FLAGS_DMA_ACTIVE 2
#define FLAGS_OUTPUT_READY 3
#define FLAGS_INIT 4
#define FLAGS_CPU 5
#define FLAGS_DMA_READY 6
#define FLAGS_AUTO_XOR 7
#define FLAGS_BE32_SHA1 8
/* context flags */
#define FLAGS_FINUP 16
#define FLAGS_SG 17
#define FLAGS_MODE_SHIFT 18
#define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
#define FLAGS_HMAC 21
#define FLAGS_ERROR 22
#define OP_UPDATE 1
#define OP_FINAL 2
#define OMAP_ALIGN_MASK (sizeof(u32)-1)
#define OMAP_ALIGNED __attribute__((aligned(sizeof(u32))))
#define BUFLEN PAGE_SIZE
struct omap_sham_dev;
struct omap_sham_reqctx {
struct omap_sham_dev *dd;
unsigned long flags;
unsigned long op;
u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
size_t digcnt;
size_t bufcnt;
size_t buflen;
dma_addr_t dma_addr;
/* walk state */
struct scatterlist *sg;
struct scatterlist sgl;
unsigned int offset; /* offset in current sg */
unsigned int total; /* total request */
u8 buffer[0] OMAP_ALIGNED;
};
struct omap_sham_hmac_ctx {
struct crypto_shash *shash;
u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
};
struct omap_sham_ctx {
struct omap_sham_dev *dd;
unsigned long flags;
/* fallback stuff */
struct crypto_shash *fallback;
struct omap_sham_hmac_ctx base[0];
};
#define OMAP_SHAM_QUEUE_LENGTH 1
struct omap_sham_algs_info {
struct ahash_alg *algs_list;
unsigned int size;
unsigned int registered;
};
struct omap_sham_pdata {
struct omap_sham_algs_info *algs_info;
unsigned int algs_info_size;
unsigned long flags;
int digest_size;
void (*copy_hash)(struct ahash_request *req, int out);
void (*write_ctrl)(struct omap_sham_dev *dd, size_t length,
int final, int dma);
void (*trigger)(struct omap_sham_dev *dd, size_t length);
int (*poll_irq)(struct omap_sham_dev *dd);
irqreturn_t (*intr_hdlr)(int irq, void *dev_id);
u32 odigest_ofs;
u32 idigest_ofs;
u32 din_ofs;
u32 digcnt_ofs;
u32 rev_ofs;
u32 mask_ofs;
u32 sysstatus_ofs;
u32 mode_ofs;
u32 length_ofs;
u32 major_mask;
u32 major_shift;
u32 minor_mask;
u32 minor_shift;
};
struct omap_sham_dev {
struct list_head list;
unsigned long phys_base;
struct device *dev;
void __iomem *io_base;
int irq;
spinlock_t lock;
int err;
unsigned int dma;
struct dma_chan *dma_lch;
struct tasklet_struct done_task;
u8 polling_mode;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
const struct omap_sham_pdata *pdata;
};
struct omap_sham_drv {
struct list_head dev_list;
spinlock_t lock;
unsigned long flags;
};
static struct omap_sham_drv sham = {
.dev_list = LIST_HEAD_INIT(sham.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
};
static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
static inline void omap_sham_write(struct omap_sham_dev *dd,
u32 offset, u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
u32 value, u32 mask)
{
u32 val;
val = omap_sham_read(dd, address);
val &= ~mask;
val |= value;
omap_sham_write(dd, address, val);
}
static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
{
unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
while (!(omap_sham_read(dd, offset) & bit)) {
if (time_is_before_jiffies(timeout))
return -ETIMEDOUT;
}
return 0;
}
static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
u32 *hash = (u32 *)ctx->digest;
int i;
for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
if (out)
hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
else
omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
}
}
static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int i;
if (ctx->flags & BIT(FLAGS_HMAC)) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
u32 *opad = (u32 *)bctx->opad;
for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
if (out)
opad[i] = omap_sham_read(dd,
SHA_REG_ODIGEST(dd, i));
else
omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
opad[i]);
}
}
omap_sham_copy_hash_omap2(req, out);
}
static void omap_sham_copy_ready_hash(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
u32 *in = (u32 *)ctx->digest;
u32 *hash = (u32 *)req->result;
int i, d, big_endian = 0;
if (!hash)
return;
switch (ctx->flags & FLAGS_MODE_MASK) {
case FLAGS_MODE_MD5:
d = MD5_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA1:
/* OMAP2 SHA1 is big endian */
if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
big_endian = 1;
d = SHA1_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA224:
d = SHA224_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA256:
d = SHA256_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA384:
d = SHA384_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA512:
d = SHA512_DIGEST_SIZE / sizeof(u32);
break;
default:
d = 0;
}
if (big_endian)
for (i = 0; i < d; i++)
hash[i] = be32_to_cpu(in[i]);
else
for (i = 0; i < d; i++)
hash[i] = le32_to_cpu(in[i]);
}
static int omap_sham_hw_init(struct omap_sham_dev *dd)
{
int err;
err = pm_runtime_get_sync(dd->dev);
if (err < 0) {
dev_err(dd->dev, "failed to get sync: %d\n", err);
return err;
}
if (!test_bit(FLAGS_INIT, &dd->flags)) {
