Merge branch 'android-4.14-eas-integration' into experimental-android-4.14
Refactored EAS patches on top of 4.14 base
Change-Id: I13a68ddad54ad49c7fec77ad6dec1ec5325aae27
diff --git a/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
new file mode 100644
index 0000000..2ceb202
--- /dev/null
+++ b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
@@ -0,0 +1,378 @@
+===========================================================
+Energy cost bindings for Energy Aware Scheduling
+===========================================================
+
+===========================================================
+1 - Introduction
+===========================================================
+
+This note specifies bindings required for energy-aware scheduling
+(EAS)[1]. Historically, the scheduler's primary objective has been
+performance.  EAS aims to provide an alternative objective - energy
+efficiency. EAS relies on a simple platform energy cost model to
+guide scheduling decisions.  The model only considers the CPU
+subsystem.
+
+This note is aligned with the definition of the layout of physical
+CPUs in the system as described in the ARM topology binding
+description [2]. The concept is applicable to any system so long as
+the cost model data is provided for those processing elements in
+that system's topology that EAS is required to service.
+
+Processing elements refer to hardware threads, CPUs and clusters of
+related CPUs in increasing order of hierarchy.
+
+EAS requires two key cost metrics - busy costs and idle costs. Busy
+costs comprise of a list of compute capacities for the processing
+element in question and the corresponding power consumption at that
+capacity.  Idle costs comprise of a list of power consumption values
+for each idle state [C-state] that the processing element supports.
+For a detailed description of these metrics, their derivation and
+their use see [3].
+
+These cost metrics are required for processing elements in all
+scheduling domain levels that EAS is required to service.
+
+===========================================================
+2 - energy-costs node
+===========================================================
+
+Energy costs for the processing elements in scheduling domains that
+EAS is required to service are defined in the energy-costs node
+which acts as a container for the actual per processing element cost
+nodes. A single energy-costs node is required for a given system.
+
+- energy-costs node
+
+	Usage: Required
+
+	Description: The energy-costs node is a container node and
+	it's sub-nodes describe costs for each processing element at
+	all scheduling domain levels that EAS is required to
+	service.
+
+	Node name must be "energy-costs".
+
+	The energy-costs node's parent node must be the cpus node.
+
+	The energy-costs node's child nodes can be:
+
+	- one or more cost nodes.
+
+	Any other configuration is considered invalid.
+
+The energy-costs node can only contain a single type of child node
+whose bindings are described in paragraph 4.
+
+===========================================================
+3 - energy-costs node child nodes naming convention
+===========================================================
+
+energy-costs child nodes must follow a naming convention where the
+node name must be "thread-costN", "core-costN", "cluster-costN"
+depending on whether the costs in the node are for a thread, core or
+cluster.  N (where N = {0, 1, ...}) is the node number and has no
+bearing to the OS' logical thread, core or cluster index.
+
+===========================================================
+4 - cost node bindings
+===========================================================
+
+Bindings for cost nodes are defined as follows:
+
+- system-cost node
+
+	Description: Optional. Must be declared within an energy-costs
+	node. A system should contain no more than one system-cost node.
+
+	Systems with no modelled system cost should not provide this
+	node.
+
+	The system-cost node name must be "system-costN" as
+	described in 3 above.
+
+	A system-cost node must be a leaf node with no children.
+
+	Properties for system-cost nodes are described in paragraph
+	5 below.
+
+	Any other configuration is considered invalid.
+
+- cluster-cost node
+
+	Description: must be declared within an energy-costs node. A
+	system can contain multiple clusters and each cluster
+	serviced by EAS	must have a corresponding cluster-costs
+	node.
+
+	The cluster-cost node name must be "cluster-costN" as
+	described in 3 above.
+
+	A cluster-cost node must be a leaf node with no children.
+
+	Properties for cluster-cost nodes are described in paragraph
+	5 below.
+
+	Any other configuration is considered invalid.
+
+- core-cost node
+
+	Description: must be declared within an energy-costs node. A
+	system can contain multiple cores and each core serviced by
+	EAS must have a corresponding core-cost node.
+
+	The core-cost node name must be "core-costN" as described in
+	3 above.
+
+	A core-cost node must be a leaf node with no children.
+
+	Properties for core-cost nodes are described in paragraph
+	5 below.
+
+	Any other configuration is considered invalid.
+
+- thread-cost node
+
+	Description: must be declared within an energy-costs node. A
+	system can contain cores with multiple hardware threads and
+	each thread serviced by EAS must have a corresponding
+	thread-cost node.
+
+	The core-cost node name must be "core-costN" as described in
+	3 above.
+
+	A core-cost node must be a leaf node with no children.
+
+	Properties for thread-cost nodes are described in paragraph
+	5 below.
+
+	Any other configuration is considered invalid.
+
+===========================================================
+5 - Cost node properties
+==========================================================
+
+All cost node types must have only the following properties:
+
+- busy-cost-data
+
+	Usage: required
+	Value type: An array of 2-item tuples. Each item is of type
+	u32.
+	Definition: The first item in the tuple is the capacity
+	value as described in [3]. The second item in the tuple is
+	the energy cost value as described in [3].
+
+- idle-cost-data
+
+	Usage: required
+	Value type: An array of 1-item tuples. The item is of type
+	u32.
+	Definition: The item in the tuple is the energy cost value
+	as described in [3].
+
+===========================================================
+4 - Extensions to the cpu node
+===========================================================
+
+The cpu node is extended with a property that establishes the
+connection between the processing element represented by the cpu
+node and the cost-nodes associated with this processing element.
+
+The connection is expressed in line with the topological hierarchy
+that this processing element belongs to starting with the level in
+the hierarchy that this processing element itself belongs to through
+to the highest level that EAS is required to service.  The
+connection cannot be sparse and must be contiguous from the
+processing element's level through to the highest desired level. The
+highest desired level must be the same for all processing elements.
+
+Example: Given that a cpu node may represent a thread that is a part
+of a core, this property may contain multiple elements which
+associate the thread with cost nodes describing the costs for the
+thread itself, the core the thread belongs to, the cluster the core
+belongs to and so on. The elements must be ordered from the lowest
+level nodes to the highest desired level that EAS must service. The
+highest desired level must be the same for all cpu nodes. The
+elements must not be sparse: there must be elements for the current
+thread, the next level of hierarchy (core) and so on without any
+'holes'.
+
+Example: Given that a cpu node may represent a core that is a part
+of a cluster of related cpus this property may contain multiple
+elements which associate the core with cost nodes describing the
+costs for the core itself, the cluster the core belongs to and so
+on. The elements must be ordered from the lowest level nodes to the
+highest desired level that EAS must service. The highest desired
+level must be the same for all cpu nodes. The elements must not be
+sparse: there must be elements for the current thread, the next
+level of hierarchy (core) and so on without any 'holes'.
+
+If the system comprises of hierarchical clusters of clusters, this
+property will contain multiple associations with the relevant number
+of cluster elements in hierarchical order.
+
+Property added to the cpu node:
+
+- sched-energy-costs
+
+	Usage: required
+	Value type: List of phandles
+	Definition: a list of phandles to specific cost nodes in the
+	energy-costs parent node that correspond to the processing
+	element represented by this cpu node in hierarchical order
+	of topology.
+
+	The order of phandles in the list is significant. The first
+	phandle is to the current processing element's own cost
+	node.  Subsequent phandles are to higher hierarchical level
+	cost nodes up until the maximum level that EAS is to
+	service.
+
+	All cpu nodes must have the same highest level cost node.
+
+	The phandle list must not be sparsely populated with handles
+	to non-contiguous hierarchical levels. See commentary above
+	for clarity.
+
+	Any other configuration is invalid.
+
+===========================================================
+5 - Example dts
+===========================================================
+
+Example 1 (ARM 64-bit, 6-cpu system, two clusters of cpus, one
+cluster of 2 Cortex-A57 cpus, one cluster of 4 Cortex-A53 cpus):
+
+cpus {
+	#address-cells = <2>;
+	#size-cells = <0>;
+	.
+	.
+	.
+	A57_0: cpu@0 {
+		compatible = "arm,cortex-a57","arm,armv8";
+		reg = <0x0 0x0>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A57_L2>;
+		clocks = <&scpi_dvfs 0>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+	};
+
+	A57_1: cpu@1 {
+		compatible = "arm,cortex-a57","arm,armv8";
+		reg = <0x0 0x1>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A57_L2>;
+		clocks = <&scpi_dvfs 0>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+	};
+
+	A53_0: cpu@100 {
+		compatible = "arm,cortex-a53","arm,armv8";
+		reg = <0x0 0x100>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A53_L2>;
+		clocks = <&scpi_dvfs 1>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+	};
+
+	A53_1: cpu@101 {
+		compatible = "arm,cortex-a53","arm,armv8";
+		reg = <0x0 0x101>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A53_L2>;
+		clocks = <&scpi_dvfs 1>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+	};
+
+	A53_2: cpu@102 {
+		compatible = "arm,cortex-a53","arm,armv8";
+		reg = <0x0 0x102>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A53_L2>;
+		clocks = <&scpi_dvfs 1>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+	};
+
+	A53_3: cpu@103 {
+		compatible = "arm,cortex-a53","arm,armv8";
+		reg = <0x0 0x103>;
+		device_type = "cpu";
+		enable-method = "psci";
+		next-level-cache = <&A53_L2>;
+		clocks = <&scpi_dvfs 1>;
+		cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+		sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+	};
+
+	energy-costs {
+		CPU_COST_0: core-cost0 {
+			busy-cost-data = <
+				417   168
+				579   251
+				744   359
+				883   479
+				1024  616
+			>;
+			idle-cost-data = <
+				15
+				0
+			>;
+		};
+		CPU_COST_1: core-cost1 {
+			busy-cost-data = <
+				235 33
+				302 46
+				368 61
+				406 76
+				447 93
+			>;
+			idle-cost-data = <
+				6
+				0
+			>;
+		};
+		CLUSTER_COST_0: cluster-cost0 {
+			busy-cost-data = <
+				417   24
+				579   32
+				744   43
+				883   49
+				1024  64
+			>;
+			idle-cost-data = <
+				65
+				24
+			>;
+		};
+		CLUSTER_COST_1: cluster-cost1 {
+			busy-cost-data = <
+				235 26
+				303 30
+				368 39
+				406 47
+				447 57
+			>;
+			idle-cost-data = <
+				56
+				17
+			>;
+		};
+	};
+};
+
+===============================================================================
+[1] https://lkml.org/lkml/2015/5/12/728
+[2] Documentation/devicetree/bindings/topology.txt
+[3] Documentation/scheduler/sched-energy.txt
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.txt
new file mode 100644
index 0000000..dab2f90
--- /dev/null
+++ b/Documentation/scheduler/sched-energy.txt
@@ -0,0 +1,362 @@
+Energy cost model for energy-aware scheduling (EXPERIMENTAL)
+
+Introduction
+=============
+
+The basic energy model uses platform energy data stored in sched_group_energy
+data structures attached to the sched_groups in the sched_domain hierarchy. The
+energy cost model offers two functions that can be used to guide scheduling
+decisions:
+
+1.	static unsigned int sched_group_energy(struct energy_env *eenv)
+2.	static int energy_diff(struct energy_env *eenv)
+
+sched_group_energy() estimates the energy consumed by all cpus in a specific
+sched_group including any shared resources owned exclusively by this group of
+cpus. Resources shared with other cpus are excluded (e.g. later level caches).
+
+energy_diff() estimates the total energy impact of a utilization change. That
+is, adding, removing, or migrating utilization (tasks).
+
+Both functions use a struct energy_env to specify the scenario to be evaluated:
+
+	struct energy_env {
+		struct sched_group      *sg_top;
+		struct sched_group      *sg_cap;
+		int                     cap_idx;
+		int                     util_delta;
+		int                     src_cpu;
+		int                     dst_cpu;
+		int                     energy;
+	};
+
+sg_top: sched_group to be evaluated. Not used by energy_diff().
+
+sg_cap: sched_group covering the cpus in the same frequency domain. Set by
+sched_group_energy().
+
+cap_idx: Capacity state to be used for energy calculations. Set by
+find_new_capacity().
+
+util_delta: Amount of utilization to be added, removed, or migrated.
+
+src_cpu: Source cpu from where 'util_delta' utilization is removed. Should be
+-1 if no source (e.g. task wake-up).
+
+dst_cpu: Destination cpu where 'util_delta' utilization is added. Should be -1
+if utilization is removed (e.g. terminating tasks).
+
+energy: Result of sched_group_energy().
+
+The metric used to represent utilization is the actual per-entity running time
+averaged over time using a geometric series. Very similar to the existing
+per-entity load-tracking, but _not_ scaled by task priority and capped by the
+capacity of the cpu. The latter property does mean that utilization may
+underestimate the compute requirements for task on fully/over utilized cpus.
+The greatest potential for energy savings without affecting performance too much
+is scenarios where the system isn't fully utilized. If the system is deemed
+fully utilized load-balancing should be done with task load (includes task
+priority) instead in the interest of fairness and performance.
+
+
+Background and Terminology
+===========================
+
+To make it clear from the start:
+
+energy = [joule] (resource like a battery on powered devices)
+power = energy/time = [joule/second] = [watt]
+
+The goal of energy-aware scheduling is to minimize energy, while still getting
+the job done. That is, we want to maximize:
+
+	performance [inst/s]
+	--------------------
+	    power [W]
+
+which is equivalent to minimizing:
+
+	energy [J]
+	-----------
+	instruction
+
+while still getting 'good' performance. It is essentially an alternative
+optimization objective to the current performance-only objective for the
+scheduler. This alternative considers two objectives: energy-efficiency and
+performance. Hence, there needs to be a user controllable knob to switch the
+objective. Since it is early days, this is currently a sched_feature
+(ENERGY_AWARE).
+
+The idea behind introducing an energy cost model is to allow the scheduler to
+evaluate the implications of its decisions rather than applying energy-saving
+techniques blindly that may only have positive effects on some platforms. At
+the same time, the energy cost model must be as simple as possible to minimize
+the scheduler latency impact.
+
+Platform topology
+------------------
+
+The system topology (cpus, caches, and NUMA information, not peripherals) is
+represented in the scheduler by the sched_domain hierarchy which has
+sched_groups attached at each level that covers one or more cpus (see
+sched-domains.txt for more details). To add energy awareness to the scheduler
+we need to consider power and frequency domains.
+
+Power domain:
+
+A power domain is a part of the system that can be powered on/off
+independently. Power domains are typically organized in a hierarchy where you
+may be able to power down just a cpu or a group of cpus along with any
+associated resources (e.g.  shared caches). Powering up a cpu means that all
+power domains it is a part of in the hierarchy must be powered up. Hence, it is
+more expensive to power up the first cpu that belongs to a higher level power
+domain than powering up additional cpus in the same high level domain. Two
+level power domain hierarchy example:
+
+		Power source
+		         +-------------------------------+----...
+per group PD		 G                               G
+		         |           +----------+        |
+		    +--------+-------| Shared   |  (other groups)
+per-cpu PD	    G        G       | resource |
+		    |        |       +----------+
+		+-------+ +-------+
+		| CPU 0 | | CPU 1 |
+		+-------+ +-------+
+
+Frequency domain:
+
+Frequency domains (P-states) typically cover the same group of cpus as one of
+the power domain levels. That is, there might be several smaller power domains
+sharing the same frequency (P-state) or there might be a power domain spanning
+multiple frequency domains.
+
+From a scheduling point of view there is no need to know the actual frequencies
+[Hz]. All the scheduler cares about is the compute capacity available at the
+current state (P-state) the cpu is in and any other available states. For that
+reason, and to also factor in any cpu micro-architecture differences, compute
+capacity scaling states are called 'capacity states' in this document. For SMP
+systems this is equivalent to P-states. For mixed micro-architecture systems
+(like ARM big.LITTLE) it is P-states scaled according to the micro-architecture
+performance relative to the other cpus in the system.
+
+Energy modelling:
+------------------
+
+Due to the hierarchical nature of the power domains, the most obvious way to
+model energy costs is therefore to associate power and energy costs with
+domains (groups of cpus). Energy costs of shared resources are associated with
+the group of cpus that share the resources, only the cost of powering the
+cpu itself and any private resources (e.g. private L1 caches) is associated
+with the per-cpu groups (lowest level).
+
+For example, for an SMP system with per-cpu power domains and a cluster level
+(group of cpus) power domain we get the overall energy costs to be:
+
+	energy = energy_cluster + n * energy_cpu
+
+where 'n' is the number of cpus powered up and energy_cluster is the cost paid
+as soon as any cpu in the cluster is powered up.
+
+The power and frequency domains can naturally be mapped onto the existing
+sched_domain hierarchy and sched_groups by adding the necessary data to the
+existing data structures.
+
+The energy model considers energy consumption from two contributors (shown in
+the illustration below):
+
+1. Busy energy: Energy consumed while a cpu and the higher level groups that it
+belongs to are busy running tasks. Busy energy is associated with the state of
+the cpu, not an event. The time the cpu spends in this state varies. Thus, the
+most obvious platform parameter for this contribution is busy power
+(energy/time).
+
+2. Idle energy: Energy consumed while a cpu and higher level groups that it
+belongs to are idle (in a C-state). Like busy energy, idle energy is associated
+with the state of the cpu. Thus, the platform parameter for this contribution
+is idle power (energy/time).
+
+Energy consumed during transitions from an idle-state (C-state) to a busy state
+(P-state) or going the other way is ignored by the model to simplify the energy
+model calculations.
+
+
+	Power
+	^
+	|            busy->idle             idle->busy
+	|            transition             transition
+	|
+	|                _                      __
+	|               / \                    /  \__________________
+	|______________/   \                  /
+	|                   \                /
+	|  Busy              \    Idle      /        Busy
+	|  low P-state        \____________/         high P-state
+	|
+	+------------------------------------------------------------> time
+
+Busy    |--------------|                          |-----------------|
+
+Wakeup                 |------|            |------|
+
+Idle                          |------------|
+
+
+The basic algorithm
+====================
+
+The basic idea is to determine the total energy impact when utilization is
+added or removed by estimating the impact at each level in the sched_domain
+hierarchy starting from the bottom (sched_group contains just a single cpu).
+The energy cost comes from busy time (sched_group is awake because one or more
+cpus are busy) and idle time (in an idle-state). Energy model numbers account
+for energy costs associated with all cpus in the sched_group as a group.
+
+	for_each_domain(cpu, sd) {
+		sg = sched_group_of(cpu)
+		energy_before = curr_util(sg) * busy_power(sg)
+				+ (1-curr_util(sg)) * idle_power(sg)
+		energy_after = new_util(sg) * busy_power(sg)
+				+ (1-new_util(sg)) * idle_power(sg)
+		energy_diff += energy_before - energy_after
+
+	}
+
+	return energy_diff
+
+{curr, new}_util: The cpu utilization at the lowest level and the overall
+non-idle time for the entire group for higher levels. Utilization is in the
+range 0.0 to 1.0 in the pseudo-code.
+
+busy_power: The power consumption of the sched_group.
+
+idle_power: The power consumption of the sched_group when idle.
+
+Note: It is a fundamental assumption that the utilization is (roughly) scale
+invariant. Task utilization tracking factors in any frequency scaling and
+performance scaling differences due to difference cpu microarchitectures such
+that task utilization can be used across the entire system.
+
+
+Platform energy data
+=====================
+
+struct sched_group_energy can be attached to sched_groups in the sched_domain
+hierarchy and has the following members:
+
+cap_states:
+	List of struct capacity_state representing the supported capacity states
+	(P-states). struct capacity_state has two members: cap and power, which
+	represents the compute capacity and the busy_power of the state. The
+	list must be ordered by capacity low->high.
+
+nr_cap_states:
+	Number of capacity states in cap_states list.
+
+idle_states:
+	List of struct idle_state containing idle_state power cost for each
+	idle-state supported by the system orderd by shallowest state first.
+	All states must be included at all level in the hierarchy, i.e. a
+	sched_group spanning just a single cpu must also include coupled
+	idle-states (cluster states). In addition to the cpuidle idle-states,
+	the list must also contain an entry for the idling using the arch
+	default idle (arch_idle_cpu()). Despite this state may not be a true
+	hardware idle-state it is considered the shallowest idle-state in the
+	energy model and must be the first entry. cpus may enter this state
+	(possibly 'active idling') if cpuidle decides not enter a cpuidle
+	idle-state. Default idle may not be used when cpuidle is enabled.
+	In this case, it should just be a copy of the first cpuidle idle-state.
+
+nr_idle_states:
+	Number of idle states in idle_states list.
+
+There are no unit requirements for the energy cost data. Data can be normalized
+with any reference, however, the normalization must be consistent across all
+energy cost data. That is, one bogo-joule/watt must be the same quantity for
+data, but we don't care what it is.
+
+A recipe for platform characterization
+=======================================
+
+Obtaining the actual model data for a particular platform requires some way of
+measuring power/energy. There isn't a tool to help with this (yet). This
+section provides a recipe for use as reference. It covers the steps used to
+characterize the ARM TC2 development platform. This sort of measurements is
+expected to be done anyway when tuning cpuidle and cpufreq for a given
+platform.
+
+The energy model needs two types of data (struct sched_group_energy holds
+these) for each sched_group where energy costs should be taken into account:
+
+1. Capacity state information
+
+A list containing the compute capacity and power consumption when fully
+utilized attributed to the group as a whole for each available capacity state.
+At the lowest level (group contains just a single cpu) this is the power of the
+cpu alone without including power consumed by resources shared with other cpus.
+It basically needs to fit the basic modelling approach described in "Background
+and Terminology" section:
+
+	energy_system = energy_shared + n * energy_cpu
+
+for a system containing 'n' busy cpus. Only 'energy_cpu' should be included at
+the lowest level. 'energy_shared' is included at the next level which
+represents the group of cpus among which the resources are shared.
+
+This model is, of course, a simplification of reality. Thus, power/energy
+attributions might not always exactly represent how the hardware is designed.
+Also, busy power is likely to depend on the workload. It is therefore
+recommended to use a representative mix of workloads when characterizing the
+capacity states.
+
+If the group has no capacity scaling support, the list will contain a single
+state where power is the busy power attributed to the group. The capacity
+should be set to a default value (1024).
+
+When frequency domains include multiple power domains, the group representing
+the frequency domain and all child groups share capacity states. This must be
+indicated by setting the SD_SHARE_CAP_STATES sched_domain flag. All groups at
+all levels that share the capacity state must have the list of capacity states
+with the power set to the contribution of the individual group.
+
+2. Idle power information
+
+Stored in the idle_states list. The power number is the group idle power
+consumption in each idle state as well when the group is idle but has not
+entered an idle-state ('active idle' as mentioned earlier). Due to the way the
+energy model is defined, the idle power of the deepest group idle state can
+alternatively be accounted for in the parent group busy power. In that case the
+group idle state power values are offset such that the idle power of the
+deepest state is zero. It is less intuitive, but it is easier to measure as
+idle power consumed by the group and the busy/idle power of the parent group
+cannot be distinguished without per group measurement points.
+
+Measuring capacity states and idle power:
+
+The capacity states' capacity and power can be estimated by running a benchmark
+workload at each available capacity state. By restricting the benchmark to run
+on subsets of cpus it is possible to extrapolate the power consumption of
+shared resources.
+
+ARM TC2 has two clusters of two and three cpus respectively. Each cluster has a
+shared L2 cache. TC2 has on-chip energy counters per cluster. Running a
+benchmark workload on just one cpu in a cluster means that power is consumed in
+the cluster (higher level group) and a single cpu (lowest level group). Adding
+another benchmark task to another cpu increases the power consumption by the
+amount consumed by the additional cpu. Hence, it is possible to extrapolate the
+cluster busy power.
+
+For platforms that don't have energy counters or equivalent instrumentation
+built-in, it may be possible to use an external DAQ to acquire similar data.
+
+If the benchmark includes some performance score (for example sysbench cpu
+benchmark), this can be used to record the compute capacity.
+
+Measuring idle power requires insight into the idle state implementation on the
+particular platform. Specifically, if the platform has coupled idle-states (or
+package states). To measure non-coupled per-cpu idle-states it is necessary to
+keep one cpu busy to keep any shared resources alive to isolate the idle power
+of the cpu from idle/busy power of the shared resources. The cpu can be tricked
+into different per-cpu idle states by disabling the other states. Based on
+various combinations of measurements with specific cpus busy and disabling
+idle-states it is possible to extrapolate the idle-state power.
diff --git a/Documentation/scheduler/sched-tune.txt b/Documentation/scheduler/sched-tune.txt
new file mode 100644
index 0000000..5df0ea3
--- /dev/null
+++ b/Documentation/scheduler/sched-tune.txt
@@ -0,0 +1,413 @@
+             Central, scheduler-driven, power-performance control
+                               (EXPERIMENTAL)
+
+Abstract
+========
+
+The topic of a single simple power-performance tunable, that is wholly
+scheduler centric, and has well defined and predictable properties has come up
+on several occasions in the past [1,2]. With techniques such as a scheduler
+driven DVFS [3], we now have a good framework for implementing such a tunable.
+This document describes the overall ideas behind its design and implementation.
+
+
+Table of Contents
+=================
+
+1. Motivation
+2. Introduction
+3. Signal Boosting Strategy
+4. OPP selection using boosted CPU utilization
+5. Per task group boosting
+6. Per-task wakeup-placement-strategy Selection
+7. Question and Answers
+   - What about "auto" mode?
+   - What about boosting on a congested system?
+   - How CPUs are boosted when we have tasks with multiple boost values?
+8. References
+
+
+1. Motivation
+=============
+
+Sched-DVFS [3] was a new event-driven cpufreq governor which allows the
+scheduler to select the optimal DVFS operating point (OPP) for running a task
+allocated to a CPU. Later, the cpufreq maintainers introduced a similar
+governor, schedutil. The introduction of schedutil also enables running
+workloads at the most energy efficient OPPs.
+
+However, sometimes it may be desired to intentionally boost the performance of
+a workload even if that could imply a reasonable increase in energy
+consumption. For example, in order to reduce the response time of a task, we
+may want to run the task at a higher OPP than the one that is actually required
+by it's CPU bandwidth demand.
+
+This last requirement is especially important if we consider that one of the
+main goals of the utilization-driven governor component is to replace all
+currently available CPUFreq policies. Since sched-DVFS and schedutil are event
+based, as opposed to the sampling driven governors we currently have, they are
+already more responsive at selecting the optimal OPP to run tasks allocated to
+a CPU. However, just tracking the actual task load demand may not be enough
+from a performance standpoint.  For example, it is not possible to get
+behaviors similar to those provided by the "performance" and "interactive"
+CPUFreq governors.
+
+This document describes an implementation of a tunable, stacked on top of the
+utilization-driven governors which extends their functionality to support task
+performance boosting.
+
+By "performance boosting" we mean the reduction of the time required to
+complete a task activation, i.e. the time elapsed from a task wakeup to its
+next deactivation (e.g. because it goes back to sleep or it terminates).  For
+example, if we consider a simple periodic task which executes the same workload
+for 5[s] every 20[s] while running at a certain OPP, a boosted execution of
+that task must complete each of its activations in less than 5[s].
+
+A previous attempt [5] to introduce such a boosting feature has not been
+successful mainly because of the complexity of the proposed solution. Previous
+versions of the approach described in this document exposed a single simple
+interface to user-space.  This single tunable knob allowed the tuning of
+system wide scheduler behaviours ranging from energy efficiency at one end
+through to incremental performance boosting at the other end.  This first
+tunable affects all tasks. However, that is not useful for Android products
+so in this version only a more advanced extension of the concept is provided
+which uses CGroups to boost the performance of only selected tasks while using
+the energy efficient default for all others.
+
+The rest of this document introduces in more details the proposed solution
+which has been named SchedTune.
+
+
+2. Introduction
+===============
+
+SchedTune exposes a simple user-space interface provided through a new
+CGroup controller 'stune' which provides two power-performance tunables
+per group:
+
+  /<stune cgroup mount point>/schedtune.prefer_idle
+  /<stune cgroup mount point>/schedtune.boost
+
+The CGroup implementation permits arbitrary user-space defined task
+classification to tune the scheduler for different goals depending on the
+specific nature of the task, e.g. background vs interactive vs low-priority.
+
+More details are given in section 5.
+
+2.1 Boosting
+============
+
+The boost value is expressed as an integer in the range [-100..0..100].
+
+A value of 0 (default) configures the CFS scheduler for maximum energy
+efficiency. This means that sched-DVFS runs the tasks at the minimum OPP
+required to satisfy their workload demand.
+
+A value of 100 configures scheduler for maximum performance, which translates
+to the selection of the maximum OPP on that CPU.
+
+A value of -100 configures scheduler for minimum performance, which translates
+to the selection of the minimum OPP on that CPU.
+
+The range between -100, 0 and 100 can be set to satisfy other scenarios suitably.
+For example to satisfy interactive response or depending on other system events
+(battery level etc).
+
+The overall design of the SchedTune module is built on top of "Per-Entity Load
+Tracking" (PELT) signals and sched-DVFS by introducing a bias on the Operating
+Performance Point (OPP) selection.
+
+Each time a task is allocated on a CPU, cpufreq is given the opportunity to tune
+the operating frequency of that CPU to better match the workload demand. The
+selection of the actual OPP being activated is influenced by the boost value
+for the task CGroup.
+
+This simple biasing approach leverages existing frameworks, which means minimal
+modifications to the scheduler, and yet it allows to achieve a range of
+different behaviours all from a single simple tunable knob.
+
+In EAS schedulers, we use boosted task and CPU utilization for energy
+calculation and energy-aware task placement.
+
+2.2 prefer_idle
+===============
+
+This is a flag which indicates to the scheduler that userspace would like
+the scheduler to focus on energy or to focus on performance.
+
+A value of 0 (default) signals to the CFS scheduler that tasks in this group
+can be placed according to the energy-aware wakeup strategy.
+
+A value of 1 signals to the CFS scheduler that tasks in this group should be
+placed to minimise wakeup latency.
+
+The value is combined with the boost value - task placement will not be
+boost aware however CPU OPP selection is still boost aware.
+
+Android platforms typically use this flag for application tasks which the
+user is currently interacting with.
+
+
+3. Signal Boosting Strategy
+===========================
+
+The whole PELT machinery works based on the value of a few load tracking signals
+which basically track the CPU bandwidth requirements for tasks and the capacity
+of CPUs. The basic idea behind the SchedTune knob is to artificially inflate
+some of these load tracking signals to make a task or RQ appears more demanding
+that it actually is.
+
+Which signals have to be inflated depends on the specific "consumer".  However,
+independently from the specific (signal, consumer) pair, it is important to
+define a simple and possibly consistent strategy for the concept of boosting a
+signal.
+
+A boosting strategy defines how the "abstract" user-space defined
+sched_cfs_boost value is translated into an internal "margin" value to be added
+to a signal to get its inflated value:
+
+  margin         := boosting_strategy(sched_cfs_boost, signal)
+  boosted_signal := signal + margin
+
+Different boosting strategies were identified and analyzed before selecting the
+one found to be most effective.
+
+Signal Proportional Compensation (SPC)
+--------------------------------------
+
+In this boosting strategy the sched_cfs_boost value is used to compute a
+margin which is proportional to the complement of the original signal.
+When a signal has a maximum possible value, its complement is defined as
+the delta from the actual value and its possible maximum.
+
+Since the tunable implementation uses signals which have SCHED_LOAD_SCALE as
+the maximum possible value, the margin becomes:
+
+	margin := sched_cfs_boost * (SCHED_LOAD_SCALE - signal)
+
+Using this boosting strategy:
+- a 100% sched_cfs_boost means that the signal is scaled to the maximum value
+- each value in the range of sched_cfs_boost effectively inflates the signal in
+  question by a quantity which is proportional to the maximum value.
+
+For example, by applying the SPC boosting strategy to the selection of the OPP
+to run a task it is possible to achieve these behaviors:
+
+-   0% boosting: run the task at the minimum OPP required by its workload
+- 100% boosting: run the task at the maximum OPP available for the CPU
+-  50% boosting: run at the half-way OPP between minimum and maximum
+
+Which means that, at 50% boosting, a task will be scheduled to run at half of
+the maximum theoretically achievable performance on the specific target
+platform.
+
+A graphical representation of an SPC boosted signal is represented in the
+following figure where:
+ a) "-" represents the original signal
+ b) "b" represents a  50% boosted signal
+ c) "p" represents a 100% boosted signal
+
+
+   ^
+   |  SCHED_LOAD_SCALE
+   +-----------------------------------------------------------------+
+   |pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
+   |
+   |                                             boosted_signal
+   |                                          bbbbbbbbbbbbbbbbbbbbbbbb
+   |
+   |                                            original signal
+   |                  bbbbbbbbbbbbbbbbbbbbbbbb+----------------------+
+   |                                          |
+   |bbbbbbbbbbbbbbbbbb                        |
+   |                                          |
+   |                                          |
+   |                                          |
+   |                  +-----------------------+
+   |                  |
+   |                  |
+   |                  |
+   |------------------+
+   |
+   |
+   +----------------------------------------------------------------------->
+
+The plot above shows a ramped load signal (titled 'original_signal') and it's
+boosted equivalent. For each step of the original signal the boosted signal
+corresponding to a 50% boost is midway from the original signal and the upper
+bound. Boosting by 100% generates a boosted signal which is always saturated to
+the upper bound.
+
+
+4. OPP selection using boosted CPU utilization
+==============================================
+
+It is worth calling out that the implementation does not introduce any new load
+signals. Instead, it provides an API to tune existing signals. This tuning is
+done on demand and only in scheduler code paths where it is sensible to do so.
+The new API calls are defined to return either the default signal or a boosted
+one, depending on the value of sched_cfs_boost. This is a clean an non invasive
+modification of the existing existing code paths.
+
+The signal representing a CPU's utilization is boosted according to the
+previously described SPC boosting strategy. To sched-DVFS, this allows a CPU
+(ie CFS run-queue) to appear more used then it actually is.
+
+Thus, with the sched_cfs_boost enabled we have the following main functions to
+get the current utilization of a CPU:
+
+  cpu_util()
+  boosted_cpu_util()
+
+The new boosted_cpu_util() is similar to the first but returns a boosted
+utilization signal which is a function of the sched_cfs_boost value.
+
+This function is used in the CFS scheduler code paths where sched-DVFS needs to
+decide the OPP to run a CPU at.
+For example, this allows selecting the highest OPP for a CPU which has
+the boost value set to 100%.
+
+
+5. Per task group boosting
+==========================
+
+On battery powered devices there usually are many background services which are
+long running and need energy efficient scheduling. On the other hand, some
+applications are more performance sensitive and require an interactive
+response and/or maximum performance, regardless of the energy cost.
+
+To better service such scenarios, the SchedTune implementation has an extension
+that provides a more fine grained boosting interface.
+
+A new CGroup controller, namely "schedtune", can be enabled which allows to
+defined and configure task groups with different boosting values.
+Tasks that require special performance can be put into separate CGroups.
+The value of the boost associated with the tasks in this group can be specified
+using a single knob exposed by the CGroup controller:
+
+   schedtune.boost
+
+This knob allows the definition of a boost value that is to be used for
+SPC boosting of all tasks attached to this group.
+
+The current schedtune controller implementation is really simple and has these
+main characteristics:
+
+  1) It is only possible to create 1 level depth hierarchies
+
+     The root control groups define the system-wide boost value to be applied
+     by default to all tasks. Its direct subgroups are named "boost groups" and
+     they define the boost value for specific set of tasks.
+     Further nested subgroups are not allowed since they do not have a sensible
+     meaning from a user-space standpoint.
+
+  2) It is possible to define only a limited number of "boost groups"
+
+     This number is defined at compile time and by default configured to 16.
+     This is a design decision motivated by two main reasons:
+     a) In a real system we do not expect utilization scenarios with more then few
+	boost groups. For example, a reasonable collection of groups could be
+        just "background", "interactive" and "performance".
+     b) It simplifies the implementation considerably, especially for the code
+	which has to compute the per CPU boosting once there are multiple
+        RUNNABLE tasks with different boost values.
+
+Such a simple design should allow servicing the main utilization scenarios identified
+so far. It provides a simple interface which can be used to manage the
+power-performance of all tasks or only selected tasks.
+Moreover, this interface can be easily integrated by user-space run-times (e.g.
+Android, ChromeOS) to implement a QoS solution for task boosting based on tasks
+classification, which has been a long standing requirement.
+
+Setup and usage
+---------------
+
+0. Use a kernel with CONFIG_SCHED_TUNE support enabled
+
+1. Check that the "schedtune" CGroup controller is available:
+
+   root@linaro-nano:~# cat /proc/cgroups
+   #subsys_name	hierarchy	num_cgroups	enabled
+   cpuset  	0		1		1
+   cpu     	0		1		1
+   schedtune	0		1		1
+
+2. Mount a tmpfs to create the CGroups mount point (Optional)
+
+   root@linaro-nano:~# sudo mount -t tmpfs cgroups /sys/fs/cgroup
+
+3. Mount the "schedtune" controller
+
+   root@linaro-nano:~# mkdir /sys/fs/cgroup/stune
+   root@linaro-nano:~# sudo mount -t cgroup -o schedtune stune /sys/fs/cgroup/stune
+
+4. Create task groups and configure their specific boost value (Optional)
+
+   For example here we create a "performance" boost group configure to boost
+   all its tasks to 100%
+
+   root@linaro-nano:~# mkdir /sys/fs/cgroup/stune/performance
+   root@linaro-nano:~# echo 100 > /sys/fs/cgroup/stune/performance/schedtune.boost
+
+5. Move tasks into the boost group
+
+   For example, the following moves the tasks with PID $TASKPID (and all its
+   threads) into the "performance" boost group.
+
+   root@linaro-nano:~# echo "TASKPID > /sys/fs/cgroup/stune/performance/cgroup.procs
+
+This simple configuration allows only the threads of the $TASKPID task to run,
+when needed, at the highest OPP in the most capable CPU of the system.
+
+
+6. Per-task wakeup-placement-strategy Selection
+===============================================
+
+Many devices have a number of CFS tasks in use which require an absolute
+minimum wakeup latency, and many tasks for which wakeup latency is not
+important.
+
+For touch-driven environments, removing additional wakeup latency can be
+critical.
+
+When you use the Schedtume CGroup controller, you have access to a second
+parameter which allows a group to be marked such that energy_aware task
+placement is bypassed for tasks belonging to that group.
+
+prefer_idle=0 (default - use energy-aware task placement if available)
+prefer_idle=1 (never use energy-aware task placement for these tasks)
+
+Since the regular wakeup task placement algorithm in CFS is biased for
+performance, this has the effect of restoring minimum wakeup latency
+for the desired tasks whilst still allowing energy-aware wakeup placement
+to save energy for other tasks.
+
+
+7. Question and Answers
+=======================
+
+What about "auto" mode?
+-----------------------
+
+The 'auto' mode as described in [5] can be implemented by interfacing SchedTune
+with some suitable user-space element. This element could use the exposed
+system-wide or cgroup based interface.
+
+How are multiple groups of tasks with different boost values managed?
+---------------------------------------------------------------------
+
+The current SchedTune implementation keeps track of the boosted RUNNABLE tasks
+on a CPU. The CPU utilization seen by the scheduler-driven cpufreq governors
+(and used to select an appropriate OPP) is boosted with a value which is the
+maximum of the boost values of the currently RUNNABLE tasks in its RQ.
+
+This allows cpufreq to boost a CPU only while there are boosted tasks ready
+to run and switch back to the energy efficient mode as soon as the last boosted
+task is dequeued.
+
+
+8. References
+=============
+[1] http://lwn.net/Articles/552889
+[2] http://lkml.org/lkml/2012/5/18/91
+[3] http://lkml.org/lkml/2015/6/26/620
diff --git a/arch/arm/boot/dts/vexpress-v2p-ca15_a7.dts b/arch/arm/boot/dts/vexpress-v2p-ca15_a7.dts
index a4c7713..c5c365f 100644
--- a/arch/arm/boot/dts/vexpress-v2p-ca15_a7.dts
+++ b/arch/arm/boot/dts/vexpress-v2p-ca15_a7.dts
@@ -41,6 +41,7 @@
 			cci-control-port = <&cci_control1>;
 			cpu-idle-states = <&CLUSTER_SLEEP_BIG>;
 			capacity-dmips-mhz = <1024>;
+			sched-energy-costs = <&CPU_COST_A15 &CLUSTER_COST_A15>;
 		};
 