set_bit(FLAGS_INIT, &dd->flags);
dd->err = 0;
}
return 0;
}
static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
int final, int dma)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
u32 val = length << 5, mask;
if (likely(ctx->digcnt))
omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
omap_sham_write_mask(dd, SHA_REG_MASK(dd),
SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
/*
* Setting ALGO_CONST only for the first iteration
* and CLOSE_HASH only for the last one.
*/
if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
val |= SHA_REG_CTRL_ALGO;
if (!ctx->digcnt)
val |= SHA_REG_CTRL_ALGO_CONST;
if (final)
val |= SHA_REG_CTRL_CLOSE_HASH;
mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
}
static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
{
}
static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
{
return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
}
static int get_block_size(struct omap_sham_reqctx *ctx)
{
int d;
switch (ctx->flags & FLAGS_MODE_MASK) {
case FLAGS_MODE_MD5:
case FLAGS_MODE_SHA1:
d = SHA1_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA224:
case FLAGS_MODE_SHA256:
d = SHA256_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA384:
case FLAGS_MODE_SHA512:
d = SHA512_BLOCK_SIZE;
break;
default:
d = 0;
}
return d;
}
static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_sham_write(dd, offset, *value);
}
static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
int final, int dma)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
u32 val, mask;
if (likely(ctx->digcnt))
omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
/*
* Setting ALGO_CONST only for the first iteration and
* CLOSE_HASH only for the last one. Note that flags mode bits
* correspond to algorithm encoding in mode register.
*/
val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
if (!ctx->digcnt) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs, nr_dr;
val |= SHA_REG_MODE_ALGO_CONSTANT;
if (ctx->flags & BIT(FLAGS_HMAC)) {
bs = get_block_size(ctx);
nr_dr = bs / (2 * sizeof(u32));
val |= SHA_REG_MODE_HMAC_KEY_PROC;
omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
(u32 *)bctx->ipad, nr_dr);
omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
(u32 *)bctx->ipad + nr_dr, nr_dr);
ctx->digcnt += bs;
}
}
if (final) {
val |= SHA_REG_MODE_CLOSE_HASH;
if (ctx->flags & BIT(FLAGS_HMAC))
val |= SHA_REG_MODE_HMAC_OUTER_HASH;
}
mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
SHA_REG_MODE_HMAC_KEY_PROC;
dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
omap_sham_write_mask(dd, SHA_REG_MASK(dd),
SHA_REG_MASK_IT_EN |
(dma ? SHA_REG_MASK_DMA_EN : 0),
SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
}
static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
{
omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
}
static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
{
return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
SHA_REG_IRQSTATUS_INPUT_RDY);
}
static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, const u8 *buf,
size_t length, int final)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32, bs32, offset = 0;
const u32 *buffer = (const u32 *)buf;
dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
ctx->digcnt, length, final);
dd->pdata->write_ctrl(dd, length, final, 0);
dd->pdata->trigger(dd, length);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt += length;
if (final)
set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
set_bit(FLAGS_CPU, &dd->flags);
len32 = DIV_ROUND_UP(length, sizeof(u32));
bs32 = get_block_size(ctx) / sizeof(u32);
while (len32) {
if (dd->pdata->poll_irq(dd))
return -ETIMEDOUT;
for (count = 0; count < min(len32, bs32); count++, offset++)
omap_sham_write(dd, SHA_REG_DIN(dd, count),
buffer[offset]);
len32 -= min(len32, bs32);
}
return -EINPROGRESS;
}
static void omap_sham_dma_callback(void *param)
{
struct omap_sham_dev *dd = param;
set_bit(FLAGS_DMA_READY, &dd->flags);
tasklet_schedule(&dd->done_task);
}
static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr,
size_t length, int final, int is_sg)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *tx;
struct dma_slave_config cfg;
int len32, ret, dma_min = get_block_size(ctx);
dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
ctx->digcnt, length, final);
memset(&cfg, 0, sizeof(cfg));
cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_maxburst = dma_min / DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(dd->dma_lch, &cfg);
if (ret) {
pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
return ret;
}
len32 = DIV_ROUND_UP(length, dma_min) * dma_min;
if (is_sg) {
/*
* The SG entry passed in may not have the 'length' member
* set correctly so use a local SG entry (sgl) with the
* proper value for 'length' instead. If this is not done,
* the dmaengine may try to DMA the incorrect amount of data.