 		cpu1: cpu@1 {
@@ -50,6 +51,7 @@
 			cci-control-port = <&cci_control1>;
 			cpu-idle-states = <&CLUSTER_SLEEP_BIG>;
 			capacity-dmips-mhz = <1024>;
+			sched-energy-costs = <&CPU_COST_A15 &CLUSTER_COST_A15>;
 		};
 
 		cpu2: cpu@2 {
@@ -59,6 +61,7 @@
 			cci-control-port = <&cci_control2>;
 			cpu-idle-states = <&CLUSTER_SLEEP_LITTLE>;
 			capacity-dmips-mhz = <516>;
+			sched-energy-costs = <&CPU_COST_A7 &CLUSTER_COST_A7>;
 		};
 
 		cpu3: cpu@3 {
@@ -68,6 +71,7 @@
 			cci-control-port = <&cci_control2>;
 			cpu-idle-states = <&CLUSTER_SLEEP_LITTLE>;
 			capacity-dmips-mhz = <516>;
+			sched-energy-costs = <&CPU_COST_A7 &CLUSTER_COST_A7>;
 		};
 
 		cpu4: cpu@4 {
@@ -77,6 +81,7 @@
 			cci-control-port = <&cci_control2>;
 			cpu-idle-states = <&CLUSTER_SLEEP_LITTLE>;
 			capacity-dmips-mhz = <516>;
+			sched-energy-costs = <&CPU_COST_A7 &CLUSTER_COST_A7>;
 		};
 
 		idle-states {
@@ -96,6 +101,77 @@
 				min-residency-us = <2500>;
 			};
 		};
+
+		energy-costs {
+			CPU_COST_A15: core-cost0 {
+				busy-cost-data = <
+					426    2021
+					512    2312
+					597    2756
+					682    3125
+					768    3524
+					853    3846
+					938    5177
+					1024   6997
+				>;
+				idle-cost-data = <
+					0
+					0
+					0
+				>;
+			};
+			CPU_COST_A7: core-cost1 {
+				busy-cost-data = <
+					150    187
+					172    275
+					215    334
+					258    407
+					301    447
+					344    549
+					387    761
+					430    1024
+				>;
+				idle-cost-data = <
+					0
+					0
+					0
+				>;
+			};
+			CLUSTER_COST_A15: cluster-cost0 {
+				busy-cost-data = <
+					426    7920
+					512    8165
+					597    8172
+					682    8195
+					768    8265
+					853    8446
+					938    11426
+					1024   15200
+				>;
+				idle-cost-data = <
+					 70
+					 70
+					 25
+				>;
+			};
+			CLUSTER_COST_A7: cluster-cost1 {
+				busy-cost-data = <
+					150    2967
+					172    2792
+					215    2810
+					258    2815
+					301    2919
+					344    2847
+					387    3917
+					430    4905
+				>;
+				idle-cost-data = <
+					25
+					25
+					10
+				>;
+			};
+		};
 	};
 
 	memory@80000000 {
diff --git a/arch/arm/include/asm/topology.h b/arch/arm/include/asm/topology.h
index f59ab9b..2a786f5 100644
--- a/arch/arm/include/asm/topology.h
+++ b/arch/arm/include/asm/topology.h
@@ -25,6 +25,17 @@ void init_cpu_topology(void);
 void store_cpu_topology(unsigned int cpuid);
 const struct cpumask *cpu_coregroup_mask(int cpu);
 
+#include <linux/arch_topology.h>
+
+/* Replace task scheduler's default frequency-invariant accounting */
+#define arch_scale_freq_capacity topology_get_freq_scale
+
+/* Replace task scheduler's default cpu-invariant accounting */
+#define arch_scale_cpu_capacity topology_get_cpu_scale
+
+/* Enable topology flag updates */
+#define arch_update_cpu_topology topology_update_cpu_topology
+
 #else
 
 static inline void init_cpu_topology(void) { }
diff --git a/arch/arm/kernel/topology.c b/arch/arm/kernel/topology.c
index 24ac3ca..a86e105 100644
--- a/arch/arm/kernel/topology.c
+++ b/arch/arm/kernel/topology.c
@@ -25,11 +25,49 @@
 #include <linux/sched/topology.h>
 #include <linux/slab.h>
 #include <linux/string.h>
+#include <linux/sched_energy.h>
 
 #include <asm/cpu.h>
 #include <asm/cputype.h>
 #include <asm/topology.h>
 
+/* sd energy functions */
+static inline
+const struct sched_group_energy * const cpu_core_energy(int cpu)
+{
+	struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0];
+	unsigned long capacity;
+	int max_cap_idx;
+
+	if (!sge) {
+		pr_warn("Invalid sched_group_energy for CPU%d\n", cpu);
+		return NULL;
+	}
+
+	max_cap_idx = sge->nr_cap_states - 1;
+	capacity = sge->cap_states[max_cap_idx].cap;
+
+	printk_deferred("cpu=%d set cpu scale %lu from energy model\n",
+			cpu, capacity);
+
+	topology_set_cpu_scale(cpu, capacity);
+
+	return sge;
+}
+
+static inline
+const struct sched_group_energy * const cpu_cluster_energy(int cpu)
+{
+	struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1];
+
+	if (!sge) {
+		pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu);
+		return NULL;
+	}
+
+	return sge;
+}
+
 /*
  * cpu capacity scale management
  */
@@ -169,10 +207,26 @@ static void __init parse_dt_topology(void)
  */
 static void update_cpu_capacity(unsigned int cpu)
 {
-	if (!cpu_capacity(cpu) || cap_from_dt)
-		return;
+	const struct sched_group_energy *sge;
+	unsigned long capacity;
 
-	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
+	sge = cpu_core_energy(cpu);
+
+	if (sge) {
+		int max_cap_idx;
+
+		max_cap_idx = sge->nr_cap_states - 1;
+		capacity = sge->cap_states[max_cap_idx].cap;
+
+		printk_deferred("cpu=%d set cpu scale %lu from energy model\n",
+				cpu, capacity);
+	} else {
+		if (!cpu_capacity(cpu) || cap_from_dt)
+			return;
+		capacity = cpu_capacity(cpu) / middle_capacity;
+	}
+
+	topology_set_cpu_scale(cpu, capacity);
 
 	pr_info("CPU%u: update cpu_capacity %lu\n",
 		cpu, topology_get_cpu_scale(NULL, cpu));
@@ -278,23 +332,37 @@ void store_cpu_topology(unsigned int cpuid)
 
 	update_cpu_capacity(cpuid);
 
+	topology_detect_flags();
+
 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
 		cpuid, cpu_topology[cpuid].thread_id,
 		cpu_topology[cpuid].core_id,
 		cpu_topology[cpuid].socket_id, mpidr);
 }
 
+#ifdef CONFIG_SCHED_MC
+static int core_flags(void)
+{
+	return cpu_core_flags() | topology_core_flags();
+}
+
 static inline int cpu_corepower_flags(void)
 {
-	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
+	return topology_core_flags()
+		| SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
+}
+#endif
+
+static int cpu_flags(void)
+{
+	return topology_cpu_flags();
 }
 
 static struct sched_domain_topology_level arm_topology[] = {
 #ifdef CONFIG_SCHED_MC
-	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
-	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+	{ cpu_coregroup_mask, core_flags, cpu_core_energy, SD_INIT_NAME(MC) },
 #endif
-	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
+	{ cpu_cpu_mask, cpu_flags, cpu_cluster_energy, SD_INIT_NAME(DIE) },
 	{ NULL, },
 };
 
@@ -322,4 +390,6 @@ void __init init_cpu_topology(void)
 
 	/* Set scheduler topology descriptor */
 	set_sched_topology(arm_topology);
+
+	init_sched_energy_costs();
 }
diff --git a/arch/arm64/boot/dts/arm/juno-r2.dts b/arch/arm64/boot/dts/arm/juno-r2.dts
index b39b6d6..d2467e4 100644
--- a/arch/arm64/boot/dts/arm/juno-r2.dts
+++ b/arch/arm64/boot/dts/arm/juno-r2.dts
@@ -98,6 +98,7 @@
 			next-level-cache = <&A72_L2>;
 			clocks = <&scpi_dvfs 0>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A72 &CLUSTER_COST_A72>;
 			capacity-dmips-mhz = <1024>;
 		};
 
@@ -115,6 +116,7 @@
 			next-level-cache = <&A72_L2>;
 			clocks = <&scpi_dvfs 0>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A72 &CLUSTER_COST_A72>;
 			capacity-dmips-mhz = <1024>;
 		};
 
@@ -132,6 +134,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53R2 &CLUSTER_COST_A53R2>;
 			capacity-dmips-mhz = <485>;
 		};
 
@@ -149,6 +152,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53R2 &CLUSTER_COST_A53R2>;
 			capacity-dmips-mhz = <485>;
 		};
 
@@ -166,6 +170,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53R2 &CLUSTER_COST_A53R2>;
 			capacity-dmips-mhz = <485>;
 		};
 
@@ -183,6 +188,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53R2 &CLUSTER_COST_A53R2>;
 			capacity-dmips-mhz = <485>;
 		};
 