*/
sg_init_table(&ctx->sgl, 1);
sg_assign_page(&ctx->sgl, sg_page(ctx->sg));
ctx->sgl.offset = ctx->sg->offset;
sg_dma_len(&ctx->sgl) = len32;
sg_dma_address(&ctx->sgl) = sg_dma_address(ctx->sg);
tx = dmaengine_prep_slave_sg(dd->dma_lch, &ctx->sgl, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
} else {
tx = dmaengine_prep_slave_single(dd->dma_lch, dma_addr, len32,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (!tx) {
dev_err(dd->dev, "prep_slave_sg/single() failed\n");
return -EINVAL;
}
tx->callback = omap_sham_dma_callback;
tx->callback_param = dd;
dd->pdata->write_ctrl(dd, length, final, 1);
ctx->digcnt += length;
if (final)
set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
dmaengine_submit(tx);
dma_async_issue_pending(dd->dma_lch);
dd->pdata->trigger(dd, length);
return -EINPROGRESS;
}
static size_t omap_sham_append_buffer(struct omap_sham_reqctx *ctx,
const u8 *data, size_t length)
{
size_t count = min(length, ctx->buflen - ctx->bufcnt);
count = min(count, ctx->total);
if (count <= 0)
return 0;
memcpy(ctx->buffer + ctx->bufcnt, data, count);
ctx->bufcnt += count;
return count;
}
static size_t omap_sham_append_sg(struct omap_sham_reqctx *ctx)
{
size_t count;
const u8 *vaddr;
while (ctx->sg) {
vaddr = kmap_atomic(sg_page(ctx->sg));
vaddr += ctx->sg->offset;
count = omap_sham_append_buffer(ctx,
vaddr + ctx->offset,
ctx->sg->length - ctx->offset);
kunmap_atomic((void *)vaddr);
if (!count)
break;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
ctx->total = 0;
}
}
return 0;
}
static int omap_sham_xmit_dma_map(struct omap_sham_dev *dd,
struct omap_sham_reqctx *ctx,
size_t length, int final)
{
int ret;
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen,
DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen);
return -EINVAL;
}
ctx->flags &= ~BIT(FLAGS_SG);
ret = omap_sham_xmit_dma(dd, ctx->dma_addr, length, final, 0);
if (ret != -EINPROGRESS)
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen,
DMA_TO_DEVICE);
return ret;
}
static int omap_sham_update_dma_slow(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int final;
size_t count;
omap_sham_append_sg(ctx);
final = (ctx->flags & BIT(FLAGS_FINUP)) && !ctx->total;
dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n",
ctx->bufcnt, ctx->digcnt, final);
if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
count = ctx->bufcnt;
ctx->bufcnt = 0;
return omap_sham_xmit_dma_map(dd, ctx, count, final);
}
return 0;
}
/* Start address alignment */
#define SG_AA(sg) (IS_ALIGNED(sg->offset, sizeof(u32)))
/* SHA1 block size alignment */
#define SG_SA(sg, bs) (IS_ALIGNED(sg->length, bs))
static int omap_sham_update_dma_start(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int length, final, tail;
struct scatterlist *sg;
int ret, bs;
if (!ctx->total)
return 0;
if (ctx->bufcnt || ctx->offset)
return omap_sham_update_dma_slow(dd);
/*
* Don't use the sg interface when the transfer size is less
* than the number of elements in a DMA frame. Otherwise,
* the dmaengine infrastructure will calculate that it needs
* to transfer 0 frames which ultimately fails.