@@ -199,6 +205,7 @@
 			cache-line-size = <64>;
 			cache-sets = <1024>;
 		};
+		/include/ "juno-sched-energy.dtsi"
 	};
 
 	pmu_a72 {
diff --git a/arch/arm64/boot/dts/arm/juno-sched-energy.dtsi b/arch/arm64/boot/dts/arm/juno-sched-energy.dtsi
new file mode 100644
index 0000000..7ffb255
--- /dev/null
+++ b/arch/arm64/boot/dts/arm/juno-sched-energy.dtsi
@@ -0,0 +1,123 @@
+/*
+ * ARM JUNO specific energy cost model data. There are no unit requirements for
+ * the data. Data can be normalized to any reference point, but the
+ * normalization must be consistent. That is, one bogo-joule/watt must be the
+ * same quantity for all data, but we don't care what it is.
+ */
+
+energy-costs {
+	/* Juno r0 Energy */
+	CPU_COST_A57: core-cost0 {
+		busy-cost-data = <
+			417   168
+			579   251
+			744   359
+			883   479
+			1024   616
+		>;
+		idle-cost-data = <
+			15
+			15
+			 0
+			 0
+		>;
+	};
+	CPU_COST_A53: core-cost1 {
+		busy-cost-data = <
+			235    33
+			302    46
+			368    61
+			406    76
+			447    93
+		>;
+		idle-cost-data = <
+		      6
+		      6
+		      0
+		      0
+		>;
+	};
+	CLUSTER_COST_A57: cluster-cost0 {
+		busy-cost-data = <
+			417    24
+			579    32
+			744    43
+			883    49
+			1024    64
+		>;
+		idle-cost-data = <
+			 65
+			 65
+			 65
+			 24
+		>;
+	};
+	CLUSTER_COST_A53: cluster-cost1 {
+		busy-cost-data = <
+			235    26
+			303    30
+			368    39
+			406    47
+			447    57
+		>;
+		idle-cost-data = <
+			56
+			56
+			56
+			17
+		>;
+	};
+	/* Juno r2 Energy */
+	CPU_COST_A72: core-cost2 {
+		busy-cost-data = <
+			501   174
+			849   344
+			1024   526
+		>;
+		idle-cost-data = <
+		      48
+		      48
+		       0
+		       0
+		>;
+	};
+	CPU_COST_A53R2: core-cost3 {
+		busy-cost-data = <
+			276    37
+			501    59
+			593   117
+		>;
+		idle-cost-data = <
+		      33
+		      33
+		      0
+		      0
+		>;
+	};
+	CLUSTER_COST_A72: cluster-cost2 {
+		busy-cost-data = <
+			501    48
+			849    73
+			1024   107
+		>;
+		idle-cost-data = <
+			 48
+			 48
+			 48
+			 18
+		>;
+	};
+	CLUSTER_COST_A53R2: cluster-cost3 {
+		busy-cost-data = <
+			276    41
+			501    86
+			593   107
+		>;
+		idle-cost-data = <
+			41
+			41
+			41
+			14
+		>;
+	};
+};
diff --git a/arch/arm64/boot/dts/arm/juno.dts b/arch/arm64/boot/dts/arm/juno.dts
index c9236c4..ae5306a 100644
--- a/arch/arm64/boot/dts/arm/juno.dts
+++ b/arch/arm64/boot/dts/arm/juno.dts
@@ -97,6 +97,7 @@
 			next-level-cache = <&A57_L2>;
 			clocks = <&scpi_dvfs 0>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A57 &CLUSTER_COST_A57>;
 			capacity-dmips-mhz = <1024>;
 		};
 
@@ -114,6 +115,7 @@
 			next-level-cache = <&A57_L2>;
 			clocks = <&scpi_dvfs 0>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A57 &CLUSTER_COST_A57>;
 			capacity-dmips-mhz = <1024>;
 		};
 
@@ -131,6 +133,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53 &CLUSTER_COST_A53>;
 			capacity-dmips-mhz = <578>;
 		};
 
@@ -148,6 +151,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53 &CLUSTER_COST_A53>;
 			capacity-dmips-mhz = <578>;
 		};
 
@@ -165,6 +169,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53 &CLUSTER_COST_A53>;
 			capacity-dmips-mhz = <578>;
 		};
 
@@ -182,6 +187,7 @@
 			next-level-cache = <&A53_L2>;
 			clocks = <&scpi_dvfs 1>;
 			cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+			sched-energy-costs = <&CPU_COST_A53 &CLUSTER_COST_A53>;
 			capacity-dmips-mhz = <578>;
 		};
 
@@ -198,6 +204,7 @@
 			cache-line-size = <64>;
 			cache-sets = <1024>;
 		};
+		/include/ "juno-sched-energy.dtsi"
 	};
 
 	pmu_a57 {
diff --git a/arch/arm64/boot/dts/hisilicon/hi6220.dtsi b/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
index ff1dc89..66d48e3 100644
--- a/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
+++ b/arch/arm64/boot/dts/hisilicon/hi6220.dtsi
@@ -92,7 +92,9 @@
 			cooling-max-level = <0>;
 			#cooling-cells = <2>; /* min followed by max */
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
 			dynamic-power-coefficient = <311>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu1: cpu@1 {
@@ -103,6 +105,8 @@
 			next-level-cache = <&CLUSTER0_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu2: cpu@2 {
@@ -113,6 +117,7 @@
 			next-level-cache = <&CLUSTER0_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu3: cpu@3 {
@@ -123,6 +128,8 @@
 			next-level-cache = <&CLUSTER0_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu4: cpu@100 {
@@ -133,6 +140,7 @@
 			next-level-cache = <&CLUSTER1_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu5: cpu@101 {
@@ -143,6 +151,8 @@
 			next-level-cache = <&CLUSTER1_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu6: cpu@102 {
@@ -153,6 +163,8 @@
 			next-level-cache = <&CLUSTER1_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		cpu7: cpu@103 {
@@ -163,6 +175,8 @@
 			next-level-cache = <&CLUSTER1_L2>;
 			operating-points-v2 = <&cpu_opp_table>;
 			cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
+			sched-energy-costs = <&CPU_COST &CLUSTER_COST &SYSTEM_COST>;
+			capacity-dmips-mhz = <1024>;
 		};
 
 		CLUSTER0_L2: l2-cache0 {
@@ -172,6 +186,50 @@
 		CLUSTER1_L2: l2-cache1 {
 			compatible = "cache";
 		};
+
+		energy-costs {
+			SYSTEM_COST: system-cost0 {
+				busy-cost-data = <
+					1024   0
+				>;
+				idle-cost-data = <
+					0
+					0
+					0
+					0
+				>;
+			};
+			CLUSTER_COST: cluster-cost0 {
+				busy-cost-data = <
+					178   16
+					369   29
+					622   47
+					819   75
+					1024  112
+				>;
+				idle-cost-data = <
+					107
+					107
+					 47
+					 0
+				>;
+			};
+			CPU_COST: core-cost0 {
+				busy-cost-data = <
+					178   69
+					369   125
+					622   224
+					819   367
+					1024  670
+				>;
+				idle-cost-data = <
+					15
+					15
+					 0
+					 0
+				>;
+			};
+		};
 	};
 
 	cpu_opp_table: cpu_opp_table {
diff --git a/arch/arm64/configs/defconfig b/arch/arm64/configs/defconfig
index 34480e9..36e2111 100644
--- a/arch/arm64/configs/defconfig
+++ b/arch/arm64/configs/defconfig
@@ -4,6 +4,7 @@
 CONFIG_NO_HZ_IDLE=y
 CONFIG_HIGH_RES_TIMERS=y
 CONFIG_IRQ_TIME_ACCOUNTING=y
+CONFIG_SCHED_WALT=y
 CONFIG_BSD_PROCESS_ACCT=y
 CONFIG_BSD_PROCESS_ACCT_V3=y
 CONFIG_TASKSTATS=y
@@ -24,8 +25,9 @@
 CONFIG_CGROUP_PERF=y
 CONFIG_USER_NS=y
 CONFIG_SCHED_AUTOGROUP=y
+CONFIG_SCHED_TUNE=y
+CONFIG_DEFAULT_USE_ENERGY_AWARE=y
 CONFIG_BLK_DEV_INITRD=y
-CONFIG_KALLSYMS_ALL=y
 # CONFIG_COMPAT_BRK is not set
 CONFIG_PROFILING=y
 CONFIG_JUMP_LABEL=y
@@ -69,13 +71,13 @@
 CONFIG_PCI_LAYERSCAPE=y
 CONFIG_PCI_HISI=y
 CONFIG_PCIE_QCOM=y
-CONFIG_PCIE_KIRIN=y
 CONFIG_PCIE_ARMADA_8K=y
+CONFIG_PCIE_KIRIN=y
 CONFIG_PCI_AARDVARK=y
 CONFIG_PCIE_RCAR=y
-CONFIG_PCIE_ROCKCHIP=m
 CONFIG_PCI_HOST_GENERIC=y
 CONFIG_PCI_XGENE=y
+CONFIG_PCIE_ROCKCHIP=m
 CONFIG_ARM64_VA_BITS_48=y
 CONFIG_SCHED_MC=y
 CONFIG_NUMA=y
@@ -93,6 +95,12 @@
 CONFIG_WQ_POWER_EFFICIENT_DEFAULT=y
 CONFIG_ARM_CPUIDLE=y
 CONFIG_CPU_FREQ=y
+CONFIG_CPU_FREQ_STAT=y
+CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL=y
+CONFIG_CPU_FREQ_GOV_POWERSAVE=y
+CONFIG_CPU_FREQ_GOV_USERSPACE=y
+CONFIG_CPU_FREQ_GOV_ONDEMAND=y
+CONFIG_CPU_FREQ_GOV_CONSERVATIVE=y
 CONFIG_CPUFREQ_DT=y
 CONFIG_ARM_BIG_LITTLE_CPUFREQ=y
 CONFIG_ARM_SCPI_CPUFREQ=y
@@ -140,11 +148,10 @@
 CONFIG_BT_LEDS=y
 # CONFIG_BT_DEBUGFS is not set
 CONFIG_BT_HCIUART=m
-CONFIG_BT_HCIUART_LL=y
-CONFIG_CFG80211=m
-CONFIG_MAC80211=m
+CONFIG_CFG80211=y
+CONFIG_MAC80211=y
 CONFIG_MAC80211_LEDS=y
-CONFIG_RFKILL=m
+CONFIG_RFKILL=y
 CONFIG_NET_9P=y
 CONFIG_NET_9P_VIRTIO=y
 CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"
@@ -210,21 +217,16 @@
 CONFIG_ROCKCHIP_PHY=y
 CONFIG_USB_PEGASUS=m
 CONFIG_USB_RTL8150=m
-CONFIG_USB_RTL8152=m
-CONFIG_USB_USBNET=m
-CONFIG_USB_NET_DM9601=m
-CONFIG_USB_NET_SR9800=m
-CONFIG_USB_NET_SMSC75XX=m
-CONFIG_USB_NET_SMSC95XX=m
-CONFIG_USB_NET_PLUSB=m
-CONFIG_USB_NET_MCS7830=m
+CONFIG_USB_RTL8152=y
 CONFIG_BRCMFMAC=m
+CONFIG_RTL_CARDS=m
 CONFIG_WL18XX=m
 CONFIG_WLCORE_SDIO=m
+CONFIG_USB_NET_RNDIS_WLAN=y
 CONFIG_INPUT_EVDEV=y
 CONFIG_KEYBOARD_ADC=m
-CONFIG_KEYBOARD_CROS_EC=y
 CONFIG_KEYBOARD_GPIO=y
+CONFIG_KEYBOARD_CROS_EC=y
 CONFIG_INPUT_MISC=y
 CONFIG_INPUT_PM8941_PWRKEY=y
 CONFIG_INPUT_HISI_POWERKEY=y
@@ -275,20 +277,20 @@
 CONFIG_I2C_RCAR=y
 CONFIG_I2C_CROS_EC_TUNNEL=y
 CONFIG_SPI=y
-CONFIG_SPI_MESON_SPICC=m
-CONFIG_SPI_MESON_SPIFC=m
 CONFIG_SPI_BCM2835=m
 CONFIG_SPI_BCM2835AUX=m
+CONFIG_SPI_MESON_SPICC=m
+CONFIG_SPI_MESON_SPIFC=m
 CONFIG_SPI_ORION=y
 CONFIG_SPI_PL022=y
-CONFIG_SPI_QUP=y
 CONFIG_SPI_ROCKCHIP=y
+CONFIG_SPI_QUP=y
 CONFIG_SPI_S3C64XX=y
 CONFIG_SPI_SPIDEV=m
 CONFIG_SPMI=y
-CONFIG_PINCTRL_IPQ8074=y
 CONFIG_PINCTRL_SINGLE=y
 CONFIG_PINCTRL_MAX77620=y
+CONFIG_PINCTRL_IPQ8074=y
 CONFIG_PINCTRL_MSM8916=y
 CONFIG_PINCTRL_MSM8994=y
 CONFIG_PINCTRL_MSM8996=y
@@ -313,9 +315,8 @@
 CONFIG_THERMAL_GOV_POWER_ALLOCATOR=y
 CONFIG_CPU_THERMAL=y
 CONFIG_THERMAL_EMULATION=y
-CONFIG_BRCMSTB_THERMAL=m
-CONFIG_EXYNOS_THERMAL=y
 CONFIG_ROCKCHIP_THERMAL=m
+CONFIG_EXYNOS_THERMAL=y
 CONFIG_WATCHDOG=y
 CONFIG_S3C2410_WATCHDOG=y
 CONFIG_MESON_GXBB_WATCHDOG=m
@@ -334,9 +335,9 @@
 CONFIG_MFD_SPMI_PMIC=y
 CONFIG_MFD_RK808=y
 CONFIG_MFD_SEC_CORE=y
+CONFIG_REGULATOR_FIXED_VOLTAGE=y
 CONFIG_REGULATOR_AXP20X=y
 CONFIG_REGULATOR_FAN53555=y
-CONFIG_REGULATOR_FIXED_VOLTAGE=y
 CONFIG_REGULATOR_GPIO=y
 CONFIG_REGULATOR_HI6421V530=y
 CONFIG_REGULATOR_HI655X=y
@@ -346,16 +347,13 @@
 CONFIG_REGULATOR_QCOM_SPMI=y
 CONFIG_REGULATOR_RK808=y
 CONFIG_REGULATOR_S2MPS11=y
+CONFIG_RC_DEVICES=y
+CONFIG_IR_MESON=m
 CONFIG_MEDIA_SUPPORT=m
 CONFIG_MEDIA_CAMERA_SUPPORT=y
 CONFIG_MEDIA_ANALOG_TV_SUPPORT=y
 CONFIG_MEDIA_DIGITAL_TV_SUPPORT=y
 CONFIG_MEDIA_CONTROLLER=y
-CONFIG_MEDIA_RC_SUPPORT=y
-CONFIG_RC_CORE=m
-CONFIG_RC_DEVICES=y
-CONFIG_RC_DECODERS=y
-CONFIG_IR_MESON=m
 CONFIG_VIDEO_V4L2_SUBDEV_API=y
 # CONFIG_DVB_NET is not set
 CONFIG_V4L_MEM2MEM_DRIVERS=y
@@ -393,7 +391,6 @@
 CONFIG_BACKLIGHT_GENERIC=m
 CONFIG_BACKLIGHT_PWM=m
 CONFIG_BACKLIGHT_LP855X=m
-CONFIG_FRAMEBUFFER_CONSOLE=y
 CONFIG_LOGO=y
 # CONFIG_LOGO_LINUX_MONO is not set
 # CONFIG_LOGO_LINUX_VGA16 is not set
@@ -492,7 +489,6 @@
 CONFIG_COMMON_CLK_RK808=y
 CONFIG_COMMON_CLK_SCPI=y
 CONFIG_COMMON_CLK_CS2000_CP=y
-CONFIG_COMMON_CLK_S2MPS11=y
 CONFIG_CLK_QORIQ=y
 CONFIG_COMMON_CLK_PWM=y
 CONFIG_COMMON_CLK_QCOM=y
@@ -531,13 +527,13 @@
 CONFIG_PWM_ROCKCHIP=y
 CONFIG_PWM_SAMSUNG=y
 CONFIG_PWM_TEGRA=m
-CONFIG_PHY_RCAR_GEN3_USB2=y
-CONFIG_PHY_HI6220_USB=y
-CONFIG_PHY_SUN4I_USB=y
-CONFIG_PHY_ROCKCHIP_INNO_USB2=y
-CONFIG_PHY_ROCKCHIP_EMMC=y
-CONFIG_PHY_ROCKCHIP_PCIE=m
 CONFIG_PHY_XGENE=y
+CONFIG_PHY_SUN4I_USB=y
+CONFIG_PHY_HI6220_USB=y
+CONFIG_PHY_RCAR_GEN3_USB2=y
+CONFIG_PHY_ROCKCHIP_EMMC=y
+CONFIG_PHY_ROCKCHIP_INNO_USB2=y
+CONFIG_PHY_ROCKCHIP_PCIE=m
 CONFIG_PHY_TEGRA_XUSB=y
 CONFIG_QCOM_L2_PMU=y
 CONFIG_QCOM_L3_PMU=y
@@ -579,29 +575,27 @@
 CONFIG_KVM=y
 CONFIG_PRINTK_TIME=y
 CONFIG_DEBUG_INFO=y
-CONFIG_DEBUG_FS=y
 CONFIG_MAGIC_SYSRQ=y
 CONFIG_DEBUG_KERNEL=y
-CONFIG_LOCKUP_DETECTOR=y
-# CONFIG_SCHED_DEBUG is not set
+CONFIG_SCHEDSTATS=y
 # CONFIG_DEBUG_PREEMPT is not set
-# CONFIG_FTRACE is not set
+CONFIG_PROVE_LOCKING=y
+CONFIG_FUNCTION_TRACER=y
+CONFIG_IRQSOFF_TRACER=y
+CONFIG_PREEMPT_TRACER=y
+CONFIG_SCHED_TRACER=y
 CONFIG_MEMTEST=y
 CONFIG_SECURITY=y
 CONFIG_CRYPTO_ECHAINIV=y
 CONFIG_CRYPTO_ANSI_CPRNG=y
 CONFIG_ARM64_CRYPTO=y
-CONFIG_CRYPTO_SHA256_ARM64=m
 CONFIG_CRYPTO_SHA512_ARM64=m
 CONFIG_CRYPTO_SHA1_ARM64_CE=y
 CONFIG_CRYPTO_SHA2_ARM64_CE=y
 CONFIG_CRYPTO_GHASH_ARM64_CE=y
 CONFIG_CRYPTO_CRCT10DIF_ARM64_CE=m
 CONFIG_CRYPTO_CRC32_ARM64_CE=m
-CONFIG_CRYPTO_AES_ARM64=m
-CONFIG_CRYPTO_AES_ARM64_CE=m
 CONFIG_CRYPTO_AES_ARM64_CE_CCM=y
 CONFIG_CRYPTO_AES_ARM64_CE_BLK=y
-CONFIG_CRYPTO_AES_ARM64_NEON_BLK=m
 CONFIG_CRYPTO_CHACHA20_NEON=m
 CONFIG_CRYPTO_AES_ARM64_BS=m
diff --git a/arch/arm64/include/asm/topology.h b/arch/arm64/include/asm/topology.h
index b320228..13a00ec 100644
--- a/arch/arm64/include/asm/topology.h
+++ b/arch/arm64/include/asm/topology.h
@@ -33,6 +33,17 @@ int pcibus_to_node(struct pci_bus *bus);
 
 #endif /* CONFIG_NUMA */
 
+#include <linux/arch_topology.h>
+
+/* Replace task scheduler's default frequency-invariant accounting */
+#define arch_scale_freq_capacity topology_get_freq_scale
+
+/* Replace task scheduler's default cpu-invariant accounting */
+#define arch_scale_cpu_capacity topology_get_cpu_scale
+
+/* Enable topology flag updates */
+#define arch_update_cpu_topology topology_update_cpu_topology
+
 #include <asm-generic/topology.h>
 
 #endif /* _ASM_ARM_TOPOLOGY_H */
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c
index 8d48b23..35dbdfa 100644
--- a/arch/arm64/kernel/topology.c
+++ b/arch/arm64/kernel/topology.c
@@ -21,6 +21,7 @@
 #include <linux/of.h>
 #include <linux/sched.h>
 #include <linux/sched/topology.h>
+#include <linux/sched_energy.h>
 #include <linux/slab.h>
 #include <linux/string.h>
 
@@ -187,6 +188,8 @@ static int __init parse_dt_topology(void)
 	if (!map)
 		goto out;
 
+	init_sched_energy_costs();
+
 	ret = parse_cluster(map, 0);
 	if (ret != 0)
 		goto out_map;
@@ -280,8 +283,89 @@ void store_cpu_topology(unsigned int cpuid)
 
 topology_populated:
 	update_siblings_masks(cpuid);
+	topology_detect_flags();
 }
 
+#ifdef CONFIG_SCHED_SMT
+static int smt_flags(void)
+{
+	return cpu_smt_flags() | topology_smt_flags();
+}
+#endif
+
+#ifdef CONFIG_SCHED_MC
+static int core_flags(void)
+{
+	return cpu_core_flags() | topology_core_flags();
+}
+#endif
+
+static int cpu_flags(void)
+{
+	return topology_cpu_flags();
+}
+
+static inline
+const struct sched_group_energy * const cpu_core_energy(int cpu)
+{
+	struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0];
+	unsigned long capacity;
+	int max_cap_idx;
+
+	if (!sge) {
+		pr_warn("Invalid sched_group_energy for CPU%d\n", cpu);
+		return NULL;
+	}
+
+	max_cap_idx = sge->nr_cap_states - 1;
+	capacity = sge->cap_states[max_cap_idx].cap;
+
+	printk_deferred("cpu=%d set cpu scale %lu from energy model\n",
+			cpu, capacity);
+
+	topology_set_cpu_scale(cpu, capacity);
+
+	return sge;
+}
+
+static inline
+const struct sched_group_energy * const cpu_cluster_energy(int cpu)
+{
+	struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1];
+
+	if (!sge) {
+		pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu);
+		return NULL;
+	}
+
+	return sge;
+}
+
+static inline
+const struct sched_group_energy * const cpu_system_energy(int cpu)
+{
+	struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL2];
+
+	if (!sge) {
+		pr_warn("Invalid sched_group_energy for System%d\n", cpu);
+		return NULL;
+	}
+
+	return sge;
+}
+
+static struct sched_domain_topology_level arm64_topology[] = {
+#ifdef CONFIG_SCHED_SMT
+	{ cpu_smt_mask, smt_flags, SD_INIT_NAME(SMT) },
+#endif
+#ifdef CONFIG_SCHED_MC
+	{ cpu_coregroup_mask, core_flags, cpu_core_energy, SD_INIT_NAME(MC) },
+#endif
+	{ cpu_cpu_mask, cpu_flags, cpu_cluster_energy, SD_INIT_NAME(DIE) },
+	{ cpu_cpu_mask, NULL, cpu_system_energy, SD_INIT_NAME(SYS) },
+	{ NULL, }
+};
+
 static void __init reset_cpu_topology(void)
 {
 	unsigned int cpu;
@@ -310,4 +394,6 @@ void __init init_cpu_topology(void)
 	 */
 	if (of_have_populated_dt() && parse_dt_topology())
 		reset_cpu_topology();
+	else
+		set_sched_topology(arm64_topology);
 }
diff --git a/drivers/base/arch_topology.c b/drivers/base/arch_topology.c
index 6df7d66..cf92aa8 100644
--- a/drivers/base/arch_topology.c
+++ b/drivers/base/arch_topology.c
@@ -21,14 +21,25 @@
 #include <linux/slab.h>
 #include <linux/string.h>
 #include <linux/sched/topology.h>
+#include <linux/cpuset.h>
+#include <linux/sched_energy.h>
+
+DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
+
+void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
+			 unsigned long max_freq)
+{
+	unsigned long scale;
+	int i;
+
+	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
+
+	for_each_cpu(i, cpus)
+		per_cpu(freq_scale, i) = scale;
+}
 
 static DEFINE_MUTEX(cpu_scale_mutex);
-static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
-
-unsigned long topology_get_cpu_scale(struct sched_domain *sd, int cpu)
-{
-	return per_cpu(cpu_scale, cpu);
-}
+DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 
 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
 {
@@ -44,6 +55,9 @@ static ssize_t cpu_capacity_show(struct device *dev,
 	return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
 }
 
+static void update_topology_flags_workfn(struct work_struct *work);
+static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
+
 static ssize_t cpu_capacity_store(struct device *dev,
 				  struct device_attribute *attr,
 				  const char *buf,
@@ -54,10 +68,15 @@ static ssize_t cpu_capacity_store(struct device *dev,
 	int i;
 	unsigned long new_capacity;
 	ssize_t ret;
+	cpumask_var_t mask;
 
 	if (!count)
 		return 0;
 