*/
if (ctx->total < get_block_size(ctx))
return omap_sham_update_dma_slow(dd);
dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n",
ctx->digcnt, ctx->bufcnt, ctx->total);
sg = ctx->sg;
bs = get_block_size(ctx);
if (!SG_AA(sg))
return omap_sham_update_dma_slow(dd);
if (!sg_is_last(sg) && !SG_SA(sg, bs))
/* size is not BLOCK_SIZE aligned */
return omap_sham_update_dma_slow(dd);
length = min(ctx->total, sg->length);
if (sg_is_last(sg)) {
if (!(ctx->flags & BIT(FLAGS_FINUP))) {
/* not last sg must be BLOCK_SIZE aligned */
tail = length & (bs - 1);
/* without finup() we need one block to close hash */
if (!tail)
tail = bs;
length -= tail;
}
}
if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return -EINVAL;
}
ctx->flags |= BIT(FLAGS_SG);
ctx->total -= length;
ctx->offset = length; /* offset where to start slow */
final = (ctx->flags & BIT(FLAGS_FINUP)) && !ctx->total;
ret = omap_sham_xmit_dma(dd, sg_dma_address(ctx->sg), length, final, 1);
if (ret != -EINPROGRESS)
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
return ret;
}
static int omap_sham_update_cpu(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
int bufcnt, final;
if (!ctx->total)
return 0;
omap_sham_append_sg(ctx);
final = (ctx->flags & BIT(FLAGS_FINUP)) && !ctx->total;
dev_dbg(dd->dev, "cpu: bufcnt: %u, digcnt: %d, final: %d\n",
ctx->bufcnt, ctx->digcnt, final);
if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, final);
}
return 0;
}
static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
dmaengine_terminate_all(dd->dma_lch);
if (ctx->flags & BIT(FLAGS_SG)) {
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
if (ctx->sg->length == ctx->offset) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
}
} else {
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen,
DMA_TO_DEVICE);
}
return 0;
}
static int omap_sham_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = NULL, *tmp;
int bs = 0;
spin_lock_bh(&sham.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &sham.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&sham.lock);
ctx->dd = dd;
ctx->flags = 0;
dev_dbg(dd->dev, "init: digest size: %d\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case MD5_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_MD5;
bs = SHA1_BLOCK_SIZE;
break;
case SHA1_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA1;
bs = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA224;
bs = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA256;
bs = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA384;
bs = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA512;
bs = SHA512_BLOCK_SIZE;
break;
}
ctx->bufcnt = 0;
ctx->digcnt = 0;
ctx->buflen = BUFLEN;
if (tctx->flags & BIT(FLAGS_HMAC)) {
if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
memcpy(ctx->buffer, bctx->ipad, bs);
ctx->bufcnt = bs;
}
ctx->flags |= BIT(FLAGS_HMAC);
}
return 0;
}
static int omap_sham_update_req(struct omap_sham_dev *dd)
{
struct ahash_request *req = dd->req;
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
if (ctx->flags & BIT(FLAGS_CPU))
err = omap_sham_update_cpu(dd);
else
err = omap_sham_update_dma_start(dd);
/* wait for dma completion before can take more data */
dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
return err;
}
static int omap_sham_final_req(struct omap_sham_dev *dd)
{
struct ahash_request *req = dd->req;
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err = 0, use_dma = 1;
if ((ctx->bufcnt <= get_block_size(ctx)) || dd->polling_mode)
/*
* faster to handle last block with cpu or
* use cpu when dma is not present.