+	/* don't allow changes if sched-group-energy is installed */
+	if(sched_energy_installed(this_cpu))
+		return -EINVAL;
+
 	ret = kstrtoul(buf, 0, &new_capacity);
 	if (ret)
 		return ret;
@@ -65,10 +84,41 @@ static ssize_t cpu_capacity_store(struct device *dev,
 		return -EINVAL;
 
 	mutex_lock(&cpu_scale_mutex);
-	for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
+
+	if (new_capacity < SCHED_CAPACITY_SCALE) {
+		int highest_score_cpu = 0;
+
+		if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
+			mutex_unlock(&cpu_scale_mutex);
+			return -ENOMEM;
+		}
+
+		cpumask_andnot(mask, cpu_online_mask,
+				topology_core_cpumask(this_cpu));
+
+		for_each_cpu(i, mask) {
+			if (topology_get_cpu_scale(NULL, i) ==
+					SCHED_CAPACITY_SCALE) {
+				highest_score_cpu = 1;
+				break;
+			}
+		}
+
+		free_cpumask_var(mask);
+
+		if (!highest_score_cpu) {
+			mutex_unlock(&cpu_scale_mutex);
+			return -EINVAL;
+		}
+	}
+
+	for_each_cpu(i, topology_core_cpumask(this_cpu))
 		topology_set_cpu_scale(i, new_capacity);
 	mutex_unlock(&cpu_scale_mutex);
 
+	if (topology_detect_flags())
+		schedule_work(&update_topology_flags_work);
+
 	return count;
 }
 
@@ -93,6 +143,185 @@ static int register_cpu_capacity_sysctl(void)
 }
 subsys_initcall(register_cpu_capacity_sysctl);
 
+enum asym_cpucap_type { no_asym, asym_thread, asym_core, asym_die };
+static enum asym_cpucap_type asym_cpucap = no_asym;
+enum share_cap_type { no_share_cap, share_cap_thread, share_cap_core, share_cap_die};
+static enum share_cap_type share_cap = no_share_cap;
+
+#ifdef CONFIG_CPU_FREQ
+int detect_share_cap_flag(void)
+{
+	int cpu;
+	enum share_cap_type share_cap_level = no_share_cap;
+	struct cpufreq_policy *policy;
+
+	for_each_possible_cpu(cpu) {
+		policy = cpufreq_cpu_get(cpu);
+
+		if (!policy)
+			return 0;
+
+		if (cpumask_equal(topology_sibling_cpumask(cpu),
+				  policy->related_cpus)) {
+			share_cap_level = share_cap_thread;
+			continue;
+		}
+
+		if (cpumask_equal(topology_core_cpumask(cpu),
+				  policy->related_cpus)) {
+			share_cap_level = share_cap_core;
+			continue;
+		}
+
+		if (cpumask_equal(cpu_cpu_mask(cpu),
+				  policy->related_cpus)) {
+			share_cap_level = share_cap_die;
+			continue;
+		}
+	}
+
+	if (share_cap != share_cap_level) {
+		share_cap = share_cap_level;
+		return 1;
+	}
+
+	return 0;
+}
+#else
+int detect_share_cap_flag(void) { return 0; }
+#endif
+
+/*
+ * Walk cpu topology to determine sched_domain flags.
+ *
+ * SD_ASYM_CPUCAPACITY: Indicates the lowest level that spans all cpu
+ * capacities found in the system for all cpus, i.e. the flag is set
+ * at the same level for all systems. The current algorithm implements
+ * this by looking for higher capacities, which doesn't work for all
+ * conceivable topology, but don't complicate things until it is
+ * necessary.
+ */
+int topology_detect_flags(void)
+{
+	unsigned long max_capacity, capacity;
+	enum asym_cpucap_type asym_level = no_asym;
+	int cpu, die_cpu, core, thread, flags_changed = 0;
+
+	for_each_possible_cpu(cpu) {
+		max_capacity = 0;
+
+		if (asym_level >= asym_thread)
+			goto check_core;
+
+		for_each_cpu(thread, topology_sibling_cpumask(cpu)) {
+			capacity = topology_get_cpu_scale(NULL, thread);
+
+			if (capacity > max_capacity) {
+				if (max_capacity != 0)
+					asym_level = asym_thread;
+
+				max_capacity = capacity;
+			}
+		}
+
+check_core:
+		if (asym_level >= asym_core)
+			goto check_die;
+
+		for_each_cpu(core, topology_core_cpumask(cpu)) {
+			capacity = topology_get_cpu_scale(NULL, core);
+
+			if (capacity > max_capacity) {
+				if (max_capacity != 0)
+					asym_level = asym_core;
+
+				max_capacity = capacity;
+			}
+		}
+check_die:
+		for_each_possible_cpu(die_cpu) {
+			capacity = topology_get_cpu_scale(NULL, die_cpu);
+
+			if (capacity > max_capacity) {
+				if (max_capacity != 0) {
+					asym_level = asym_die;
+					goto done;
+				}
+			}
+		}
+	}
+
+done:
+	if (asym_cpucap != asym_level) {
+		asym_cpucap = asym_level;
+		flags_changed = 1;
+		pr_debug("topology flag change detected\n");
+	}
+
+	if (detect_share_cap_flag())
+		flags_changed = 1;
+
+	return flags_changed;
+}
+
+int topology_smt_flags(void)
+{
+	int flags = 0;
+
+	if (asym_cpucap == asym_thread)
+		flags |= SD_ASYM_CPUCAPACITY;
+
+	if (share_cap == share_cap_thread)
+		flags |= SD_SHARE_CAP_STATES;
+
+	return flags;
+}
+
+int topology_core_flags(void)
+{
+	int flags = 0;
+
+	if (asym_cpucap == asym_core)
+		flags |= SD_ASYM_CPUCAPACITY;
+
+	if (share_cap == share_cap_core)
+		flags |= SD_SHARE_CAP_STATES;
+
+	return flags;
+}
+
+int topology_cpu_flags(void)
+{
+	int flags = 0;
+
+	if (asym_cpucap == asym_die)
+		flags |= SD_ASYM_CPUCAPACITY;
+
+	if (share_cap == share_cap_die)
+		flags |= SD_SHARE_CAP_STATES;
+
+	return flags;
+}
+
+static int update_topology = 0;
+
+int topology_update_cpu_topology(void)
+{
+	return update_topology;
+}
+
+/*
+ * Updating the sched_domains can't be done directly from cpufreq callbacks
+ * due to locking, so queue the work for later.
+ */
+static void update_topology_flags_workfn(struct work_struct *work)
+{
+	update_topology = 1;
+	rebuild_sched_domains();
+	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
+	update_topology = 0;
+}
+
 static u32 capacity_scale;
 static u32 *raw_capacity;
 
@@ -115,13 +344,12 @@ void topology_normalize_cpu_scale(void)
 	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
 	mutex_lock(&cpu_scale_mutex);
 	for_each_possible_cpu(cpu) {
-		pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
-			 cpu, raw_capacity[cpu]);
 		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
 			/ capacity_scale;
 		topology_set_cpu_scale(cpu, capacity);
-		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
-			cpu, topology_get_cpu_scale(NULL, cpu));
+		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu raw_capacity=%u\n",
+			cpu, topology_get_cpu_scale(NULL, cpu),
+			raw_capacity[cpu]);
 	}
 	mutex_unlock(&cpu_scale_mutex);
 }
@@ -129,14 +357,19 @@ void topology_normalize_cpu_scale(void)
 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
 {
 	static bool cap_parsing_failed;
-	int ret;
+	int ret = 0;
 	u32 cpu_capacity;
 
 	if (cap_parsing_failed)
 		return false;
 
-	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
+	/* override capacity-dmips-mhz if we have sched-energy-costs */
+	if (of_find_property(cpu_node, "sched-energy-costs", NULL))
+		cpu_capacity = topology_get_cpu_scale(NULL, cpu);
+	else
+		ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
 				   &cpu_capacity);
+
 	if (!ret) {
 		if (!raw_capacity) {
 			raw_capacity = kcalloc(num_possible_cpus(),
@@ -198,6 +431,8 @@ init_cpu_capacity_callback(struct notifier_block *nb,
 
 	if (cpumask_empty(cpus_to_visit)) {
 		topology_normalize_cpu_scale();
+		if (topology_detect_flags())
+			schedule_work(&update_topology_flags_work);
 		free_raw_capacity();
 		pr_debug("cpu_capacity: parsing done\n");
 		schedule_work(&parsing_done_work);
@@ -212,6 +447,8 @@ static struct notifier_block init_cpu_capacity_notifier __initdata = {
 
 static int __init register_cpufreq_notifier(void)
 {
+	int ret;
+
 	/*
 	 * on ACPI-based systems we need to use the default cpu capacity
 	 * until we have the necessary code to parse the cpu capacity, so
@@ -227,8 +464,13 @@ static int __init register_cpufreq_notifier(void)
 
 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
 
-	return cpufreq_register_notifier(&init_cpu_capacity_notifier,
-					 CPUFREQ_POLICY_NOTIFIER);
+	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
+					CPUFREQ_POLICY_NOTIFIER);
+
+	if (ret)
+		free_cpumask_var(cpus_to_visit);
+
+	return ret;
 }
 core_initcall(register_cpufreq_notifier);
 
@@ -236,6 +478,7 @@ static void __init parsing_done_workfn(struct work_struct *work)
 {
 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
 					 CPUFREQ_POLICY_NOTIFIER);
+	free_cpumask_var(cpus_to_visit);
 }
 
 #else
diff --git a/drivers/cpufreq/arm_big_little.c b/drivers/cpufreq/arm_big_little.c
index 1750412..0c41ab3 100644
--- a/drivers/cpufreq/arm_big_little.c
+++ b/drivers/cpufreq/arm_big_little.c
@@ -213,6 +213,7 @@ static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
 {
 	u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
 	unsigned int freqs_new;
+	int ret;
 
 	cur_cluster = cpu_to_cluster(cpu);
 	new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
@@ -229,7 +230,14 @@ static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
 		}
 	}
 
-	return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
+	ret = bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
+
+	if (!ret) {
+		arch_set_freq_scale(policy->related_cpus, freqs_new,
+				    policy->cpuinfo.max_freq);
+	}
+
+	return ret;
 }
 
 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
diff --git a/drivers/cpufreq/cpufreq-dt.c b/drivers/cpufreq/cpufreq-dt.c
index d83ab94..545946a 100644
--- a/drivers/cpufreq/cpufreq-dt.c
+++ b/drivers/cpufreq/cpufreq-dt.c
@@ -43,9 +43,17 @@ static struct freq_attr *cpufreq_dt_attr[] = {
 static int set_target(struct cpufreq_policy *policy, unsigned int index)
 {
 	struct private_data *priv = policy->driver_data;
+	unsigned long freq = policy->freq_table[index].frequency;
+	int ret;
 
-	return dev_pm_opp_set_rate(priv->cpu_dev,
-				   policy->freq_table[index].frequency * 1000);
+	ret = dev_pm_opp_set_rate(priv->cpu_dev, freq * 1000);
+
+	if (!ret) {
+		arch_set_freq_scale(policy->related_cpus, freq,
+				    policy->cpuinfo.max_freq);
+	}
+
+	return ret;
 }
 
 /*
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index 91e6bee..183e1ed 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -2432,6 +2432,17 @@ int cpufreq_boost_enabled(void)
 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
 
 /*********************************************************************
+ *               FREQUENCY INVARIANT ACCOUNTING SUPPORT              *
+ *********************************************************************/
+
+__weak void arch_set_freq_scale(struct cpumask *cpus,
+				unsigned long cur_freq,
+				unsigned long max_freq)
+{
+}
+EXPORT_SYMBOL_GPL(arch_set_freq_scale);
+
+/*********************************************************************
  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
  *********************************************************************/
 static enum cpuhp_state hp_online;
diff --git a/drivers/cpuidle/cpuidle.c b/drivers/cpuidle/cpuidle.c
index 484cc89..21a1833 100644
--- a/drivers/cpuidle/cpuidle.c
+++ b/drivers/cpuidle/cpuidle.c
@@ -211,7 +211,7 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
 	}
 
 	/* Take note of the planned idle state. */
-	sched_idle_set_state(target_state);
+	sched_idle_set_state(target_state, index);
 
 	trace_cpu_idle_rcuidle(index, dev->cpu);
 	time_start = ns_to_ktime(local_clock());
@@ -225,7 +225,7 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
 
 	/* The cpu is no longer idle or about to enter idle. */
-	sched_idle_set_state(NULL);
+	sched_idle_set_state(NULL, -1);
 
 	if (broadcast) {
 		if (WARN_ON_ONCE(!irqs_disabled()))
diff --git a/include/linux/arch_topology.h b/include/linux/arch_topology.h
index d4fcb0e..e7fe036 100644
--- a/include/linux/arch_topology.h
+++ b/include/linux/arch_topology.h
@@ -6,15 +6,35 @@
 #define _LINUX_ARCH_TOPOLOGY_H_
 
 #include <linux/types.h>
+#include <linux/percpu.h>
 
 void topology_normalize_cpu_scale(void);
+int topology_detect_flags(void);
+int topology_smt_flags(void);
+int topology_core_flags(void);
+int topology_cpu_flags(void);
+int topology_update_cpu_topology(void);
 
 struct device_node;
 bool topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu);
 
+DECLARE_PER_CPU(unsigned long, cpu_scale);
+
 struct sched_domain;
-unsigned long topology_get_cpu_scale(struct sched_domain *sd, int cpu);
+static inline
+unsigned long topology_get_cpu_scale(struct sched_domain *sd, int cpu)
+{
+	return per_cpu(cpu_scale, cpu);
+}
 
 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity);
 
+DECLARE_PER_CPU(unsigned long, freq_scale);
+
+static inline
+unsigned long topology_get_freq_scale(struct sched_domain *sd, int cpu)
+{
+	return per_cpu(freq_scale, cpu);
+}
+
 #endif /* _LINUX_ARCH_TOPOLOGY_H_ */
diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h
index acb77dcf..8996c09 100644
--- a/include/linux/cgroup_subsys.h
+++ b/include/linux/cgroup_subsys.h
@@ -21,6 +21,10 @@ SUBSYS(cpu)
 SUBSYS(cpuacct)
 #endif
 
+#if IS_ENABLED(CONFIG_SCHED_TUNE)
+SUBSYS(schedtune)
+#endif
+
 #if IS_ENABLED(CONFIG_BLK_CGROUP)
 SUBSYS(io)
 #endif
diff --git a/include/linux/cpufreq.h b/include/linux/cpufreq.h
index 537ff842..28734ee 100644
--- a/include/linux/cpufreq.h
+++ b/include/linux/cpufreq.h
@@ -919,6 +919,9 @@ static inline bool policy_has_boost_freq(struct cpufreq_policy *policy)
 
 extern unsigned int arch_freq_get_on_cpu(int cpu);
 
+extern void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
+				unsigned long max_freq);
+
 /* the following are really really optional */
 extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
 extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
diff --git a/include/linux/cpuidle.h b/include/linux/cpuidle.h
index 8f7788d..b7c12ee 100644
--- a/include/linux/cpuidle.h
+++ b/include/linux/cpuidle.h
@@ -214,7 +214,7 @@ static inline void cpuidle_use_deepest_state(bool enable)
 #endif
 
 /* kernel/sched/idle.c */
-extern void sched_idle_set_state(struct cpuidle_state *idle_state);
+extern void sched_idle_set_state(struct cpuidle_state *idle_state, int index);
 extern void default_idle_call(void);
 
 #ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
diff --git a/include/linux/sched.h b/include/linux/sched.h
index fdf74f2..30c35a2 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -166,6 +166,15 @@ struct task_group;
 /* Task command name length: */
 #define TASK_COMM_LEN			16
 
+enum task_event {
+	PUT_PREV_TASK   = 0,
+	PICK_NEXT_TASK  = 1,
+	TASK_WAKE       = 2,
+	TASK_MIGRATE    = 3,
+	TASK_UPDATE     = 4,
+	IRQ_UPDATE	= 5,
+};
+
 extern cpumask_var_t			cpu_isolated_map;
 
 extern void scheduler_tick(void);
@@ -410,6 +419,41 @@ struct sched_entity {
 #endif
 };
 
+#ifdef CONFIG_SCHED_WALT
+#define RAVG_HIST_SIZE_MAX  5
+
+/* ravg represents frequency scaled cpu-demand of tasks */
+struct ravg {
+	/*
+	 * 'mark_start' marks the beginning of an event (task waking up, task
+	 * starting to execute, task being preempted) within a window
+	 *
+	 * 'sum' represents how runnable a task has been within current
+	 * window. It incorporates both running time and wait time and is
+	 * frequency scaled.
+	 *
+	 * 'sum_history' keeps track of history of 'sum' seen over previous
+	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
+	 * ignored.
+	 *
+	 * 'demand' represents maximum sum seen over previous
+	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
+	 * demand for tasks.
+	 *
+	 * 'curr_window' represents task's contribution to cpu busy time
+	 * statistics (rq->curr_runnable_sum) in current window
+	 *
+	 * 'prev_window' represents task's contribution to cpu busy time
+	 * statistics (rq->prev_runnable_sum) in previous window
+	 */
+	u64 mark_start;
+	u32 sum, demand;
+	u32 sum_history[RAVG_HIST_SIZE_MAX];
+	u32 curr_window, prev_window;
+	u16 active_windows;
+};
+#endif
+
 struct sched_rt_entity {
 	struct list_head		run_list;
 	unsigned long			timeout;
@@ -562,6 +606,16 @@ struct task_struct {
 	const struct sched_class	*sched_class;
 	struct sched_entity		se;
 	struct sched_rt_entity		rt;
+#ifdef CONFIG_SCHED_WALT
+	struct ravg ravg;
+	/*
+	 * 'init_load_pct' represents the initial task load assigned to children
+	 * of this task
+	 */
+	u32 init_load_pct;
+	u64 last_sleep_ts;
+#endif
+
 #ifdef CONFIG_CGROUP_SCHED
 	struct task_group		*sched_task_group;
 #endif
diff --git a/include/linux/sched/cpufreq.h b/include/linux/sched/cpufreq.h
index d1ad3d8..0b55834 100644
--- a/include/linux/sched/cpufreq.h
+++ b/include/linux/sched/cpufreq.h
@@ -12,8 +12,6 @@
 #define SCHED_CPUFREQ_DL	(1U << 1)
 #define SCHED_CPUFREQ_IOWAIT	(1U << 2)
 
-#define SCHED_CPUFREQ_RT_DL	(SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
-
 #ifdef CONFIG_CPU_FREQ
 struct update_util_data {
        void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h
index d6a18a3..e076ff8 100644
--- a/include/linux/sched/sysctl.h
+++ b/include/linux/sched/sysctl.h
@@ -21,8 +21,16 @@ enum { sysctl_hung_task_timeout_secs = 0 };
 
 extern unsigned int sysctl_sched_latency;
 extern unsigned int sysctl_sched_min_granularity;
+extern unsigned int sysctl_sched_sync_hint_enable;
+extern unsigned int sysctl_sched_cstate_aware;
 extern unsigned int sysctl_sched_wakeup_granularity;
 extern unsigned int sysctl_sched_child_runs_first;
+#ifdef CONFIG_SCHED_WALT
+extern unsigned int sysctl_sched_use_walt_cpu_util;
+extern unsigned int sysctl_sched_use_walt_task_util;
+extern unsigned int sysctl_sched_walt_init_task_load_pct;
+extern unsigned int sysctl_sched_walt_cpu_high_irqload;
+#endif
 
 enum sched_tunable_scaling {
 	SCHED_TUNABLESCALING_NONE,
diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
index cf257c2e..e0161c3d 100644
--- a/include/linux/sched/topology.h
+++ b/include/linux/sched/topology.h
@@ -26,6 +26,7 @@
 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 #define SD_NUMA			0x4000	/* cross-node balancing */
+#define SD_SHARE_CAP_STATES	0x8000  /* Domain members share capacity state */
 
 /*
  * Increase resolution of cpu_capacity calculations
@@ -66,12 +67,30 @@ struct sched_domain_attr {
 
 extern int sched_domain_level_max;
 
+struct capacity_state {
+	unsigned long cap;	/* compute capacity */
+	unsigned long power;	/* power consumption at this compute capacity */
+};
+
+struct idle_state {
+	unsigned long power;	 /* power consumption in this idle state */
+};
+
+struct sched_group_energy {
+	unsigned int nr_idle_states;	/* number of idle states */
+	struct idle_state *idle_states;	/* ptr to idle state array */
+	unsigned int nr_cap_states;	/* number of capacity states */
+	struct capacity_state *cap_states; /* ptr to capacity state array */
+};
+
 struct sched_group;
 
 struct sched_domain_shared {
 	atomic_t	ref;
 	atomic_t	nr_busy_cpus;
 	int		has_idle_cores;
+
+	bool            overutilized;
 };
 
 struct sched_domain {
@@ -173,6 +192,8 @@ bool cpus_share_cache(int this_cpu, int that_cpu);
 
 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
 typedef int (*sched_domain_flags_f)(void);
+typedef
+const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
 
 #define SDTL_OVERLAP	0x01
 
@@ -186,6 +207,7 @@ struct sd_data {
 struct sched_domain_topology_level {
 	sched_domain_mask_f mask;
 	sched_domain_flags_f sd_flags;
+	sched_domain_energy_f energy;
 	int		    flags;
 	int		    numa_level;
 	struct sd_data      data;
diff --git a/include/linux/sched/wake_q.h b/include/linux/sched/wake_q.h
index 10b19a1..a3661e9 100644
--- a/include/linux/sched/wake_q.h
+++ b/include/linux/sched/wake_q.h
@@ -34,6 +34,7 @@
 struct wake_q_head {
 	struct wake_q_node *first;
 	struct wake_q_node **lastp;
+	int count;
 };
 
 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
@@ -45,6 +46,7 @@ static inline void wake_q_init(struct wake_q_head *head)
 {
 	head->first = WAKE_Q_TAIL;
 	head->lastp = &head->first;
+	head->count = 0;
 }
 
 extern void wake_q_add(struct wake_q_head *head,
diff --git a/include/linux/sched_energy.h b/include/linux/sched_energy.h
new file mode 100644
index 0000000..83d7178
--- /dev/null
+++ b/include/linux/sched_energy.h
@@ -0,0 +1,41 @@
+#ifndef _LINUX_SCHED_ENERGY_H
+#define _LINUX_SCHED_ENERGY_H
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+/*
+ * There doesn't seem to be an NR_CPUS style max number of sched domain
+ * levels so here's an arbitrary constant one for the moment.
+ *
+ * The levels alluded to here correspond to entries in struct
+ * sched_domain_topology_level that are meant to be populated by arch
+ * specific code (topology.c).
+ */
+#define NR_SD_LEVELS 8
+
+#define SD_LEVEL0   0
+#define SD_LEVEL1   1
+#define SD_LEVEL2   2
+#define SD_LEVEL3   3
+#define SD_LEVEL4   4
+#define SD_LEVEL5   5
+#define SD_LEVEL6   6
+#define SD_LEVEL7   7
+
+/*
+ * Convenience macro for iterating through said sd levels.
+ */
+#define for_each_possible_sd_level(level)		    \
+	for (level = 0; level < NR_SD_LEVELS; level++)
+
+extern struct sched_group_energy *sge_array[NR_CPUS][NR_SD_LEVELS];
+
+#ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
+void init_sched_energy_costs(void);
+int sched_energy_installed(int cpu);
+#else
+void init_sched_energy_costs(void) {}
+#endif
+
+#endif
diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h
index c4cd9e2..c620ae9 100644
--- a/include/trace/events/sched.h
+++ b/include/trace/events/sched.h
@@ -594,6 +594,575 @@ TRACE_EVENT(sched_wake_idle_without_ipi,
 