*/
use_dma = 0;
if (use_dma)
err = omap_sham_xmit_dma_map(dd, ctx, ctx->bufcnt, 1);
else
err = omap_sham_xmit_cpu(dd, ctx->buffer, ctx->bufcnt, 1);
ctx->bufcnt = 0;
dev_dbg(dd->dev, "final_req: err: %d\n", err);
return err;
}
static int omap_sham_finish_hmac(struct ahash_request *req)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash);
int ds = crypto_shash_digestsize(bctx->shash);
SHASH_DESC_ON_STACK(shash, bctx->shash);
shash->tfm = bctx->shash;
shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
return crypto_shash_init(shash) ?:
crypto_shash_update(shash, bctx->opad, bs) ?:
crypto_shash_finup(shash, req->result, ds, req->result);
}
static int omap_sham_finish(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int err = 0;
if (ctx->digcnt) {
omap_sham_copy_ready_hash(req);
if ((ctx->flags & BIT(FLAGS_HMAC)) &&
!test_bit(FLAGS_AUTO_XOR, &dd->flags))
err = omap_sham_finish_hmac(req);
}
dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
return err;
}
static void omap_sham_finish_req(struct ahash_request *req, int err)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
if (!err) {
dd->pdata->copy_hash(req, 1);
if (test_bit(FLAGS_FINAL, &dd->flags))
err = omap_sham_finish(req);
} else {
ctx->flags |= BIT(FLAGS_ERROR);
}
/* atomic operation is not needed here */
dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
pm_runtime_put(dd->dev);
if (req->base.complete)
req->base.complete(&req->base, err);
/* handle new request */
tasklet_schedule(&dd->done_task);
}
static int omap_sham_handle_queue(struct omap_sham_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct omap_sham_reqctx *ctx;
unsigned long flags;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if (test_bit(FLAGS_BUSY, &dd->flags)) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
set_bit(FLAGS_BUSY, &dd->flags);
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ahash_request_cast(async_req);
dd->req = req;
ctx = ahash_request_ctx(req);
dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
ctx->op, req->nbytes);
err = omap_sham_hw_init(dd);
if (err)
goto err1;
if (ctx->digcnt)
/* request has changed - restore hash */
dd->pdata->copy_hash(req, 0);
if (ctx->op == OP_UPDATE) {
err = omap_sham_update_req(dd);
if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
/* no final() after finup() */
err = omap_sham_final_req(dd);
} else if (ctx->op == OP_FINAL) {
err = omap_sham_final_req(dd);
}
err1:
if (err != -EINPROGRESS)
/* done_task will not finish it, so do it here */
omap_sham_finish_req(req, err);
dev_dbg(dd->dev, "exit, err: %d\n", err);
return ret;
}
static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_dev *dd = tctx->dd;
ctx->op = op;
return omap_sham_handle_queue(dd, req);
}
static int omap_sham_update(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int bs = get_block_size(ctx);
if (!req->nbytes)
return 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
if (ctx->flags & BIT(FLAGS_FINUP)) {
if ((ctx->digcnt + ctx->bufcnt + ctx->total) < 9) {
/*
* OMAP HW accel works only with buffers >= 9
* will switch to bypass in final()
* final has the same request and data
*/
omap_sham_append_sg(ctx);
return 0;
} else if ((ctx->bufcnt + ctx->total <= bs) ||
dd->polling_mode) {
/*
* faster to use CPU for short transfers or
* use cpu when dma is not present.
*/
ctx->flags |= BIT(FLAGS_CPU);
}
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
omap_sham_append_sg(ctx);
return 0;
}
if (dd->polling_mode)
ctx->flags |= BIT(FLAGS_CPU);
return omap_sham_enqueue(req, OP_UPDATE);
}
static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
const u8 *data, unsigned int len, u8 *out)
{
SHASH_DESC_ON_STACK(shash, tfm);
shash->tfm = tfm;
shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_shash_digest(shash, data, len, out);
}
static int omap_sham_final_shash(struct ahash_request *req)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
return omap_sham_shash_digest(tctx->fallback, req->base.flags,
ctx->buffer, ctx->bufcnt, req->result);
}
static int omap_sham_final(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= BIT(FLAGS_FINUP);
if (ctx->flags & BIT(FLAGS_ERROR))
return 0; /* uncompleted hash is not needed */
/* OMAP HW accel works only with buffers >= 9 */
/* HMAC is always >= 9 because ipad == block size */
if ((ctx->digcnt + ctx->bufcnt) < 9)
return omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
/* copy ready hash (+ finalize hmac) */
return omap_sham_finish(req);
}
static int omap_sham_finup(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= BIT(FLAGS_FINUP);
err1 = omap_sham_update(req);
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = omap_sham_final(req);
return err1 ?: err2;
}
static int omap_sham_digest(struct ahash_request *req)
{
return omap_sham_init(req) ?: omap_sham_finup(req);
}
static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash);
int ds = crypto_shash_digestsize(bctx->shash);
struct omap_sham_dev *dd = NULL, *tmp;
int err, i;
spin_lock_bh(&sham.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &sham.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&sham.lock);
err = crypto_shash_setkey(tctx->fallback, key, keylen);
if (err)
return err;
if (keylen > bs) {
err = omap_sham_shash_digest(bctx->shash,
crypto_shash_get_flags(bctx->shash),
key, keylen, bctx->ipad);
if (err)
return err;
keylen = ds;
} else {
memcpy(bctx->ipad, key, keylen);
}
memset(bctx->ipad + keylen, 0, bs - keylen);
if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
memcpy(bctx->opad, bctx->ipad, bs);
for (i = 0; i < bs; i++) {
bctx->ipad[i] ^= 0x36;
bctx->opad[i] ^= 0x5c;
}
}
return err;
}
static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
/* Allocate a fallback and abort if it failed. */
tctx->fallback = crypto_alloc_shash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback)) {
pr_err("omap-sham: fallback driver '%s' "
"could not be loaded.\n", alg_name);
return PTR_ERR(tctx->fallback);
}
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct omap_sham_reqctx) + BUFLEN);
if (alg_base) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
tctx->flags |= BIT(FLAGS_HMAC);
bctx->shash = crypto_alloc_shash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(bctx->shash)) {
pr_err("omap-sham: base driver '%s' "
"could not be loaded.\n", alg_base);
crypto_free_shash(tctx->fallback);
return PTR_ERR(bctx->shash);
}
}
return 0;
}
static int omap_sham_cra_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, NULL);
}
static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha1");
}
static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha224");
}
static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha256");
}
static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "md5");
}
static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha384");
}
static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha512");
}
static void omap_sham_cra_exit(struct crypto_tfm *tfm)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_free_shash(tctx->fallback);
tctx->fallback = NULL;
if (tctx->flags & BIT(FLAGS_HMAC)) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
crypto_free_shash(bctx->shash);
}
}
static struct ahash_alg algs_sha1_md5[] = {
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "omap-sha1",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = MD5_DIGEST_SIZE,
.halg.base = {
.cra_name = "md5",
.cra_driver_name = "omap-md5",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "omap-hmac-sha1",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha1_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = MD5_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "omap-hmac-md5",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_md5_init,
.cra_exit = omap_sham_cra_exit,
}
}
};
/* OMAP4 has some algs in addition to what OMAP2 has */
static struct ahash_alg algs_sha224_sha256[] = {
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "omap-sha224",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "omap-sha256",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "omap-hmac-sha224",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha224_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "omap-hmac-sha256",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha256_init,