 	TP_printk("cpu=%d", __entry->cpu)
 );
+
+#ifdef CONFIG_SMP
+#ifdef CREATE_TRACE_POINTS
+static inline
+int __trace_sched_cpu(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	struct rq *rq = cfs_rq ? cfs_rq->rq : NULL;
+#else
+	struct rq *rq = cfs_rq ? container_of(cfs_rq, struct rq, cfs) : NULL;
+#endif
+	return rq ? cpu_of(rq)
+		  : task_cpu((container_of(se, struct task_struct, se)));
+}
+
+static inline
+int __trace_sched_path(struct cfs_rq *cfs_rq, char *path, int len)
+{
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	int l = path ? len : 0;
+
+	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
+		return autogroup_path(cfs_rq->tg, path, l) + 1;
+	else if (cfs_rq && cfs_rq->tg->css.cgroup)
+		return cgroup_path(cfs_rq->tg->css.cgroup, path, l) + 1;
+#endif
+	if (path)
+		strcpy(path, "(null)");
+
+	return strlen("(null)");
+}
+
+static inline
+struct cfs_rq *__trace_sched_group_cfs_rq(struct sched_entity *se)
+{
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	return se->my_q;
+#else
+	return NULL;
+#endif
+}
+#endif /* CREATE_TRACE_POINTS */
+
+/*
+ * Tracepoint for cfs_rq load tracking:
+ */
+TRACE_EVENT(sched_load_cfs_rq,
+
+	TP_PROTO(struct cfs_rq *cfs_rq),
+
+	TP_ARGS(cfs_rq),
+
+	TP_STRUCT__entry(
+		__field(	int,		cpu			)
+		__dynamic_array(char,		path,
+				__trace_sched_path(cfs_rq, NULL, 0)	)
+		__field(	unsigned long,	load			)
+		__field(	unsigned long,	util			)
+	),
+
+	TP_fast_assign(
+		__entry->cpu	= __trace_sched_cpu(cfs_rq, NULL);
+		__trace_sched_path(cfs_rq, __get_dynamic_array(path),
+				   __get_dynamic_array_len(path));
+		__entry->load	= cfs_rq->runnable_load_avg;
+		__entry->util	= cfs_rq->avg.util_avg;
+	),
+
+	TP_printk("cpu=%d path=%s load=%lu util=%lu", __entry->cpu,
+		  __get_str(path), __entry->load, __entry->util)
+);
+
+/*
+ * Tracepoint for rt_rq load tracking:
+ */
+struct rt_rq;
+
+TRACE_EVENT(sched_load_rt_rq,
+
+	TP_PROTO(int cpu, struct rt_rq *rt_rq),
+
+	TP_ARGS(cpu, rt_rq),
+
+	TP_STRUCT__entry(
+		__field(	int,		cpu			)
+		__field(	unsigned long,	util			)
+	),
+
+	TP_fast_assign(
+		__entry->cpu	= cpu;
+		__entry->util	= rt_rq->avg.util_avg;
+	),
+
+	TP_printk("cpu=%d util=%lu", __entry->cpu,
+		  __entry->util)
+);
+
+#ifdef CONFIG_SCHED_WALT
+extern unsigned int sysctl_sched_use_walt_cpu_util;
+extern unsigned int sysctl_sched_use_walt_task_util;
+extern unsigned int walt_ravg_window;
+extern bool walt_disabled;
+#endif
+
+/*
+ * Tracepoint for accounting cpu root cfs_rq
+ */
+TRACE_EVENT(sched_load_avg_cpu,
+
+        TP_PROTO(int cpu, struct cfs_rq *cfs_rq),
+
+        TP_ARGS(cpu, cfs_rq),
+
+        TP_STRUCT__entry(
+                __field( int,   cpu                             )
+                __field( unsigned long, load_avg                )
+                __field( unsigned long, util_avg                )
+                __field( unsigned long, util_avg_pelt           )
+                __field( unsigned long, util_avg_walt           )
+        ),
+
+        TP_fast_assign(
+                __entry->cpu                    = cpu;
+                __entry->load_avg               = cfs_rq->avg.load_avg;
+                __entry->util_avg               = cfs_rq->avg.util_avg;
+                __entry->util_avg_pelt  = cfs_rq->avg.util_avg;
+                __entry->util_avg_walt  = 0;
+#ifdef CONFIG_SCHED_WALT
+                __entry->util_avg_walt  =
+                                cpu_rq(cpu)->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
+                do_div(__entry->util_avg_walt, walt_ravg_window);
+                if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
+                        __entry->util_avg               = __entry->util_avg_walt;
+#endif
+        ),
+
+        TP_printk("cpu=%d load_avg=%lu util_avg=%lu "
+                          "util_avg_pelt=%lu util_avg_walt=%lu",
+                  __entry->cpu, __entry->load_avg, __entry->util_avg,
+                  __entry->util_avg_pelt, __entry->util_avg_walt)
+);
+
+
+/*
+ * Tracepoint for sched_entity load tracking:
+ */
+TRACE_EVENT(sched_load_se,
+
+	TP_PROTO(struct sched_entity *se),
+
+	TP_ARGS(se),
+
+	TP_STRUCT__entry(
+		__field(	int,		cpu			      )
+		__dynamic_array(char,		path,
+		  __trace_sched_path(__trace_sched_group_cfs_rq(se), NULL, 0) )
+		__array(	char,		comm,	TASK_COMM_LEN	      )
+		__field(	pid_t,		pid			      )
+		__field(	unsigned long,	load			      )
+		__field(	unsigned long,	util			      )
+		__field(	unsigned long,	util_pelt		      )
+		__field(	unsigned long,	util_walt		      )
+	),
+
+	TP_fast_assign(
+		struct cfs_rq *gcfs_rq = __trace_sched_group_cfs_rq(se);
+		struct task_struct *p = gcfs_rq ? NULL
+				    : container_of(se, struct task_struct, se);
+
+		__entry->cpu = __trace_sched_cpu(gcfs_rq, se);
+		__trace_sched_path(gcfs_rq, __get_dynamic_array(path),
+				   __get_dynamic_array_len(path));
+		memcpy(__entry->comm, p ? p->comm : "(null)", TASK_COMM_LEN);
+		__entry->pid = p ? p->pid : -1;
+		__entry->load = se->avg.load_avg;
+		__entry->util = se->avg.util_avg;
+		__entry->util_pelt  = __entry->util;
+		__entry->util_walt  = 0;
+#ifdef CONFIG_SCHED_WALT
+		if (!se->my_q) {
+			struct task_struct *p = container_of(se, struct task_struct, se);
+			__entry->util_walt = p->ravg.demand;
+			do_div(__entry->util_walt, walt_ravg_window >> SCHED_CAPACITY_SHIFT);
+			if (!walt_disabled && sysctl_sched_use_walt_task_util)
+				__entry->util = __entry->util_walt;
+		}
+#endif
+	),
+
+	TP_printk("cpu=%d path=%s comm=%s pid=%d load=%lu util=%lu util_pelt=%lu util_walt=%lu",
+		  __entry->cpu, __get_str(path), __entry->comm,
+		  __entry->pid, __entry->load, __entry->util,
+		  __entry->util_pelt, __entry->util_walt)
+);
+
+/*
+ * Tracepoint for task_group load tracking:
+ */
+#ifdef CONFIG_FAIR_GROUP_SCHED
+TRACE_EVENT(sched_load_tg,
+
+	TP_PROTO(struct cfs_rq *cfs_rq),
+
+	TP_ARGS(cfs_rq),
+
+	TP_STRUCT__entry(
+		__field(	int,	cpu				)
+		__dynamic_array(char,	path,
+				__trace_sched_path(cfs_rq, NULL, 0)	)
+		__field(	long,	load				)
+	),
+
+	TP_fast_assign(
+		__entry->cpu	= cfs_rq->rq->cpu;
+		__trace_sched_path(cfs_rq, __get_dynamic_array(path),
+				   __get_dynamic_array_len(path));
+		__entry->load	= atomic_long_read(&cfs_rq->tg->load_avg);
+	),
+
+	TP_printk("cpu=%d path=%s load=%ld", __entry->cpu, __get_str(path),
+		  __entry->load)
+);
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+/*
+ * Tracepoint for accounting CPU  boosted utilization
+ */
+TRACE_EVENT(sched_boost_cpu,
+
+	TP_PROTO(int cpu, unsigned long util, long margin),
+
+	TP_ARGS(cpu, util, margin),
+
+	TP_STRUCT__entry(
+		__field( int,		cpu			)
+		__field( unsigned long,	util			)
+		__field(long,		margin			)
+	),
+
+	TP_fast_assign(
+		__entry->cpu	= cpu;
+		__entry->util	= util;
+		__entry->margin	= margin;
+	),
+
+	TP_printk("cpu=%d util=%lu margin=%ld",
+		  __entry->cpu,
+		  __entry->util,
+		  __entry->margin)
+);
+
+/*
+ * Tracepoint for schedtune_tasks_update
+ */
+TRACE_EVENT(sched_tune_tasks_update,
+
+	TP_PROTO(struct task_struct *tsk, int cpu, int tasks, int idx,
+		int boost, int max_boost),
+
+	TP_ARGS(tsk, cpu, tasks, idx, boost, max_boost),
+
+	TP_STRUCT__entry(
+		__array( char,	comm,	TASK_COMM_LEN	)
+		__field( pid_t,		pid		)
+		__field( int,		cpu		)
+		__field( int,		tasks		)
+		__field( int,		idx		)
+		__field( int,		boost		)
+		__field( int,		max_boost	)
+	),
+
+	TP_fast_assign(
+		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+		__entry->pid		= tsk->pid;
+		__entry->cpu 		= cpu;
+		__entry->tasks		= tasks;
+		__entry->idx 		= idx;
+		__entry->boost		= boost;
+		__entry->max_boost	= max_boost;
+	),
+
+	TP_printk("pid=%d comm=%s "
+			"cpu=%d tasks=%d idx=%d boost=%d max_boost=%d",
+		__entry->pid, __entry->comm,
+		__entry->cpu, __entry->tasks, __entry->idx,
+		__entry->boost, __entry->max_boost)
+);
+
+/*
+ * Tracepoint for schedtune_boostgroup_update
+ */
+TRACE_EVENT(sched_tune_boostgroup_update,
+
+	TP_PROTO(int cpu, int variation, int max_boost),
+
+	TP_ARGS(cpu, variation, max_boost),
+
+	TP_STRUCT__entry(
+		__field( int,	cpu		)
+		__field( int,	variation	)
+		__field( int,	max_boost	)
+	),
+
+	TP_fast_assign(
+		__entry->cpu		= cpu;
+		__entry->variation	= variation;
+		__entry->max_boost	= max_boost;
+	),
+
+	TP_printk("cpu=%d variation=%d max_boost=%d",
+		__entry->cpu, __entry->variation, __entry->max_boost)
+);
+
+/*
+ * Tracepoint for accounting task boosted utilization
+ */
+TRACE_EVENT(sched_boost_task,
+
+	TP_PROTO(struct task_struct *tsk, unsigned long util, long margin),
+
+	TP_ARGS(tsk, util, margin),
+
+	TP_STRUCT__entry(
+		__array( char,	comm,	TASK_COMM_LEN		)
+		__field( pid_t,		pid			)
+		__field( unsigned long,	util			)
+		__field( long,		margin			)
+
+	),
+
+	TP_fast_assign(
+		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+		__entry->pid	= tsk->pid;
+		__entry->util	= util;
+		__entry->margin	= margin;
+	),
+
+	TP_printk("comm=%s pid=%d util=%lu margin=%ld",
+		  __entry->comm, __entry->pid,
+		  __entry->util,
+		  __entry->margin)
+);
+
+/*
+ * Tracepoint for system overutilized flag
+ */
+struct sched_domain;
+TRACE_EVENT_CONDITION(sched_overutilized,
+
+	TP_PROTO(struct sched_domain *sd, bool was_overutilized, bool overutilized),
+
+	TP_ARGS(sd, was_overutilized, overutilized),
+
+	TP_CONDITION(overutilized != was_overutilized),
+
+	TP_STRUCT__entry(
+		__field( bool,	overutilized	  )
+		__array( char,  cpulist , 32      )
+	),
+
+	TP_fast_assign(
+		__entry->overutilized	= overutilized;
+		scnprintf(__entry->cpulist, sizeof(__entry->cpulist), "%*pbl", cpumask_pr_args(sched_domain_span(sd)));
+	),
+
+	TP_printk("overutilized=%d sd_span=%s",
+		__entry->overutilized ? 1 : 0, __entry->cpulist)
+);
+
+/*
+ * Tracepoint for find_best_target
+ */
+TRACE_EVENT(sched_find_best_target,
+
+	TP_PROTO(struct task_struct *tsk, bool prefer_idle,
+		unsigned long min_util, int start_cpu,
+		int best_idle, int best_active, int target),
+
+	TP_ARGS(tsk, prefer_idle, min_util, start_cpu,
+		best_idle, best_active, target),
+
+	TP_STRUCT__entry(
+		__array( char,	comm,	TASK_COMM_LEN	)
+		__field( pid_t,	pid			)
+		__field( unsigned long,	min_util	)
+		__field( bool,	prefer_idle		)
+		__field( int,	start_cpu		)
+		__field( int,	best_idle		)
+		__field( int,	best_active		)
+		__field( int,	target			)
+	),
+
+	TP_fast_assign(
+		memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+		__entry->pid		= tsk->pid;
+		__entry->min_util	= min_util;
+		__entry->prefer_idle	= prefer_idle;
+		__entry->start_cpu 	= start_cpu;
+		__entry->best_idle	= best_idle;
+		__entry->best_active	= best_active;
+		__entry->target		= target;
+	),
+
+	TP_printk("pid=%d comm=%s prefer_idle=%d start_cpu=%d "
+		  "best_idle=%d best_active=%d target=%d",
+		__entry->pid, __entry->comm,
+		__entry->prefer_idle, __entry->start_cpu,
+		__entry->best_idle, __entry->best_active,
+		__entry->target)
+);
+
+#ifdef CONFIG_SCHED_WALT
+struct rq;
+
+TRACE_EVENT(walt_update_task_ravg,
+
+	TP_PROTO(struct task_struct *p, struct rq *rq, int evt,
+						u64 wallclock, u64 irqtime),
+
+	TP_ARGS(p, rq, evt, wallclock, irqtime),
+
+	TP_STRUCT__entry(
+		__array(	char,	comm,   TASK_COMM_LEN	)
+		__field(	pid_t,	pid			)
+		__field(	pid_t,	cur_pid			)
+		__field(	u64,	wallclock		)
+		__field(	u64,	mark_start		)
+		__field(	u64,	delta_m			)
+		__field(	u64,	win_start		)
+		__field(	u64,	delta			)
+		__field(	u64,	irqtime			)
+		__array(    char,   evt, 16			)
+		__field(unsigned int,	demand			)
+		__field(unsigned int,	sum			)
+		__field(	 int,	cpu			)
+		__field(	u64,	cs			)
+		__field(	u64,	ps			)
+		__field(	u32,	curr_window		)
+		__field(	u32,	prev_window		)
+		__field(	u64,	nt_cs			)
+		__field(	u64,	nt_ps			)
+		__field(	u32,	active_windows		)
+	),
+
+	TP_fast_assign(
+			static const char* walt_event_names[] =
+			{
+				"PUT_PREV_TASK",
+				"PICK_NEXT_TASK",
+				"TASK_WAKE",
+				"TASK_MIGRATE",
+				"TASK_UPDATE",
+				"IRQ_UPDATE"
+			};
+		__entry->wallclock      = wallclock;
+		__entry->win_start      = rq->window_start;
+		__entry->delta          = (wallclock - rq->window_start);
+		strcpy(__entry->evt, walt_event_names[evt]);
+		__entry->cpu            = rq->cpu;
+		__entry->cur_pid        = rq->curr->pid;
+		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
+		__entry->pid            = p->pid;
+		__entry->mark_start     = p->ravg.mark_start;
+		__entry->delta_m        = (wallclock - p->ravg.mark_start);
+		__entry->demand         = p->ravg.demand;
+		__entry->sum            = p->ravg.sum;
+		__entry->irqtime        = irqtime;
+		__entry->cs             = rq->curr_runnable_sum;
+		__entry->ps             = rq->prev_runnable_sum;
+		__entry->curr_window	= p->ravg.curr_window;
+		__entry->prev_window	= p->ravg.prev_window;
+		__entry->nt_cs		= rq->nt_curr_runnable_sum;
+		__entry->nt_ps		= rq->nt_prev_runnable_sum;
+		__entry->active_windows	= p->ravg.active_windows;
+	),
+
+	TP_printk("wallclock=%llu window_start=%llu delta=%llu event=%s cpu=%d cur_pid=%d pid=%d comm=%s"
+		" mark_start=%llu delta=%llu demand=%u sum=%u irqtime=%llu"
+		" curr_runnable_sum=%llu prev_runnable_sum=%llu cur_window=%u"
+		" prev_window=%u nt_curr_runnable_sum=%llu nt_prev_runnable_sum=%llu active_windows=%u",
+		__entry->wallclock, __entry->win_start, __entry->delta,
+		__entry->evt, __entry->cpu, __entry->cur_pid,
+		__entry->pid, __entry->comm, __entry->mark_start,
+		__entry->delta_m, __entry->demand,
+		__entry->sum, __entry->irqtime,
+		__entry->cs, __entry->ps,
+		__entry->curr_window, __entry->prev_window,
+		__entry->nt_cs, __entry->nt_ps,
+		__entry->active_windows
+		)
+);
+
+TRACE_EVENT(walt_update_history,
+
+	TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int samples,
+			int evt),
+
+	TP_ARGS(rq, p, runtime, samples, evt),
+
+	TP_STRUCT__entry(
+		__array(	char,	comm,   TASK_COMM_LEN	)
+		__field(	pid_t,	pid			)
+		__field(unsigned int,	runtime			)
+		__field(	 int,	samples			)
+		__field(	 int,	evt			)
+		__field(	 u64,	demand			)
+		__field(unsigned int,	walt_avg		)
+		__field(unsigned int,	pelt_avg		)
+		__array(	 u32,	hist, RAVG_HIST_SIZE_MAX)
+		__field(	 int,	cpu			)
+	),
+
+	TP_fast_assign(
+		memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
+		__entry->pid            = p->pid;
+		__entry->runtime        = runtime;
+		__entry->samples        = samples;
+		__entry->evt            = evt;
+		__entry->demand         = p->ravg.demand;
+		__entry->walt_avg = (__entry->demand << 10) / walt_ravg_window,
+		__entry->pelt_avg	= p->se.avg.util_avg;
+		memcpy(__entry->hist, p->ravg.sum_history,
+					RAVG_HIST_SIZE_MAX * sizeof(u32));
+		__entry->cpu            = rq->cpu;
+	),
+
+	TP_printk("pid=%d comm=%s runtime=%u samples=%d event=%d demand=%llu ravg_window=%u"
+		" walt=%u pelt=%u hist0=%u hist1=%u hist2=%u hist3=%u hist4=%u cpu=%d",
+		__entry->pid, __entry->comm,
+		__entry->runtime, __entry->samples, __entry->evt,
+		__entry->demand,
+		walt_ravg_window,
+		__entry->walt_avg,
+		__entry->pelt_avg,
+		__entry->hist[0], __entry->hist[1],
+		__entry->hist[2], __entry->hist[3],
+		__entry->hist[4], __entry->cpu)
+);
+
+TRACE_EVENT(walt_migration_update_sum,
+
+	TP_PROTO(struct rq *rq, struct task_struct *p),
+
+	TP_ARGS(rq, p),
+
+	TP_STRUCT__entry(
+		__field(int,		cpu			)
+		__field(int,		pid			)
+		__field(	u64,	cs			)
+		__field(	u64,	ps			)
+		__field(	s64,	nt_cs			)
+		__field(	s64,	nt_ps			)
+	),
+
+	TP_fast_assign(
+		__entry->cpu		= cpu_of(rq);
+		__entry->cs		= rq->curr_runnable_sum;
+		__entry->ps		= rq->prev_runnable_sum;
+		__entry->nt_cs		= (s64)rq->nt_curr_runnable_sum;
+		__entry->nt_ps		= (s64)rq->nt_prev_runnable_sum;
+		__entry->pid		= p->pid;
+	),
+
+	TP_printk("cpu=%d curr_runnable_sum=%llu prev_runnable_sum=%llu nt_curr_runnable_sum=%lld nt_prev_runnable_sum=%lld pid=%d",
+		  __entry->cpu, __entry->cs, __entry->ps,
+		  __entry->nt_cs, __entry->nt_ps, __entry->pid)
+);
+#endif /* CONFIG_SCHED_WALT */
+#endif /* CONFIG_SMP */
 #endif /* _TRACE_SCHED_H */
 
 /* This part must be outside protection */
diff --git a/init/Kconfig b/init/Kconfig
index 3c1faaa..09eb610 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -400,6 +400,15 @@
 
 	  If in doubt, say N here.
 
+config SCHED_WALT
+        bool "Support window based load tracking"
+        depends on SMP
+        help
+        This feature will allow the scheduler to maintain a tunable window
+	based set of metrics for tasks and runqueues. These metrics can be
+	used to guide task placement as well as task frequency requirements
+	for cpufreq governors.
+
 config BSD_PROCESS_ACCT
 	bool "BSD Process Accounting"
 	depends on MULTIUSER
@@ -959,6 +968,39 @@
 	  desktop applications.  Task group autogeneration is currently based
 	  upon task session.
 
+config SCHED_TUNE
+	bool "Boosting for CFS tasks (EXPERIMENTAL)"
+	depends on SMP
+	help
+	  This option enables support for task classification using a new
+	  cgroup controller, schedtune. Schedtune allows tasks to be given
+	  a boost value and marked as latency-sensitive or not. This option
+	  provides the "schedtune" controller.
+
+	  This new controller:
+	  1. allows only a two layers hierarchy, where the root defines the
+	     system-wide boost value and its direct childrens define each one a
+	     different "class of tasks" to be boosted with a different value
+	  2. supports up to 16 different task classes, each one which could be
+	     configured with a different boost value
+
+	  Latency-sensitive tasks are not subject to energy-aware wakeup
+	  task placement. The boost value assigned to tasks is used to
+	  influence task placement and CPU frequency selection (if
+	  utilization-driven frequency selection is in use).
+
+	  If unsure, say N.
+
+config DEFAULT_USE_ENERGY_AWARE
+	bool "Default to enabling the Energy Aware Scheduler feature"
+	default n
+	help
+	  This option defaults the ENERGY_AWARE scheduling feature to true,
+	  as without SCHED_DEBUG set this feature can't be enabled or disabled
+	  via sysctl.
+
+	  Say N if unsure.
+
 config SYSFS_DEPRECATED
 	bool "Enable deprecated sysfs features to support old userspace tools"
 	depends on SYSFS
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index a9ee16b..b9207a9 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -20,9 +20,12 @@
 obj-y += idle_task.o fair.o rt.o deadline.o
 obj-y += wait.o wait_bit.o swait.o completion.o idle.o
 obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o
+obj-$(CONFIG_GENERIC_ARCH_TOPOLOGY) += energy.o
+obj-$(CONFIG_SCHED_WALT) += walt.o
 obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
 obj-$(CONFIG_SCHEDSTATS) += stats.o
 obj-$(CONFIG_SCHED_DEBUG) += debug.o
+obj-$(CONFIG_SCHED_TUNE) += tune.o
 obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
 obj-$(CONFIG_CPU_FREQ) += cpufreq.o
 obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
diff --git a/kernel/sched/autogroup.c b/kernel/sched/autogroup.c
index a43df51..c80a47a 100644
--- a/kernel/sched/autogroup.c
+++ b/kernel/sched/autogroup.c
@@ -260,7 +260,6 @@ void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
 }
 #endif /* CONFIG_PROC_FS */
 
-#ifdef CONFIG_SCHED_DEBUG
 int autogroup_path(struct task_group *tg, char *buf, int buflen)
 {
 	if (!task_group_is_autogroup(tg))
@@ -268,4 +267,3 @@ int autogroup_path(struct task_group *tg, char *buf, int buflen)
 
 	return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
 }
-#endif /* CONFIG_SCHED_DEBUG */
diff --git a/kernel/sched/autogroup.h b/kernel/sched/autogroup.h
index 27cd22b..590184b 100644
--- a/kernel/sched/autogroup.h
+++ b/kernel/sched/autogroup.h
@@ -56,11 +56,9 @@ autogroup_task_group(struct task_struct *p, struct task_group *tg)
 	return tg;
 }
 
-#ifdef CONFIG_SCHED_DEBUG
 static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
 {
 	return 0;
 }
-#endif
 
 #endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index d17c5da..00c6f578 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -39,6 +39,7 @@
 
 #define CREATE_TRACE_POINTS
 #include <trace/events/sched.h>
+#include "walt.h"
 
 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
@@ -438,6 +439,8 @@ void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 		return;
 
+	head->count++;
+
 	get_task_struct(task);
 
 	/*
@@ -447,6 +450,10 @@ void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 	head->lastp = &node->next;
 }
 
+static int
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
+	       int sibling_count_hint);
+
 void wake_up_q(struct wake_q_head *head)
 {
 	struct wake_q_node *node = head->first;
@@ -461,10 +468,10 @@ void wake_up_q(struct wake_q_head *head)
 		task->wake_q.next = NULL;
 