.cra_exit = omap_sham_cra_exit,
}
},
};
static struct ahash_alg algs_sha384_sha512[] = {
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "omap-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "omap-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "omap-hmac-sha384",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha384_init,
.cra_exit = omap_sham_cra_exit,
}
},
{
.init = omap_sham_init,
.update = omap_sham_update,
.final = omap_sham_final,
.finup = omap_sham_finup,
.digest = omap_sham_digest,
.setkey = omap_sham_setkey,
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "omap-hmac-sha512",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha512_init,
.cra_exit = omap_sham_cra_exit,
}
},
};
static void omap_sham_done_task(unsigned long data)
{
struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
int err = 0;
if (!test_bit(FLAGS_BUSY, &dd->flags)) {
omap_sham_handle_queue(dd, NULL);
return;
}
if (test_bit(FLAGS_CPU, &dd->flags)) {
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
/* hash or semi-hash ready */
err = omap_sham_update_cpu(dd);
if (err != -EINPROGRESS)
goto finish;
}
} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
omap_sham_update_dma_stop(dd);
if (dd->err) {
err = dd->err;
goto finish;
}
}
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
/* hash or semi-hash ready */
clear_bit(FLAGS_DMA_READY, &dd->flags);
err = omap_sham_update_dma_start(dd);
if (err != -EINPROGRESS)
goto finish;
}
}
return;
finish:
dev_dbg(dd->dev, "update done: err: %d\n", err);
/* finish curent request */
omap_sham_finish_req(dd->req, err);
}
static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
{
if (!test_bit(FLAGS_BUSY, &dd->flags)) {
dev_warn(dd->dev, "Interrupt when no active requests.\n");
} else {
set_bit(FLAGS_OUTPUT_READY, &dd->flags);
tasklet_schedule(&dd->done_task);
}
return IRQ_HANDLED;
}
static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
{
struct omap_sham_dev *dd = dev_id;
if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
/* final -> allow device to go to power-saving mode */
omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
SHA_REG_CTRL_OUTPUT_READY);
omap_sham_read(dd, SHA_REG_CTRL);
return omap_sham_irq_common(dd);
}
static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
{
struct omap_sham_dev *dd = dev_id;
omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
return omap_sham_irq_common(dd);
}
static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
.algs_info = omap_sham_algs_info_omap2,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2),
.flags = BIT(FLAGS_BE32_SHA1),
.digest_size = SHA1_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap2,
.write_ctrl = omap_sham_write_ctrl_omap2,
.trigger = omap_sham_trigger_omap2,
.poll_irq = omap_sham_poll_irq_omap2,
.intr_hdlr = omap_sham_irq_omap2,
.idigest_ofs = 0x00,
.din_ofs = 0x1c,
.digcnt_ofs = 0x14,
.rev_ofs = 0x5c,
.mask_ofs = 0x60,
.sysstatus_ofs = 0x64,
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
#ifdef CONFIG_OF
static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
.algs_info = omap_sham_algs_info_omap4,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4),
.flags = BIT(FLAGS_AUTO_XOR),
.digest_size = SHA256_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap4,
.write_ctrl = omap_sham_write_ctrl_omap4,
.trigger = omap_sham_trigger_omap4,
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x020,
.odigest_ofs = 0x0,
.din_ofs = 0x080,
.digcnt_ofs = 0x040,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x44,
.length_ofs = 0x48,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
{
.algs_list = algs_sha384_sha512,
.size = ARRAY_SIZE(algs_sha384_sha512),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
.algs_info = omap_sham_algs_info_omap5,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
.flags = BIT(FLAGS_AUTO_XOR),
.digest_size = SHA512_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap4,
.write_ctrl = omap_sham_write_ctrl_omap4,
.trigger = omap_sham_trigger_omap4,
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x240,
.odigest_ofs = 0x200,
.din_ofs = 0x080,
.digcnt_ofs = 0x280,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x284,
.length_ofs = 0x288,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static const struct of_device_id omap_sham_of_match[] = {
{
.compatible = "ti,omap2-sham",
.data = &omap_sham_pdata_omap2,
},
{
.compatible = "ti,omap3-sham",
.data = &omap_sham_pdata_omap2,
},
{
.compatible = "ti,omap4-sham",
.data = &omap_sham_pdata_omap4,
},
{
.compatible = "ti,omap5-sham",
.data = &omap_sham_pdata_omap5,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_sham_of_match);
static int omap_sham_get_res_of(struct omap_sham_dev *dd,
struct device *dev, struct resource *res)
{
struct device_node *node = dev->of_node;
const struct of_device_id *match;
int err = 0;
match = of_match_device(of_match_ptr(omap_sham_of_match), dev);
if (!match) {
dev_err(dev, "no compatible OF match\n");
err = -EINVAL;
goto err;
}
err = of_address_to_resource(node, 0, res);
if (err < 0) {
dev_err(dev, "can't translate OF node address\n");
err = -EINVAL;
goto err;
}
dd->irq = irq_of_parse_and_map(node, 0);
if (!dd->irq) {
dev_err(dev, "can't translate OF irq value\n");
err = -EINVAL;
goto err;
}
dd->dma = -1; /* Dummy value that's unused */
dd->pdata = match->data;
err:
return err;
}
#else
static const struct of_device_id omap_sham_of_match[] = {
{},
};
static int omap_sham_get_res_of(struct omap_sham_dev *dd,
struct device *dev, struct resource *res)
{
return -EINVAL;
}
#endif
static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
struct platform_device *pdev, struct resource *res)
{
struct device *dev = &pdev->dev;
struct resource *r;
int err = 0;
/* Get the base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err;
}
memcpy(res, r, sizeof(*res));
/* Get the IRQ */
dd->irq = platform_get_irq(pdev, 0);
if (dd->irq < 0) {
dev_err(dev, "no IRQ resource info\n");
err = dd->irq;
goto err;
}
/* Get the DMA */
r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!r) {
dev_err(dev, "no DMA resource info\n");
err = -ENODEV;
goto err;
}
dd->dma = r->start;
/* Only OMAP2/3 can be non-DT */
dd->pdata = &omap_sham_pdata_omap2;
err:
return err;
}
static int omap_sham_probe(struct platform_device *pdev)
{
struct omap_sham_dev *dd;
struct device *dev = &pdev->dev;
struct resource res;
dma_cap_mask_t mask;
int err, i, j;
u32 rev;
dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
err = -ENOMEM;
goto data_err;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
INIT_LIST_HEAD(&dd->list);
spin_lock_init(&dd->lock);
tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
omap_sham_get_res_pdev(dd, pdev, &res);
if (err)
goto data_err;
dd->io_base = devm_ioremap_resource(dev, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto data_err;
}
dd->phys_base = res.start;
err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
IRQF_TRIGGER_NONE, dev_name(dev), dd);
if (err) {
dev_err(dev, "unable to request irq %d, err = %d\n",
dd->irq, err);
goto data_err;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dd->dma_lch = dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
&dd->dma, dev, "rx");
if (!dd->dma_lch) {
dd->polling_mode = 1;
dev_dbg(dev, "using polling mode instead of dma\n");
}
dd->flags |= dd->pdata->flags;
pm_runtime_enable(dev);
pm_runtime_irq_safe(dev);
err = pm_runtime_get_sync(dev);
if (err < 0) {
dev_err(dev, "failed to get sync: %d\n", err);
goto err_pm;
}
rev = omap_sham_read(dd, SHA_REG_REV(dd));
pm_runtime_put_sync(&pdev->dev);
dev_info(dev, "hw accel on OMAP rev %u.%u\n",
(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
spin_lock(&sham.lock);
list_add_tail(&dd->list, &sham.dev_list);
spin_unlock(&sham.lock);
for (i = 0; i < dd->pdata->algs_info_size; i++) {
for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
err = crypto_register_ahash(
&dd->pdata->algs_info[i].algs_list[j]);
if (err)
goto err_algs;
dd->pdata->algs_info[i].registered++;
}
}
return 0;
err_algs:
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_unregister_ahash(
&dd->pdata->algs_info[i].algs_list[j]);
err_pm:
pm_runtime_disable(dev);
if (dd->dma_lch)
dma_release_channel(dd->dma_lch);
data_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_sham_remove(struct platform_device *pdev)
{
static struct omap_sham_dev *dd;
int i, j;
dd = platform_get_drvdata(pdev);
if (!dd)
return -ENODEV;
spin_lock(&sham.lock);
list_del(&dd->list);
spin_unlock(&sham.lock);
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_unregister_ahash(
&dd->pdata->algs_info[i].algs_list[j]);
tasklet_kill(&dd->done_task);
pm_runtime_disable(&pdev->dev);
if (dd->dma_lch)
dma_release_channel(dd->dma_lch);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int omap_sham_suspend(struct device *dev)
{
pm_runtime_put_sync(dev);
return 0;
}
static int omap_sham_resume(struct device *dev)
{
int err = pm_runtime_get_sync(dev);
if (err < 0) {
dev_err(dev, "failed to get sync: %d\n", err);
return err;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
static struct platform_driver omap_sham_driver = {
.probe = omap_sham_probe,
.remove = omap_sham_remove,
.driver = {
.name = "omap-sham",
.pm = &omap_sham_pm_ops,
.of_match_table = omap_sham_of_match,
},
};
module_platform_driver(omap_sham_driver);
MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Dmitry Kasatkin");
MODULE_ALIAS("platform:omap-sham");