 		/*
-		 * wake_up_process() implies a wmb() to pair with the queueing
+		 * try_to_wake_up() implies a wmb() to pair with the queueing
 		 * in wake_q_add() so as not to miss wakeups.
 		 */
-		wake_up_process(task);
+		try_to_wake_up(task, TASK_NORMAL, 0, head->count);
 		put_task_struct(task);
 	}
 }
@@ -1186,6 +1193,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 			p->sched_class->migrate_task_rq(p);
 		p->se.nr_migrations++;
 		perf_event_task_migrate(p);
+
+		walt_fixup_busy_time(p, new_cpu);
 	}
 
 	__set_task_cpu(p, new_cpu);
@@ -1536,12 +1545,14 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  */
 static inline
-int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
+int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags,
+		   int sibling_count_hint)
 {
 	lockdep_assert_held(&p->pi_lock);
 
 	if (p->nr_cpus_allowed > 1)
-		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
+		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags,
+						     sibling_count_hint);
 	else
 		cpu = cpumask_any(&p->cpus_allowed);
 
@@ -1948,11 +1959,33 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  *
  */
 
+#ifdef CONFIG_SMP
+#ifdef CONFIG_SCHED_WALT
+/* utility function to update walt signals at wakeup */
+static inline void walt_try_to_wake_up(struct task_struct *p)
+{
+	struct rq *rq = cpu_rq(task_cpu(p));
+	struct rq_flags rf;
+	u64 wallclock;
+
+	rq_lock_irqsave(rq, &rf);
+	wallclock = walt_ktime_clock();
+	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
+	walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
+	rq_unlock_irqrestore(rq, &rf);
+}
+#else
+#define walt_try_to_wake_up(a) {}
+#endif
+#endif
+
 /**
  * try_to_wake_up - wake up a thread
  * @p: the thread to be awakened
  * @state: the mask of task states that can be woken
  * @wake_flags: wake modifier flags (WF_*)
+ * @sibling_count_hint: A hint at the number of threads that are being woken up
+ *                      in this event.
  *
  * If (@state & @p->state) @p->state = TASK_RUNNING.
  *
@@ -1965,7 +1998,8 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  *	   %false otherwise.
  */
 static int
-try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
+	       int sibling_count_hint)
 {
 	unsigned long flags;
 	int cpu, success = 0;
@@ -2043,6 +2077,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 	 */
 	smp_cond_load_acquire(&p->on_cpu, !VAL);
 
+	walt_try_to_wake_up(p);
+
 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
 	p->state = TASK_WAKING;
 
@@ -2051,7 +2087,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 		atomic_dec(&task_rq(p)->nr_iowait);
 	}
 
-	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
+	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags,
+			     sibling_count_hint);
 	if (task_cpu(p) != cpu) {
 		wake_flags |= WF_MIGRATED;
 		set_task_cpu(p, cpu);
@@ -2112,6 +2149,11 @@ static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
 	trace_sched_waking(p);
 
 	if (!task_on_rq_queued(p)) {
+		u64 wallclock = walt_ktime_clock();
+
+		walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
+		walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
+
 		if (p->in_iowait) {
 			delayacct_blkio_end();
 			atomic_dec(&rq->nr_iowait);
@@ -2139,13 +2181,13 @@ static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
  */
 int wake_up_process(struct task_struct *p)
 {
-	return try_to_wake_up(p, TASK_NORMAL, 0);
+	return try_to_wake_up(p, TASK_NORMAL, 0, 1);
 }
 EXPORT_SYMBOL(wake_up_process);
 
 int wake_up_state(struct task_struct *p, unsigned int state)
 {
-	return try_to_wake_up(p, state, 0);
+	return try_to_wake_up(p, state, 0, 1);
 }
 
 /*
@@ -2164,7 +2206,12 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 	p->se.prev_sum_exec_runtime	= 0;
 	p->se.nr_migrations		= 0;
 	p->se.vruntime			= 0;
+#ifdef CONFIG_SCHED_WALT
+	p->last_sleep_ts		= 0;
+#endif
+
 	INIT_LIST_HEAD(&p->se.group_node);
+	walt_init_new_task_load(p);
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
 	p->se.cfs_rq			= NULL;
@@ -2441,6 +2488,9 @@ void wake_up_new_task(struct task_struct *p)
 	struct rq *rq;
 
 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
+
+	walt_init_new_task_load(p);
+
 	p->state = TASK_RUNNING;
 #ifdef CONFIG_SMP
 	/*
@@ -2451,13 +2501,15 @@ void wake_up_new_task(struct task_struct *p)
 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 	 * as we're not fully set-up yet.
 	 */
-	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
+	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0, 1));
 #endif
 	rq = __task_rq_lock(p, &rf);
 	update_rq_clock(rq);
 	post_init_entity_util_avg(&p->se);
 
 	activate_task(rq, p, ENQUEUE_NOCLOCK);
+	walt_mark_task_starting(p);
+
 	p->on_rq = TASK_ON_RQ_QUEUED;
 	trace_sched_wakeup_new(p);
 	check_preempt_curr(rq, p, WF_FORK);
@@ -2912,7 +2964,7 @@ void sched_exec(void)
 	int dest_cpu;
 
 	raw_spin_lock_irqsave(&p->pi_lock, flags);
-	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
+	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0, 1);
 	if (dest_cpu == smp_processor_id())
 		goto unlock;
 
@@ -3011,6 +3063,9 @@ void scheduler_tick(void)
 
 	rq_lock(rq, &rf);
 
+	walt_set_window_start(rq, &rf);
+	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
+			walt_ktime_clock(), 0);
 	update_rq_clock(rq);
 	curr->sched_class->task_tick(rq, curr, 0);
 	cpu_load_update_active(rq);
@@ -3282,6 +3337,7 @@ static void __sched notrace __schedule(bool preempt)
 	struct rq_flags rf;
 	struct rq *rq;
 	int cpu;
+	u64 wallclock;
 
 	cpu = smp_processor_id();
 	rq = cpu_rq(cpu);
@@ -3337,10 +3393,17 @@ static void __sched notrace __schedule(bool preempt)
 	}
 
 	next = pick_next_task(rq, prev, &rf);
+	wallclock = walt_ktime_clock();
+	walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
+	walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
 	clear_tsk_need_resched(prev);
 	clear_preempt_need_resched();
 
 	if (likely(prev != next)) {
+#ifdef CONFIG_SCHED_WALT
+		if (!prev->on_rq)
+			prev->last_sleep_ts = wallclock;
+#endif
 		rq->nr_switches++;
 		rq->curr = next;
 		/*
@@ -3616,7 +3679,7 @@ asmlinkage __visible void __sched preempt_schedule_irq(void)
 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 			  void *key)
 {
-	return try_to_wake_up(curr->private, mode, wake_flags);
+	return try_to_wake_up(curr->private, mode, wake_flags, 1);
 }
 EXPORT_SYMBOL(default_wake_function);
 
@@ -5692,6 +5755,9 @@ int sched_cpu_dying(unsigned int cpu)
 	sched_ttwu_pending();
 
 	rq_lock_irqsave(rq, &rf);
+
+	walt_migrate_sync_cpu(cpu);
+
 	if (rq->rd) {
 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 		set_rq_offline(rq);
@@ -5917,12 +5983,18 @@ void __init sched_init(void)
 		rq->idle_stamp = 0;
 		rq->avg_idle = 2*sysctl_sched_migration_cost;
 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
+#ifdef CONFIG_SCHED_WALT
+		rq->cur_irqload = 0;
+		rq->avg_irqload = 0;
+		rq->irqload_ts = 0;
+#endif
 
 		INIT_LIST_HEAD(&rq->cfs_tasks);
 
 		rq_attach_root(rq, &def_root_domain);
 #ifdef CONFIG_NO_HZ_COMMON
 		rq->last_load_update_tick = jiffies;
+		rq->last_blocked_load_update_tick = jiffies;
 		rq->nohz_flags = 0;
 #endif
 #ifdef CONFIG_NO_HZ_FULL
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index ba0da24..9d946e6 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -19,11 +19,14 @@
 
 #include "sched.h"
 
+unsigned long boosted_cpu_util(int cpu);
+
 #define SUGOV_KTHREAD_PRIORITY	50
 
 struct sugov_tunables {
 	struct gov_attr_set attr_set;
-	unsigned int rate_limit_us;
+	unsigned int up_rate_limit_us;
+	unsigned int down_rate_limit_us;
 };
 
 struct sugov_policy {
@@ -34,7 +37,9 @@ struct sugov_policy {
 
 	raw_spinlock_t update_lock;  /* For shared policies */
 	u64 last_freq_update_time;
-	s64 freq_update_delay_ns;
+	s64 min_rate_limit_ns;
+	s64 up_rate_delay_ns;
+	s64 down_rate_delay_ns;
 	unsigned int next_freq;
 	unsigned int cached_raw_freq;
 
@@ -111,8 +116,32 @@ static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 		return true;
 	}
 
+	/* No need to recalculate next freq for min_rate_limit_us
+	 * at least. However we might still decide to further rate
+	 * limit once frequency change direction is decided, according
+	 * to the separate rate limits.
+	 */
+
 	delta_ns = time - sg_policy->last_freq_update_time;
-	return delta_ns >= sg_policy->freq_update_delay_ns;
+	return delta_ns >= sg_policy->min_rate_limit_ns;
+}
+
+static bool sugov_up_down_rate_limit(struct sugov_policy *sg_policy, u64 time,
+				     unsigned int next_freq)
+{
+	s64 delta_ns;
+
+	delta_ns = time - sg_policy->last_freq_update_time;
+
+	if (next_freq > sg_policy->next_freq &&
+	    delta_ns < sg_policy->up_rate_delay_ns)
+			return true;
+
+	if (next_freq < sg_policy->next_freq &&
+	    delta_ns < sg_policy->down_rate_delay_ns)
+			return true;
+
+	return false;
 }
 
 static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
@@ -123,6 +152,9 @@ static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
 	if (sg_policy->next_freq == next_freq)
 		return;
 
+	if (sugov_up_down_rate_limit(sg_policy, time, next_freq))
+		return;
+
 	sg_policy->next_freq = next_freq;
 	sg_policy->last_freq_update_time = time;
 
@@ -178,13 +210,15 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
 
 static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
 {
-	struct rq *rq = cpu_rq(cpu);
-	unsigned long cfs_max;
+	unsigned long max_cap, rt;
 
-	cfs_max = arch_scale_cpu_capacity(NULL, cpu);
+	max_cap = arch_scale_cpu_capacity(NULL, cpu);
 
-	*util = min(rq->cfs.avg.util_avg, cfs_max);
-	*max = cfs_max;
+	rt = sched_get_rt_rq_util(cpu);
+
+	*util = boosted_cpu_util(cpu) + rt;
+	*util = min(*util, max_cap);
+	*max = max_cap;
 }
 
 static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
@@ -272,7 +306,7 @@ static void sugov_update_single(struct update_util_data *hook, u64 time,
 
 	busy = sugov_cpu_is_busy(sg_cpu);
 
-	if (flags & SCHED_CPUFREQ_RT_DL) {
+	if (flags & SCHED_CPUFREQ_DL) {
 		next_f = policy->cpuinfo.max_freq;
 	} else {
 		sugov_get_util(&util, &max, sg_cpu->cpu);
@@ -285,6 +319,7 @@ static void sugov_update_single(struct update_util_data *hook, u64 time,
 		if (busy && next_f < sg_policy->next_freq)
 			next_f = sg_policy->next_freq;
 	}
+
 	sugov_update_commit(sg_policy, time, next_f);
 }
 
@@ -313,7 +348,7 @@ static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
 			j_sg_cpu->iowait_boost_pending = false;
 			continue;
 		}
-		if (j_sg_cpu->flags & SCHED_CPUFREQ_RT_DL)
+		if (j_sg_cpu->flags & SCHED_CPUFREQ_DL)
 			return policy->cpuinfo.max_freq;
 
 		j_util = j_sg_cpu->util;
@@ -349,7 +384,7 @@ static void sugov_update_shared(struct update_util_data *hook, u64 time,
 	sg_cpu->last_update = time;
 
 	if (sugov_should_update_freq(sg_policy, time)) {
-		if (flags & SCHED_CPUFREQ_RT_DL)
+		if (flags & SCHED_CPUFREQ_DL)
 			next_f = sg_policy->policy->cpuinfo.max_freq;
 		else
 			next_f = sugov_next_freq_shared(sg_cpu, time);
@@ -404,15 +439,32 @@ static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr
 	return container_of(attr_set, struct sugov_tunables, attr_set);
 }
 
-static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
+static DEFINE_MUTEX(min_rate_lock);
+
+static void update_min_rate_limit_ns(struct sugov_policy *sg_policy)
+{
+	mutex_lock(&min_rate_lock);
+	sg_policy->min_rate_limit_ns = min(sg_policy->up_rate_delay_ns,
+					   sg_policy->down_rate_delay_ns);
+	mutex_unlock(&min_rate_lock);
+}
+
+static ssize_t up_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
 {
 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
 
-	return sprintf(buf, "%u\n", tunables->rate_limit_us);
+	return sprintf(buf, "%u\n", tunables->up_rate_limit_us);
 }
 
-static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf,
-				   size_t count)
+static ssize_t down_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
+{
+	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
+
+	return sprintf(buf, "%u\n", tunables->down_rate_limit_us);
+}
+
+static ssize_t up_rate_limit_us_store(struct gov_attr_set *attr_set,
+				      const char *buf, size_t count)
 {
 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
 	struct sugov_policy *sg_policy;
@@ -421,18 +473,42 @@ static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *bu
 	if (kstrtouint(buf, 10, &rate_limit_us))
 		return -EINVAL;
 
-	tunables->rate_limit_us = rate_limit_us;
+	tunables->up_rate_limit_us = rate_limit_us;
 
-	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
-		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
+	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
+		sg_policy->up_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
+		update_min_rate_limit_ns(sg_policy);
+	}
 
 	return count;
 }
 
-static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
+static ssize_t down_rate_limit_us_store(struct gov_attr_set *attr_set,
+					const char *buf, size_t count)
+{
+	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
+	struct sugov_policy *sg_policy;
+	unsigned int rate_limit_us;
+
+	if (kstrtouint(buf, 10, &rate_limit_us))
+		return -EINVAL;
+
+	tunables->down_rate_limit_us = rate_limit_us;
+
+	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
+		sg_policy->down_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
+		update_min_rate_limit_ns(sg_policy);
+	}
+
+	return count;
+}
+
+static struct governor_attr up_rate_limit_us = __ATTR_RW(up_rate_limit_us);
+static struct governor_attr down_rate_limit_us = __ATTR_RW(down_rate_limit_us);
 
 static struct attribute *sugov_attributes[] = {
-	&rate_limit_us.attr,
+	&up_rate_limit_us.attr,
+	&down_rate_limit_us.attr,
 	NULL
 };
 
@@ -579,7 +655,8 @@ static int sugov_init(struct cpufreq_policy *policy)
 		goto stop_kthread;
 	}
 
-	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
+	tunables->up_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
+	tunables->down_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
 
 	policy->governor_data = sg_policy;
 	sg_policy->tunables = tunables;
@@ -638,7 +715,11 @@ static int sugov_start(struct cpufreq_policy *policy)
 	struct sugov_policy *sg_policy = policy->governor_data;
 	unsigned int cpu;
 
-	sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
+	sg_policy->up_rate_delay_ns =
+		sg_policy->tunables->up_rate_limit_us * NSEC_PER_USEC;
+	sg_policy->down_rate_delay_ns =
+		sg_policy->tunables->down_rate_limit_us * NSEC_PER_USEC;
+	update_min_rate_limit_ns(sg_policy);
 	sg_policy->last_freq_update_time = 0;
 	sg_policy->next_freq = UINT_MAX;
 	sg_policy->work_in_progress = false;
@@ -651,7 +732,7 @@ static int sugov_start(struct cpufreq_policy *policy)
 		memset(sg_cpu, 0, sizeof(*sg_cpu));
 		sg_cpu->cpu = cpu;
 		sg_cpu->sg_policy = sg_policy;
-		sg_cpu->flags = SCHED_CPUFREQ_RT;
+		sg_cpu->flags = SCHED_CPUFREQ_DL;
 		sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
 	}
 
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 14d2dbf..029b505 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -6,6 +6,7 @@
 #include <linux/context_tracking.h>
 #include <linux/sched/cputime.h>
 #include "sched.h"
+#include "walt.h"
 
 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 
@@ -55,11 +56,18 @@ void irqtime_account_irq(struct task_struct *curr)
 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 	s64 delta;
 	int cpu;
+#ifdef CONFIG_SCHED_WALT
+	u64 wallclock;
+	bool account = true;
+#endif
 
 	if (!sched_clock_irqtime)
 		return;
 
 	cpu = smp_processor_id();
+#ifdef CONFIG_SCHED_WALT
+	wallclock = sched_clock_cpu(cpu);
+#endif
 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 	irqtime->irq_start_time += delta;
 
@@ -73,6 +81,13 @@ void irqtime_account_irq(struct task_struct *curr)
 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
+#ifdef CONFIG_SCHED_WALT
+	else
+		account = false;
+
+	if (account)
+		walt_account_irqtime(cpu, curr, delta, wallclock);
+#endif
 }
 EXPORT_SYMBOL_GPL(irqtime_account_irq);
 
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 4ae5c1e..f982a3f 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -20,6 +20,8 @@
 #include <linux/slab.h>
 #include <uapi/linux/sched/types.h>
 
+#include "walt.h"
+
 struct dl_bandwidth def_dl_bandwidth;
 
 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
@@ -1290,6 +1292,7 @@ void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 	WARN_ON(!dl_prio(prio));
 	dl_rq->dl_nr_running++;
 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
+	walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
 
 	inc_dl_deadline(dl_rq, deadline);
 	inc_dl_migration(dl_se, dl_rq);
@@ -1304,6 +1307,7 @@ void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 	WARN_ON(!dl_rq->dl_nr_running);
 	dl_rq->dl_nr_running--;
 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
+	walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
 
 	dec_dl_deadline(dl_rq, dl_se->deadline);
 	dec_dl_migration(dl_se, dl_rq);
@@ -1505,7 +1509,8 @@ static void yield_task_dl(struct rq *rq)
 static int find_later_rq(struct task_struct *task);
 
 static int
-select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags,
+		  int sibling_count_hint)
 {
 	struct task_struct *curr;
 	struct rq *rq;
@@ -2017,7 +2022,9 @@ static int push_dl_task(struct rq *rq)
 	deactivate_task(rq, next_task, 0);
 	sub_running_bw(next_task->dl.dl_bw, &rq->dl);
 	sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
+	next_task->on_rq = TASK_ON_RQ_MIGRATING;
 	set_task_cpu(next_task, later_rq->cpu);
+	next_task->on_rq = TASK_ON_RQ_QUEUED;
 	add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
 	add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
 	activate_task(later_rq, next_task, 0);
@@ -2109,7 +2116,9 @@ static void pull_dl_task(struct rq *this_rq)
 			deactivate_task(src_rq, p, 0);
 			sub_running_bw(p->dl.dl_bw, &src_rq->dl);
 			sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
+			p->on_rq = TASK_ON_RQ_MIGRATING;
 			set_task_cpu(p, this_cpu);
+			p->on_rq = TASK_ON_RQ_QUEUED;
 			add_rq_bw(p->dl.dl_bw, &this_rq->dl);
 			add_running_bw(p->dl.dl_bw, &this_rq->dl);
 			activate_task(this_rq, p, 0);
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 2f93e4a..0a93f25 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -267,9 +267,60 @@ set_table_entry(struct ctl_table *entry,
 }
 
 static struct ctl_table *
+sd_alloc_ctl_energy_table(struct sched_group_energy *sge)
+{
+	struct ctl_table *table = sd_alloc_ctl_entry(5);
+
+	if (table == NULL)
+		return NULL;
+
+	set_table_entry(&table[0], "nr_idle_states", &sge->nr_idle_states,
+			sizeof(int), 0644, proc_dointvec_minmax, false);
+	set_table_entry(&table[1], "idle_states", &sge->idle_states[0].power,
+			sge->nr_idle_states*sizeof(struct idle_state), 0644,
+			proc_doulongvec_minmax, false);
+	set_table_entry(&table[2], "nr_cap_states", &sge->nr_cap_states,
+			sizeof(int), 0644, proc_dointvec_minmax, false);
+	set_table_entry(&table[3], "cap_states", &sge->cap_states[0].cap,
+			sge->nr_cap_states*sizeof(struct capacity_state), 0644,
+			proc_doulongvec_minmax, false);
+
+	return table;
+}
+
+static struct ctl_table *
+sd_alloc_ctl_group_table(struct sched_group *sg)
+{
+	struct ctl_table *table = sd_alloc_ctl_entry(2);
+
+	if (table == NULL)
+		return NULL;
+
+	table->procname = kstrdup("energy", GFP_KERNEL);
+	table->mode = 0555;
+	table->child = sd_alloc_ctl_energy_table((struct sched_group_energy *)sg->sge);
+
+	return table;
+}
+
+static struct ctl_table *
 sd_alloc_ctl_domain_table(struct sched_domain *sd)
 {
-	struct ctl_table *table = sd_alloc_ctl_entry(14);
+	struct ctl_table *table;
+	unsigned int nr_entries = 14;
+
+	int i = 0;
+	struct sched_group *sg = sd->groups;
+
+	if (sg->sge) {
+		int nr_sgs = 0;
+
+		do {} while (nr_sgs++, sg = sg->next, sg != sd->groups);
+
+		nr_entries += nr_sgs;
+	}
+
+	table = sd_alloc_ctl_entry(nr_entries);
 
 	if (table == NULL)
 		return NULL;
@@ -302,7 +353,19 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
 		sizeof(long), 0644, proc_doulongvec_minmax, false);
 	set_table_entry(&table[12], "name", sd->name,
 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
-	/* &table[13] is terminator */
+	sg = sd->groups;
+	if (sg->sge) {
+		char buf[32];
+		struct ctl_table *entry = &table[13];
+
+		do {
+			snprintf(buf, 32, "group%d", i);
+			entry->procname = kstrdup(buf, GFP_KERNEL);
+			entry->mode = 0555;
+			entry->child = sd_alloc_ctl_group_table(sg);
+		} while (entry++, i++, sg = sg->next, sg != sd->groups);
+	}
+	/* &table[nr_entries-1] is terminator */
 
 	return table;
 }
diff --git a/kernel/sched/energy.c b/kernel/sched/energy.c
new file mode 100644
index 0000000..e82248a
--- /dev/null
+++ b/kernel/sched/energy.c
@@ -0,0 +1,145 @@
+/*
+ * Obtain energy cost data from DT and populate relevant scheduler data
+ * structures.
+ *
+ * Copyright (C) 2015 ARM Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+#define pr_fmt(fmt) "sched-energy: " fmt
+
+#define DEBUG
+
+#include <linux/gfp.h>
+#include <linux/of.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/sched/topology.h>
+#include <linux/sched_energy.h>
+#include <linux/stddef.h>
+#include <linux/arch_topology.h>
+
+struct sched_group_energy *sge_array[NR_CPUS][NR_SD_LEVELS];
+
+static void free_resources(void)
+{
+	int cpu, sd_level;
+	struct sched_group_energy *sge;
+
+	for_each_possible_cpu(cpu) {
+		for_each_possible_sd_level(sd_level) {
+			sge = sge_array[cpu][sd_level];
+			if (sge) {
+				kfree(sge->cap_states);
+				kfree(sge->idle_states);
+				kfree(sge);
+			}
+		}
+	}
+}
+
+static inline unsigned long cpu_max_capacity(int cpu)
+{
+	if (!sge_array[cpu][0]->cap_states)
+		return 1024;
+	if (!sge_array[cpu][0]->nr_cap_states)
+		return 1024;
+
+	return sge_array[cpu][0]->cap_states[sge_array[cpu][0]->nr_cap_states-1].cap;
+}
+
+int sched_energy_installed(int cpu)
+{
+	return (sge_array[cpu][0]->cap_states != NULL);
+}
+
+void init_sched_energy_costs(void)
+{
+	struct device_node *cn, *cp;
+	struct capacity_state *cap_states;
+	struct idle_state *idle_states;
+	struct sched_group_energy *sge;
+	const struct property *prop;
+	int sd_level, i, nstates, cpu;
+	const __be32 *val;
+
+	for_each_possible_cpu(cpu) {
+		cn = of_get_cpu_node(cpu, NULL);
+		if (!cn) {
+			pr_warn("CPU device node missing for CPU %d\n", cpu);
+			return;
+		}
+
+		if (!of_find_property(cn, "sched-energy-costs", NULL)) {
+			pr_warn("CPU device node has no sched-energy-costs\n");
+			return;
+		}
+
+		for_each_possible_sd_level(sd_level) {
+			cp = of_parse_phandle(cn, "sched-energy-costs", sd_level);
+			if (!cp)
+				break;
+
+			prop = of_find_property(cp, "busy-cost-data", NULL);
+			if (!prop || !prop->value) {
+				pr_warn("No busy-cost data, skipping sched_energy init\n");
+				goto out;
+			}
+
+			sge = kcalloc(1, sizeof(struct sched_group_energy),
+				      GFP_NOWAIT);
+
+			nstates = (prop->length / sizeof(u32)) / 2;
+			cap_states = kcalloc(nstates,
+					     sizeof(struct capacity_state),
+					     GFP_NOWAIT);
+
+			for (i = 0, val = prop->value; i < nstates; i++) {
+				cap_states[i].cap = be32_to_cpup(val++);
+				cap_states[i].power = be32_to_cpup(val++);
+			}
+
+			sge->nr_cap_states = nstates;
+			sge->cap_states = cap_states;
+
+			prop = of_find_property(cp, "idle-cost-data", NULL);
+			if (!prop || !prop->value) {
+				pr_warn("No idle-cost data, skipping sched_energy init\n");
+				goto out;
+			}
+
+			nstates = (prop->length / sizeof(u32));
+			idle_states = kcalloc(nstates,
+					      sizeof(struct idle_state),
+					      GFP_NOWAIT);
+
+			for (i = 0, val = prop->value; i < nstates; i++)
+				idle_states[i].power = be32_to_cpup(val++);
+
+			sge->nr_idle_states = nstates;
+			sge->idle_states = idle_states;
+
+			sge_array[cpu][sd_level] = sge;
+
+			/* populate cpu scale so that flags get set correctly */
+			if (sd_level == 0)
+				topology_set_cpu_scale(cpu, cpu_max_capacity(cpu));
+		}
+	}
+
+	pr_info("Sched-energy-costs installed from DT\n");
+	return;
+
+out:
+	free_resources();
+}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index d9be9d8..541f4826 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -37,6 +37,8 @@
 #include <trace/events/sched.h>
 
 #include "sched.h"
+#include "tune.h"
+#include "walt.h"
 
 /*
  * Targeted preemption latency for CPU-bound tasks:
@@ -55,6 +57,15 @@ unsigned int sysctl_sched_latency			= 6000000ULL;
 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
 
 /*
+ * Enable/disable honoring sync flag in energy-aware wakeups.
+ */
+unsigned int sysctl_sched_sync_hint_enable = 1;
+/*
+ * Enable/disable using cstate knowledge in idle sibling selection
+ */
+unsigned int sysctl_sched_cstate_aware = 1;
+
+/*
  * The initial- and re-scaling of tunables is configurable
  *
  * Options are:
@@ -100,6 +111,13 @@ unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
 
 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
 
+#ifdef CONFIG_SCHED_WALT
+unsigned int sysctl_sched_use_walt_cpu_util = 1;
+unsigned int sysctl_sched_use_walt_task_util = 1;
+__read_mostly unsigned int sysctl_sched_walt_cpu_high_irqload =
+    (10 * NSEC_PER_MSEC);
+#endif
+
 #ifdef CONFIG_SMP
 /*
  * For asym packing, by default the lower numbered cpu has higher priority.
@@ -1431,7 +1449,6 @@ bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
 static unsigned long weighted_cpuload(struct rq *rq);
 static unsigned long source_load(int cpu, int type);
 static unsigned long target_load(int cpu, int type);
-static unsigned long capacity_of(int cpu);
 
 /* Cached statistics for all CPUs within a node */
 struct numa_stats {
@@ -2812,6 +2829,9 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
 		 * See cpu_util().
 		 */
 		cpufreq_update_util(rq, 0);
+#ifdef CONFIG_SMP
+		trace_sched_load_avg_cpu(cpu_of(rq), cfs_rq);
+#endif
 	}
 }
 
@@ -2968,7 +2988,8 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
  */
 static __always_inline int
 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
-		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
+		  unsigned long weight, int running, struct cfs_rq *cfs_rq,
+		  struct rt_rq *rt_rq)
 {
 	u64 delta;
 
@@ -3024,13 +3045,22 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
 	}
 	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
 
+	if (cfs_rq)
+		trace_sched_load_cfs_rq(cfs_rq);
+	else {
+		if (likely(!rt_rq))
+			trace_sched_load_se(container_of(sa, struct sched_entity, avg));
+		else
+			trace_sched_load_rt_rq(cpu, rt_rq);
+	}
+
 	return 1;
 }
 
 static int
 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
 {
-	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
+	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL, NULL);
 }
 
 static int
@@ -3038,7 +3068,7 @@ __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entit
 {
 	return ___update_load_avg(now, cpu, &se->avg,
 				  se->on_rq * scale_load_down(se->load.weight),
-				  cfs_rq->curr == se, NULL);
+				  cfs_rq->curr == se, NULL, NULL);
 }
 
 static int
@@ -3046,7 +3076,7 @@ __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
 {
 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
 			scale_load_down(cfs_rq->load.weight),
-			cfs_rq->curr != NULL, cfs_rq);
+			cfs_rq->curr != NULL, cfs_rq, NULL);
 }
 
 /*
@@ -3099,6 +3129,8 @@ static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
 	}
+
+	trace_sched_load_tg(cfs_rq);
 }
 
 /*
@@ -3267,6 +3299,9 @@ static inline int propagate_entity_load_avg(struct sched_entity *se)
 	update_tg_cfs_util(cfs_rq, se);
 	update_tg_cfs_load(cfs_rq, se);
 
+	trace_sched_load_cfs_rq(cfs_rq);
+	trace_sched_load_se(se);
+
 	return 1;
 }
 
@@ -3381,6 +3416,21 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
 	return decayed || removed_load;
 }
 
+int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running)
+{
+	int ret;
+
+	ret = ___update_load_avg(now, cpu, &rt_rq->avg, 0, running, NULL, rt_rq);
+
+	return ret;
+}
+
+unsigned long sched_get_rt_rq_util(int cpu)
+{
+	struct rt_rq *rt_rq = &(cpu_rq(cpu)->rt);
+	return rt_rq->avg.util_avg;
+}
+
 /*
  * Optional action to be done while updating the load average
  */
@@ -3428,6 +3478,8 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
 	set_tg_cfs_propagate(cfs_rq);
 
 	cfs_rq_util_change(cfs_rq);
+
+	trace_sched_load_cfs_rq(cfs_rq);
 }
 
 /**
@@ -3448,6 +3500,8 @@ static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
 	set_tg_cfs_propagate(cfs_rq);
 
 	cfs_rq_util_change(cfs_rq);
+
+	trace_sched_load_cfs_rq(cfs_rq);
 }
 
 /* Add the load generated by se into cfs_rq's load average */
@@ -3552,6 +3606,11 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
 	return 0;
 }
 
+int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running)
+{
+	return 0;
+}
+
 #define UPDATE_TG	0x0
 #define SKIP_AGE_LOAD	0x0
 
@@ -4871,6 +4930,48 @@ static inline void hrtick_update(struct rq *rq)
 }
 #endif
 
+#ifdef CONFIG_SMP
+static bool cpu_overutilized(int cpu);
+
+static unsigned long cpu_util(int cpu);
+
+static bool sd_overutilized(struct sched_domain *sd)
+{
+	return sd->shared->overutilized;
+}
+
+static void set_sd_overutilized(struct sched_domain *sd)
+{
+	trace_sched_overutilized(sd, sd->shared->overutilized, true);
+	sd->shared->overutilized = true;
+}
+
+static void clear_sd_overutilized(struct sched_domain *sd)
+{
+	trace_sched_overutilized(sd, sd->shared->overutilized, false);
+	sd->shared->overutilized = false;
+}
+
+static inline void update_overutilized_status(struct rq *rq)
+{
+	struct sched_domain *sd;
+
+	rcu_read_lock();
+	sd = rcu_dereference(rq->sd);
+	if (sd && !sd_overutilized(sd) &&
+	    cpu_overutilized(rq->cpu))
+		set_sd_overutilized(sd);
+	rcu_read_unlock();
+}
+
+unsigned long boosted_cpu_util(int cpu);
+#else
+
+#define update_overutilized_status(rq) do {} while (0)
+#define boosted_cpu_util(cpu) cpu_util_freq(cpu)
+
+#endif /* CONFIG_SMP */
+
 /*
  * The enqueue_task method is called before nr_running is
  * increased. Here we update the fair scheduling stats and
@@ -4881,6 +4982,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 {
 	struct cfs_rq *cfs_rq;
 	struct sched_entity *se = &p->se;
+	int task_new = !(flags & ENQUEUE_WAKEUP);
 
 	/*
 	 * If in_iowait is set, the code below may not trigger any cpufreq
@@ -4905,6 +5007,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 		if (cfs_rq_throttled(cfs_rq))
 			break;
 		cfs_rq->h_nr_running++;
+		walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
 
 		flags = ENQUEUE_WAKEUP;
 	}
@@ -4912,6 +5015,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 	for_each_sched_entity(se) {
 		cfs_rq = cfs_rq_of(se);
 		cfs_rq->h_nr_running++;
+		walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
 
 		if (cfs_rq_throttled(cfs_rq))
 			break;
@@ -4920,8 +5024,31 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 		update_cfs_shares(se);
 	}
 
-	if (!se)
+	/*
+	 * Update SchedTune accounting.
+	 *
+	 * We do it before updating the CPU capacity to ensure the
+	 * boost value of the current task is accounted for in the
+	 * selection of the OPP.
+	 *
+	 * We do it also in the case where we enqueue a throttled task;
+	 * we could argue that a throttled task should not boost a CPU,
+	 * however:
+	 * a) properly implementing CPU boosting considering throttled
+	 *    tasks will increase a lot the complexity of the solution
+	 * b) it's not easy to quantify the benefits introduced by
+	 *    such a more complex solution.
+	 * Thus, for the time being we go for the simple solution and boost
+	 * also for throttled RQs.
+	 */
+	schedtune_enqueue_task(p, cpu_of(rq));
+
+	if (!se) {
 		add_nr_running(rq, 1);
+		if (!task_new)
+			update_overutilized_status(rq);
+		walt_inc_cumulative_runnable_avg(rq, p);
+	}
 
 	hrtick_update(rq);
 }
@@ -4952,6 +5079,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 		if (cfs_rq_throttled(cfs_rq))
 			break;
 		cfs_rq->h_nr_running--;
+		walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
 
 		/* Don't dequeue parent if it has other entities besides us */
 		if (cfs_rq->load.weight) {
@@ -4971,6 +5099,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 	for_each_sched_entity(se) {
 		cfs_rq = cfs_rq_of(se);
 		cfs_rq->h_nr_running--;
+		walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
 
 		if (cfs_rq_throttled(cfs_rq))
 			break;
@@ -4979,8 +5108,19 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 		update_cfs_shares(se);
 	}
 
-	if (!se)
+	/*
+	 * Update SchedTune accounting
+	 *
+	 * We do it before updating the CPU capacity to ensure the
+	 * boost value of the current task is accounted for in the
+	 * selection of the OPP.
+	 */
+	schedtune_dequeue_task(p, cpu_of(rq));
+
+	if (!se) {
 		sub_nr_running(rq, 1);
+		walt_dec_cumulative_runnable_avg(rq, p);
+	}
 
 	hrtick_update(rq);
 }
@@ -5289,16 +5429,6 @@ static unsigned long target_load(int cpu, int type)
 	return max(rq->cpu_load[type-1], total);
 }
 
-static unsigned long capacity_of(int cpu)
-{
-	return cpu_rq(cpu)->cpu_capacity;
-}
-
-static unsigned long capacity_orig_of(int cpu)
-{
-	return cpu_rq(cpu)->cpu_capacity_orig;
-}
-
 static unsigned long cpu_avg_load_per_task(int cpu)
 {
 	struct rq *rq = cpu_rq(cpu);
@@ -5329,6 +5459,644 @@ static void record_wakee(struct task_struct *p)
 }
 
 /*
+ * Returns the current capacity of cpu after applying both
+ * cpu and freq scaling.
+ */
+unsigned long capacity_curr_of(int cpu)
+{
+	unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
+	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
+
+	return cap_scale(max_cap, scale_freq);
+}
+
+static inline bool energy_aware(void)
+{
+	return sched_feat(ENERGY_AWARE);
+}
+
+static int cpu_util_wake(int cpu, struct task_struct *p);
+
+/*
+ * __cpu_norm_util() returns the cpu util relative to a specific capacity,
+ * i.e. it's busy ratio, in the range [0..SCHED_CAPACITY_SCALE] which is useful
+ * for energy calculations. Using the scale-invariant util returned by
+ * cpu_util() and approximating scale-invariant util by:
+ *
+ *   util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
+ *
+ * the normalized util can be found using the specific capacity.
+ *
+ *   capacity = capacity_orig * curr_freq/max_freq
+ *
+ *   norm_util = running_time/time ~ util/capacity
+ */
+static unsigned long __cpu_norm_util(unsigned long util, unsigned long capacity)
+{
+	if (util >= capacity)
+		return SCHED_CAPACITY_SCALE;
+
+	return (util << SCHED_CAPACITY_SHIFT)/capacity;
+}
+
+/*
+ * CPU candidates.
+ *
+ * These are labels to reference CPU candidates for an energy_diff.
+ * Currently we support only two possible candidates: the task's previous CPU
+ * and another candiate CPU.
+ * More advanced/aggressive EAS selection policies can consider more
+ * candidates.
+ */
+#define EAS_CPU_PRV	0
+#define EAS_CPU_NXT	1
+#define EAS_CPU_BKP	2
+
+/*
+ * energy_diff - supports the computation of the estimated energy impact in
+ * moving a "task"'s "util_delta" between different CPU candidates.
+ */
+/*
+ * NOTE: When using or examining WALT task signals, all wakeup
+ * latency is included as busy time for task util.
+ *
+ * This is relevant here because:
+ * When debugging is enabled, it can take as much as 1ms to
+ * write the output to the trace buffer for each eenv
+ * scenario. For periodic tasks where the sleep time is of
+ * a similar order, the WALT task util can be inflated.
+ *
+ * Further, and even without debugging enabled,
+ * task wakeup latency changes depending upon the EAS
+ * wakeup algorithm selected - FIND_BEST_TARGET only does
+ * energy calculations for up to 2 candidate CPUs. When
+ * NO_FIND_BEST_TARGET is configured, we can potentially
+ * do an energy calculation across all CPUS in the system.
+ *
+ * The impact to WALT task util on a Juno board
+ * running a periodic task which only sleeps for 200usec
+ * between 1ms activations has been measured.
+ * (i.e. the wakeup latency induced by energy calculation
+ * and debug output is double the desired sleep time and
+ * almost equivalent to the runtime which is more-or-less
+ * the worst case possible for this test)
+ *
+ * In this scenario, a task which has a PELT util of around
+ * 220 is inflated under WALT to have util around 400.
+ *
+ * This is simply a property of the way WALT includes
+ * wakeup latency in busy time while PELT does not.
+ *
+ * Hence - be careful when enabling DEBUG_EENV_DECISIONS
+ * expecially if WALT is the task signal.
+ */
+/*#define DEBUG_EENV_DECISIONS*/
+
+#ifdef DEBUG_EENV_DECISIONS
+/* max of 8 levels of sched groups traversed */
+#define EAS_EENV_DEBUG_LEVELS 16
+
+struct _eenv_debug {
+	unsigned long cap;
+	unsigned long norm_util;
+	unsigned long cap_energy;
+	unsigned long idle_energy;
+	unsigned long this_energy;
+	unsigned long this_busy_energy;
+	unsigned long this_idle_energy;
+	cpumask_t group_cpumask;
+	unsigned long cpu_util[1];
+};
+#endif
+
+struct eenv_cpu {
+	/* CPU ID, must be in cpus_mask */
+	int     cpu_id;
+
+	/*
+	 * Index (into sched_group_energy::cap_states) of the OPP the
+	 * CPU needs to run at if the task is placed on it.
+	 * This includes the both active and blocked load, due to
+	 * other tasks on this CPU,  as well as the task's own
+	 * utilization.
+	*/
+	int     cap_idx;
+	int     cap;
+
+	/* Estimated system energy */
+	unsigned long energy;
+
+	/* Estimated energy variation wrt EAS_CPU_PRV */
+	long nrg_delta;
+
+#ifdef DEBUG_EENV_DECISIONS
+	struct _eenv_debug *debug;
+	int debug_idx;
+#endif /* DEBUG_EENV_DECISIONS */
+};
+
+struct energy_env {
+	/* Utilization to move */
+	struct task_struct	*p;
+	unsigned long		util_delta;
+	unsigned long		util_delta_boosted;
+
+	/* Mask of CPUs candidates to evaluate */
+	cpumask_t		cpus_mask;
+
+	/* CPU candidates to evaluate */
+	struct eenv_cpu *cpu;
+	int eenv_cpu_count;
+
+#ifdef DEBUG_EENV_DECISIONS
+	/* pointer to the memory block reserved
+	 * for debug on this CPU - there will be
+	 * sizeof(struct _eenv_debug) *
+	 *  (EAS_CPU_CNT * EAS_EENV_DEBUG_LEVELS)
+	 * bytes allocated here.
+	 */
+	struct _eenv_debug *debug;
+#endif
+	/*
+	 * Index (into energy_env::cpu) of the morst energy efficient CPU for
+	 * the specified energy_env::task
+	 */
+	int	next_idx;
+	int	max_cpu_count;
+
+	/* Support data */
+	struct sched_group	*sg_top;
+	struct sched_group	*sg_cap;
+	struct sched_group	*sg;
+};
+
+static int cpu_util_wake(int cpu, struct task_struct *p);
+
+static unsigned long group_max_util(struct energy_env *eenv, int cpu_idx)
+{
+	unsigned long max_util = 0;
+	unsigned long util;
+	int cpu;
+
+	for_each_cpu(cpu, sched_group_span(eenv->sg_cap)) {
+		util = cpu_util_wake(cpu, eenv->p);
+
+		/*
+		 * If we are looking at the target CPU specified by the eenv,
+		 * then we should add the (estimated) utilization of the task
+		 * assuming we will wake it up on that CPU.
+		 */
+		if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
+			util += eenv->util_delta_boosted;
+
+		max_util = max(max_util, util);
+	}
+
+	return max_util;
+}
+
+/*
+ * group_norm_util() returns the approximated group util relative to it's
+ * current capacity (busy ratio) in the range [0..SCHED_CAPACITY_SCALE] for use
+ * in energy calculations. Since task executions may or may not overlap in time
+ * in the group the true normalized util is between max(cpu_norm_util(i)) and
+ * sum(cpu_norm_util(i)) when iterating over all cpus in the group, i. The
+ * latter is used as the estimate as it leads to a more pessimistic energy
+ * estimate (more busy).
+ */
+static unsigned
+long group_norm_util(struct energy_env *eenv, int cpu_idx)
+{
+	unsigned long capacity = eenv->cpu[cpu_idx].cap;
+	unsigned long util, util_sum = 0;
+	int cpu;
+
+	for_each_cpu(cpu, sched_group_span(eenv->sg)) {
+		util = cpu_util_wake(cpu, eenv->p);
+
+		/*
+		 * If we are looking at the target CPU specified by the eenv,
+		 * then we should add the (estimated) utilization of the task
+		 * assuming we will wake it up on that CPU.
+		 */
+		if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
+			util += eenv->util_delta;
+
+		util_sum += __cpu_norm_util(util, capacity);
+	}
+
+	if (util_sum > SCHED_CAPACITY_SCALE)
+		return SCHED_CAPACITY_SCALE;
+	return util_sum;
+}
+
+static int find_new_capacity(struct energy_env *eenv, int cpu_idx)
+{
+	const struct sched_group_energy *sge = eenv->sg_cap->sge;
+	unsigned long util = group_max_util(eenv, cpu_idx);
+	int idx, cap_idx;
+
+	cap_idx = sge->nr_cap_states - 1;
+
+	for (idx = 0; idx < sge->nr_cap_states; idx++) {
+		if (sge->cap_states[idx].cap >= util) {
+			cap_idx = idx;
+			break;
+		}
+	}
+	/* Keep track of SG's capacity */
+	eenv->cpu[cpu_idx].cap = sge->cap_states[cap_idx].cap;
+	eenv->cpu[cpu_idx].cap_idx = cap_idx;
+
+	return cap_idx;
+}
+
+static int group_idle_state(struct energy_env *eenv, int cpu_idx)
+{
+	struct sched_group *sg = eenv->sg;
+	int src_in_grp, dst_in_grp;
+	int i, state = INT_MAX;
+	int max_idle_state_idx;
+	long grp_util = 0;
+	int new_state;
+
+	/* Find the shallowest idle state in the sched group. */
+	for_each_cpu(i, sched_group_span(sg))
+		state = min(state, idle_get_state_idx(cpu_rq(i)));
+
+	/* Take non-cpuidle idling into account (active idle/arch_cpu_idle()) */
+	state++;
+	/*
+	 * Try to estimate if a deeper idle state is
+	 * achievable when we move the task.
+	 */
+	for_each_cpu(i, sched_group_span(sg))
+		grp_util += cpu_util(i);
+
+	src_in_grp = cpumask_test_cpu(eenv->cpu[EAS_CPU_PRV].cpu_id,
+				      sched_group_span(sg));
+	dst_in_grp = cpumask_test_cpu(eenv->cpu[cpu_idx].cpu_id,
+				      sched_group_span(sg));
+	if (src_in_grp == dst_in_grp) {
+		/*
+		 * both CPUs under consideration are in the same group or not in
+		 * either group, migration should leave idle state the same.
+		 */
+		return state;
+	}
+	/*
+	 * add or remove util as appropriate to indicate what group util
+	 * will be (worst case - no concurrent execution) after moving the task
+	 */
+	grp_util += src_in_grp ? -eenv->util_delta : eenv->util_delta;
+
+	if (grp_util >
+		((long)sg->sgc->max_capacity * (int)sg->group_weight)) {
+		/*
+		 * After moving, the group will be fully occupied
+		 * so assume it will not be idle at all.
+		 */
+		return 0;
+	}
+
+	/*
+	 * after moving, this group is at most partly
+	 * occupied, so it should have some idle time.
+	 */
+	max_idle_state_idx = sg->sge->nr_idle_states - 2;
+	new_state = grp_util * max_idle_state_idx;
+	if (grp_util <= 0) {
+		/* group will have no util, use lowest state */
+		new_state = max_idle_state_idx + 1;
+	} else {
+		/*
+		 * for partially idle, linearly map util to idle
+		 * states, excluding the lowest one. This does not
+		 * correspond to the state we expect to enter in
+		 * reality, but an indication of what might happen.
+		 */
+		new_state = min_t(int, max_idle_state_idx,
+				  new_state / sg->sgc->max_capacity);
+		new_state = max_idle_state_idx - new_state;
+	}
+	return new_state;
+}
+
+#ifdef DEBUG_EENV_DECISIONS
+static struct _eenv_debug *eenv_debug_entry_ptr(struct _eenv_debug *base, int idx);
+
+static void store_energy_calc_debug_info(struct energy_env *eenv, int cpu_idx, int cap_idx, int idle_idx)
+{
+	int debug_idx = eenv->cpu[cpu_idx].debug_idx;
+	unsigned long sg_util, busy_energy, idle_energy;
+	const struct sched_group_energy *sge;
+	struct _eenv_debug *dbg;
+	int cpu;
+
+	if (debug_idx < EAS_EENV_DEBUG_LEVELS) {
+		sge = eenv->sg->sge;
+		sg_util = group_norm_util(eenv, cpu_idx);
+		busy_energy   = sge->cap_states[cap_idx].power;
+		busy_energy  *= sg_util;
+		idle_energy   = SCHED_CAPACITY_SCALE - sg_util;
+		idle_energy  *= sge->idle_states[idle_idx].power;
+		/* should we use sg_cap or sg? */
+		dbg = eenv_debug_entry_ptr(eenv->cpu[cpu_idx].debug, debug_idx);
+		dbg->cap = sge->cap_states[cap_idx].cap;
+		dbg->norm_util = sg_util;
+		dbg->cap_energy = sge->cap_states[cap_idx].power;
+		dbg->idle_energy = sge->idle_states[idle_idx].power;
+		dbg->this_energy = busy_energy + idle_energy;
+		dbg->this_busy_energy = busy_energy;
+		dbg->this_idle_energy = idle_energy;
+
+		cpumask_copy(&dbg->group_cpumask,
+				sched_group_span(eenv->sg));
+
+		for_each_cpu(cpu, &dbg->group_cpumask)
+			dbg->cpu_util[cpu] = cpu_util(cpu);
+
+		eenv->cpu[cpu_idx].debug_idx = debug_idx+1;
+	}
+}
+#else
+#define store_energy_calc_debug_info(a,b,c,d) {}
+#endif /* DEBUG_EENV_DECISIONS */
+
+/*
+ * calc_sg_energy: compute energy for the eenv's SG (i.e. eenv->sg).
+ *
+ * This works in iterations to compute the SG's energy for each CPU
+ * candidate defined by the energy_env's cpu array.
+ */
+static void calc_sg_energy(struct energy_env *eenv)
+{
+	struct sched_group *sg = eenv->sg;
+	unsigned long busy_energy, idle_energy;
+	unsigned int busy_power, idle_power;
+	unsigned long total_energy = 0;
+	unsigned long sg_util;
+	int cap_idx, idle_idx;
+	int cpu_idx;
+
+	for (cpu_idx = EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; ++cpu_idx) {
+		if (eenv->cpu[cpu_idx].cpu_id == -1)
+			continue;
+
+		/* Compute ACTIVE energy */
+		cap_idx = find_new_capacity(eenv, cpu_idx);
+		busy_power = sg->sge->cap_states[cap_idx].power;
+		sg_util = group_norm_util(eenv, cpu_idx);
+		busy_energy   = sg_util * busy_power;
+
+		/* Compute IDLE energy */
+		idle_idx = group_idle_state(eenv, cpu_idx);
+		idle_power = sg->sge->idle_states[idle_idx].power;
+		idle_energy   = SCHED_CAPACITY_SCALE - sg_util;
+		idle_energy  *= idle_power;
+
+		total_energy = busy_energy + idle_energy;
+		eenv->cpu[cpu_idx].energy += total_energy;
+
+		store_energy_calc_debug_info(eenv, cpu_idx, cap_idx, idle_idx);
+	}
+}
+
+/*
+ * compute_energy() computes the absolute variation in energy consumption by
+ * moving eenv.util_delta from EAS_CPU_PRV to EAS_CPU_NXT.
+ *
+ * NOTE: compute_energy() may fail when racing with sched_domain updates, in
+ *       which case we abort by returning -EINVAL.
+ */
+static int compute_energy(struct energy_env *eenv)
+{
+	struct sched_domain *sd;
+	int cpu;
+	struct cpumask visit_cpus;
+	struct sched_group *sg;
+
+	WARN_ON(!eenv->sg_top->sge);
+
+	cpumask_copy(&visit_cpus, sched_group_span(eenv->sg_top));
+
+	while (!cpumask_empty(&visit_cpus)) {
+		struct sched_group *sg_shared_cap = NULL;
+
+		cpu = cpumask_first(&visit_cpus);
+
+		/*
+		 * Is the group utilization affected by cpus outside this
+		 * sched_group?
+		 */
+		sd = rcu_dereference(per_cpu(sd_scs, cpu));
+		if (sd && sd->parent)
+			sg_shared_cap = sd->parent->groups;
+
+		for_each_domain(cpu, sd) {
+			sg = sd->groups;
+
+			/* Has this sched_domain already been visited? */
+			if (sd->child && group_first_cpu(sg) != cpu)
+				break;
+
+			do {
+				eenv->sg_cap = sg;
+				if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
+					eenv->sg_cap = sg_shared_cap;
+
+				/*
+				 * Compute the energy for all the candidate
+				 * CPUs in the current visited SG.
+				 */
+				eenv->sg = sg;
+				calc_sg_energy(eenv);
+
+				/* remove CPUs we have just visited */
+				if (!sd->child)
+					cpumask_xor(&visit_cpus, &visit_cpus, sched_group_span(sg));
+
+				if (cpumask_equal(sched_group_span(sg), sched_group_span(eenv->sg_top)))
+					goto next_cpu;
+
+			} while (sg = sg->next, sg != sd->groups);
+		}
+next_cpu:
+		continue;
+	}
+
+	return 0;
+}
+
+static inline bool cpu_in_sg(struct sched_group *sg, int cpu)
+{
+	return cpu != -1 && cpumask_test_cpu(cpu, sched_group_span(sg));
+}
+
+#ifdef DEBUG_EENV_DECISIONS
+static void dump_eenv_debug(struct energy_env *eenv)
+{
+	int cpu_idx, grp_idx;
+	char cpu_utils[(NR_CPUS*12)+10]="cpu_util: ";
+	char cpulist[64];
+
+	trace_printk("eenv scenario: task=%p %s task_util=%lu prev_cpu=%d",
+			eenv->p, eenv->p->comm, eenv->util_delta, eenv->cpu[EAS_CPU_PRV].cpu_id);
+
+	for (cpu_idx=EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; cpu_idx++) {
+		if (eenv->cpu[cpu_idx].cpu_id == -1)
+			continue;
+		trace_printk("---Scenario %d: Place task on cpu %d energy=%lu (%d debug logs at %p)",
+				cpu_idx+1, eenv->cpu[cpu_idx].cpu_id,
+				eenv->cpu[cpu_idx].energy >> SCHED_CAPACITY_SHIFT,
+				eenv->cpu[cpu_idx].debug_idx,
+				eenv->cpu[cpu_idx].debug);
+		for (grp_idx = 0; grp_idx < eenv->cpu[cpu_idx].debug_idx; grp_idx++) {
+			struct _eenv_debug *debug;
+			int cpu, written=0;
+
+			debug = eenv_debug_entry_ptr(eenv->cpu[cpu_idx].debug, grp_idx);
+			cpu = scnprintf(cpulist, sizeof(cpulist), "%*pbl", cpumask_pr_args(&debug->group_cpumask));
+
+			cpu_utils[0] = 0;
+			/* print out the relevant cpu_util */
+			for_each_cpu(cpu, &(debug->group_cpumask)) {
+				char tmp[64];
+				if (written > sizeof(cpu_utils)-10) {
+					cpu_utils[written]=0;
+					break;
+				}
+				written += snprintf(tmp, sizeof(tmp), "cpu%d(%lu) ", cpu, debug->cpu_util[cpu]);
+				strcat(cpu_utils, tmp);
+			}
+			/* trace the data */
+			trace_printk("  | %s : cap=%lu nutil=%lu, cap_nrg=%lu, idle_nrg=%lu energy=%lu busy_energy=%lu idle_energy=%lu %s",
+					cpulist, debug->cap, debug->norm_util,
+					debug->cap_energy, debug->idle_energy,
+					debug->this_energy >> SCHED_CAPACITY_SHIFT,
+					debug->this_busy_energy >> SCHED_CAPACITY_SHIFT,
+					debug->this_idle_energy >> SCHED_CAPACITY_SHIFT,
+					cpu_utils);
+
+		}
+		trace_printk("---");
+	}
+	trace_printk("----- done");
+	return;
+}
+#else
+#define dump_eenv_debug(a) {}
+#endif /* DEBUG_EENV_DECISIONS */
+/*
+ * select_energy_cpu_idx(): estimate the energy impact of changing the
+ * utilization distribution.
+ *
+ * The eenv parameter specifies the changes: utilization amount and a
+ * collection of possible CPU candidates. The number of candidates
+ * depends upon the selection algorithm used.
+ *
+ * If find_best_target was used to select candidate CPUs, there will
+ * be at most 3 including prev_cpu. If not, we used a brute force
+ * selection which will provide the union of:
+ *  * CPUs belonging to the highest sd which is not overutilized
+ *  * CPUs the task is allowed to run on
+ *  * online CPUs
+ *
+ * This function returns the index of a CPU candidate specified by the
+ * energy_env which corresponds to the most energy efficient CPU.
+ * Thus, 0 (EAS_CPU_PRV) means that non of the CPU candidate is more energy
+ * efficient than running on prev_cpu. This is also the value returned in case
+ * of abort due to error conditions during the computations. The only
+ * exception to this if we fail to access the energy model via sd_ea, where
+ * we return -1 with the intent of asking the system to use a different
+ * wakeup placement algorithm.
+ *
+ * A value greater than zero means that the most energy efficient CPU is the
+ * one represented by eenv->cpu[eenv->next_idx].cpu_id.
+ */
+static inline int select_energy_cpu_idx(struct energy_env *eenv)
+{
+	int last_cpu_idx = eenv->max_cpu_count - 1;
+	struct sched_domain *sd;
+	struct sched_group *sg;
+	int sd_cpu = -1;
+	int cpu_idx;
+	int margin;
+
+	sd_cpu = eenv->cpu[EAS_CPU_PRV].cpu_id;
+	sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));
+	if (!sd)
+		return -1;
+
+	cpumask_clear(&eenv->cpus_mask);
+	for (cpu_idx = EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; ++cpu_idx) {
+		int cpu = eenv->cpu[cpu_idx].cpu_id;
+
+		if (cpu < 0)
+			continue;
+		cpumask_set_cpu(cpu, &eenv->cpus_mask);
+	}
+
+	sg = sd->groups;
+	do {
+		/* Skip SGs which do not contains a candidate CPU */
+		if (!cpumask_intersects(&eenv->cpus_mask, sched_group_span(sg)))
+			continue;
+
+		eenv->sg_top = sg;
+		if (compute_energy(eenv) == -EINVAL)
+			return EAS_CPU_PRV;
+	} while (sg = sg->next, sg != sd->groups);
+	/* remember - eenv energy values are unscaled */
+
+	/*
+	 * Compute the dead-zone margin used to prevent too many task
+	 * migrations with negligible energy savings.
+	 * An energy saving is considered meaningful if it reduces the energy
+	 * consumption of EAS_CPU_PRV CPU candidate by at least ~1.56%
+	 */
+	margin = eenv->cpu[EAS_CPU_PRV].energy >> 6;
+
+	/*
+	 * By default the EAS_CPU_PRV CPU is considered the most energy
+	 * efficient, with a 0 energy variation.
+	 */
+	eenv->next_idx = EAS_CPU_PRV;
+	eenv->cpu[EAS_CPU_PRV].nrg_delta = 0;
+
+	dump_eenv_debug(eenv);
+
+	/*
+	 * Compare the other CPU candidates to find a CPU which can be
+	 * more energy efficient then EAS_CPU_PRV
+	 */
+	if (sched_feat(FBT_STRICT_ORDER))
+		last_cpu_idx = EAS_CPU_BKP;
+
+	for(cpu_idx = EAS_CPU_NXT; cpu_idx <= last_cpu_idx; cpu_idx++) {
+		if (eenv->cpu[cpu_idx].cpu_id < 0)
+			continue;
+		eenv->cpu[cpu_idx].nrg_delta =
+			eenv->cpu[cpu_idx].energy -
+			eenv->cpu[EAS_CPU_PRV].energy;
+
+		/* filter energy variations within the dead-zone margin */
+		if (abs(eenv->cpu[cpu_idx].nrg_delta) < margin)
+			eenv->cpu[cpu_idx].nrg_delta = 0;
+		/* update the schedule candidate with min(nrg_delta) */
+		if (eenv->cpu[cpu_idx].nrg_delta <
+		    eenv->cpu[eenv->next_idx].nrg_delta) {
+			eenv->next_idx = cpu_idx;
+			/* break out if we want to stop on first saving candidate */
+			if (sched_feat(FBT_STRICT_ORDER))
+				break;
+		}
+	}
+
+	return eenv->next_idx;
+}
+
+/*
  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  *
  * A waker of many should wake a different task than the one last awakened
@@ -5345,15 +6113,18 @@ static void record_wakee(struct task_struct *p)
  * whatever is irrelevant, spread criteria is apparent partner count exceeds
  * socket size.
  */
-static int wake_wide(struct task_struct *p)
+static int wake_wide(struct task_struct *p, int sibling_count_hint)
 {
 	unsigned int master = current->wakee_flips;
 	unsigned int slave = p->wakee_flips;
-	int factor = this_cpu_read(sd_llc_size);
+	int llc_size = this_cpu_read(sd_llc_size);
+
+	if (sibling_count_hint >= llc_size)
+		return 1;
 
 	if (master < slave)
 		swap(master, slave);
-	if (slave < factor || master < slave * factor)
+	if (slave < llc_size || master < slave * llc_size)
 		return 0;
 	return 1;
 }
@@ -5439,8 +6210,101 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
 	return affine;
 }
 
-static inline int task_util(struct task_struct *p);
-static int cpu_util_wake(int cpu, struct task_struct *p);
+static inline unsigned long task_util(struct task_struct *p);
+
+#ifdef CONFIG_SCHED_TUNE
+struct reciprocal_value schedtune_spc_rdiv;
+
+static long
+schedtune_margin(unsigned long signal, long boost)
+{
+	long long margin = 0;
+
+	/*
+	 * Signal proportional compensation (SPC)
+	 *
+	 * The Boost (B) value is used to compute a Margin (M) which is
+	 * proportional to the complement of the original Signal (S):
+	 *   M = B * (SCHED_CAPACITY_SCALE - S)
+	 * The obtained M could be used by the caller to "boost" S.
+	 */
+	if (boost >= 0) {
+		margin  = SCHED_CAPACITY_SCALE - signal;
+		margin *= boost;
+	} else
+		margin = -signal * boost;
+
+	margin  = reciprocal_divide(margin, schedtune_spc_rdiv);
+
+	if (boost < 0)
+		margin *= -1;
+	return margin;
+}
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+	int boost = schedtune_cpu_boost(cpu);
+
+	if (boost == 0)
+		return 0;
+
+	return schedtune_margin(util, boost);
+}
+
+static inline long
+schedtune_task_margin(struct task_struct *task)
+{
+	int boost = schedtune_task_boost(task);
+	unsigned long util;
+	long margin;
+
+	if (boost == 0)
+		return 0;
+
+	util = task_util(task);
+	margin = schedtune_margin(util, boost);
+
+	return margin;
+}
+
+#else /* CONFIG_SCHED_TUNE */
+
+static inline int
+schedtune_cpu_margin(unsigned long util, int cpu)
+{
+	return 0;
+}
+
+static inline int
+schedtune_task_margin(struct task_struct *task)
+{
+	return 0;
+}
+
+#endif /* CONFIG_SCHED_TUNE */
+
+unsigned long
+boosted_cpu_util(int cpu)
+{
+	unsigned long util = cpu_util_freq(cpu);
+	long margin = schedtune_cpu_margin(util, cpu);
+
+	trace_sched_boost_cpu(cpu, util, margin);
+
+	return util + margin;
+}
+
+static inline unsigned long
+boosted_task_util(struct task_struct *task)
+{
+	unsigned long util = task_util(task);
+	long margin = schedtune_task_margin(task);
+
+	trace_sched_boost_task(task, util, margin);
+
+	return util + margin;
+}
 
 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
 {
@@ -5450,6 +6314,8 @@ static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
 /*
  * find_idlest_group finds and returns the least busy CPU group within the
  * domain.
+ *
+ * Assumes p is allowed on at least one CPU in sd.
  */
 static struct sched_group *
 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
@@ -5457,8 +6323,9 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 {
 	struct sched_group *idlest = NULL, *group = sd->groups;
 	struct sched_group *most_spare_sg = NULL;
-	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
-	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
+	unsigned long min_runnable_load = ULONG_MAX;
+	unsigned long this_runnable_load = ULONG_MAX;
+	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
 	unsigned long most_spare = 0, this_spare = 0;
 	int load_idx = sd->forkexec_idx;
 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
@@ -5579,10 +6446,10 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 }
 
 /*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
+ * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
  */
 static int
-find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 {
 	unsigned long load, min_load = ULONG_MAX;
 	unsigned int min_exit_latency = UINT_MAX;
@@ -5631,6 +6498,53 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
 }
 
+static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
+				  int cpu, int prev_cpu, int sd_flag)
+{
+	int new_cpu = cpu;
+
+	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
+		return prev_cpu;
+
+	while (sd) {
+		struct sched_group *group;
+		struct sched_domain *tmp;
+		int weight;
+
+		if (!(sd->flags & sd_flag)) {
+			sd = sd->child;
+			continue;
+		}
+
+		group = find_idlest_group(sd, p, cpu, sd_flag);
+		if (!group) {
+			sd = sd->child;
+			continue;
+		}
+
+		new_cpu = find_idlest_group_cpu(group, p, cpu);
+		if (new_cpu == cpu) {
+			/* Now try balancing at a lower domain level of cpu */
+			sd = sd->child;
+			continue;
+		}
+
+		/* Now try balancing at a lower domain level of new_cpu */
+		cpu = new_cpu;
+		weight = sd->span_weight;
+		sd = NULL;
+		for_each_domain(cpu, tmp) {
+			if (weight <= tmp->span_weight)
+				break;
+			if (tmp->flags & sd_flag)
+				sd = tmp;
+		}
+		/* while loop will break here if sd == NULL */
+	}
+
+	return new_cpu;
+}
+
 #ifdef CONFIG_SCHED_SMT
 
 static inline void set_idle_cores(int cpu, int val)
@@ -5812,7 +6726,7 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int t
 /*
  * Try and locate an idle core/thread in the LLC cache domain.
  */
-static int select_idle_sibling(struct task_struct *p, int prev, int target)
+static inline int __select_idle_sibling(struct task_struct *p, int prev, int target)
 {
 	struct sched_domain *sd;
 	int i;
@@ -5845,42 +6759,86 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
 	return target;
 }
 
-/*
- * cpu_util returns the amount of capacity of a CPU that is used by CFS
- * tasks. The unit of the return value must be the one of capacity so we can
- * compare the utilization with the capacity of the CPU that is available for
- * CFS task (ie cpu_capacity).
- *
- * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
- * recent utilization of currently non-runnable tasks on a CPU. It represents
- * the amount of utilization of a CPU in the range [0..capacity_orig] where
- * capacity_orig is the cpu_capacity available at the highest frequency
- * (arch_scale_freq_capacity()).
- * The utilization of a CPU converges towards a sum equal to or less than the
- * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
- * the running time on this CPU scaled by capacity_curr.
- *
- * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
- * higher than capacity_orig because of unfortunate rounding in
- * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
- * the average stabilizes with the new running time. We need to check that the
- * utilization stays within the range of [0..capacity_orig] and cap it if
- * necessary. Without utilization capping, a group could be seen as overloaded
- * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
- * available capacity. We allow utilization to overshoot capacity_curr (but not
- * capacity_orig) as it useful for predicting the capacity required after task
- * migrations (scheduler-driven DVFS).
- */
-static int cpu_util(int cpu)
+static inline int select_idle_sibling_cstate_aware(struct task_struct *p, int prev, int target)
 {
-	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
-	unsigned long capacity = capacity_orig_of(cpu);
+	struct sched_domain *sd;
+	struct sched_group *sg;
+	int best_idle_cpu = -1;
+	int best_idle_cstate = -1;
+	int best_idle_capacity = INT_MAX;
+	int i;
 
-	return (util >= capacity) ? capacity : util;
+	/*
+	 * Iterate the domains and find an elegible idle cpu.
+	 */
+	sd = rcu_dereference(per_cpu(sd_llc, target));
+	for_each_lower_domain(sd) {
+		sg = sd->groups;
+		do {
+			if (!cpumask_intersects(
+					sched_group_span(sg), &p->cpus_allowed))
+				goto next;
+
+			for_each_cpu_and(i, &p->cpus_allowed, sched_group_span(sg)) {
+				int idle_idx;
+				unsigned long new_usage;
+				unsigned long capacity_orig;
+
+				if (!idle_cpu(i))
+					goto next;
+
+				/* figure out if the task can fit here at all */
+				new_usage = boosted_task_util(p);
+				capacity_orig = capacity_orig_of(i);
+
+				if (new_usage > capacity_orig)
+					goto next;
+
+				/* if the task fits without changing OPP and we
+				 * intended to use this CPU, just proceed
+				 */
+				if (i == target && new_usage <= capacity_curr_of(target)) {
+					return target;
+				}
+
+				/* otherwise select CPU with shallowest idle state
+				 * to reduce wakeup latency.
+				 */
+				idle_idx = idle_get_state_idx(cpu_rq(i));
+
+				if (idle_idx < best_idle_cstate &&
+					capacity_orig <= best_idle_capacity) {
+					best_idle_cpu = i;
+					best_idle_cstate = idle_idx;
+					best_idle_capacity = capacity_orig;
+				}
+			}
+	next:
+			sg = sg->next;
+		} while (sg != sd->groups);
+	}
+
+	if (best_idle_cpu >= 0)
+		target = best_idle_cpu;
+
+	return target;
 }
 
-static inline int task_util(struct task_struct *p)
+static int select_idle_sibling(struct task_struct *p, int prev, int target)
 {
+	if (!sysctl_sched_cstate_aware)
+		return __select_idle_sibling(p, prev, target);
+
+	return select_idle_sibling_cstate_aware(p, prev, target);
+}
+
+static inline unsigned long task_util(struct task_struct *p)
+{
+#ifdef CONFIG_SCHED_WALT
+	if (!walt_disabled && sysctl_sched_use_walt_task_util) {
+		return (p->ravg.demand / (walt_ravg_window >> SCHED_CAPACITY_SHIFT));
+	}
+#endif
 	return p->se.avg.util_avg;
 }
 
@@ -5892,6 +6850,16 @@ static int cpu_util_wake(int cpu, struct task_struct *p)
 {
 	unsigned long util, capacity;
 
+#ifdef CONFIG_SCHED_WALT
+	/*
+	 * WALT does not decay idle tasks in the same manner
+	 * as PELT, so it makes little sense to subtract task
+	 * utilization from cpu utilization. Instead just use
+	 * cpu_util for this case.
+	 */
+	if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
+		return cpu_util(cpu);
+#endif
 	/* Task has no contribution or is new */
 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
 		return cpu_util(cpu);
@@ -5902,6 +6870,291 @@ static int cpu_util_wake(int cpu, struct task_struct *p)
 	return (util >= capacity) ? capacity : util;
 }
 
+static inline int task_fits_capacity(struct task_struct *p, long capacity)
+{
+	return capacity * 1024 > boosted_task_util(p) * capacity_margin;
+}
+
+static int start_cpu(bool boosted)
+{
+	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
+
+	return boosted ? rd->max_cap_orig_cpu : rd->min_cap_orig_cpu;
+}
+
+static inline int find_best_target(struct task_struct *p, int *backup_cpu,
+				   bool boosted, bool prefer_idle)
+{
+	unsigned long best_idle_min_cap_orig = ULONG_MAX;
+	unsigned long min_util = boosted_task_util(p);
+	unsigned long target_capacity = ULONG_MAX;
+	unsigned long min_wake_util = ULONG_MAX;
+	unsigned long target_max_spare_cap = 0;
+	unsigned long target_util = ULONG_MAX;
+	unsigned long best_active_util = ULONG_MAX;
+	int best_idle_cstate = INT_MAX;
+	struct sched_domain *sd;
+	struct sched_group *sg;
+	int best_active_cpu = -1;
+	int best_idle_cpu = -1;
+	int target_cpu = -1;
+	int cpu, i;
+
+	*backup_cpu = -1;
+
+	/* Find start CPU based on boost value */
+	cpu = start_cpu(boosted);
+	if (cpu < 0)
+		return -1;
+
+	/* Find SD for the start CPU */
+	sd = rcu_dereference(per_cpu(sd_ea, cpu));
+	if (!sd)
+		return -1;
+
+	/* Scan CPUs in all SDs */
+	sg = sd->groups;
+	do {
+		for_each_cpu_and(i, &p->cpus_allowed, sched_group_span(sg)) {
+			unsigned long capacity_curr = capacity_curr_of(i);
+			unsigned long capacity_orig = capacity_orig_of(i);
+			unsigned long wake_util, new_util;
+
+			if (!cpu_online(i))
+				continue;
+
+			if (walt_cpu_high_irqload(i))
+				continue;
+
+			/*
+			 * p's blocked utilization is still accounted for on prev_cpu
+			 * so prev_cpu will receive a negative bias due to the double
+			 * accounting. However, the blocked utilization may be zero.
+			 */
+			wake_util = cpu_util_wake(i, p);
+			new_util = wake_util + task_util(p);
+
+			/*
+			 * Ensure minimum capacity to grant the required boost.
+			 * The target CPU can be already at a capacity level higher
+			 * than the one required to boost the task.
+			 */
+			new_util = max(min_util, new_util);
+			if (new_util > capacity_orig)
+				continue;
+
+			/*
+			 * Case A) Latency sensitive tasks
+			 *
+			 * Unconditionally favoring tasks that prefer idle CPU to
+			 * improve latency.
+			 *
+			 * Looking for:
+			 * - an idle CPU, whatever its idle_state is, since
+			 *   the first CPUs we explore are more likely to be
+			 *   reserved for latency sensitive tasks.
+			 * - a non idle CPU where the task fits in its current
+			 *   capacity and has the maximum spare capacity.
+			 * - a non idle CPU with lower contention from other
+			 *   tasks and running at the lowest possible OPP.
+			 *
+			 * The last two goals tries to favor a non idle CPU
+			 * where the task can run as if it is "almost alone".
+			 * A maximum spare capacity CPU is favoured since
+			 * the task already fits into that CPU's capacity
+			 * without waiting for an OPP chance.
+			 *
+			 * The following code path is the only one in the CPUs
+			 * exploration loop which is always used by
+			 * prefer_idle tasks. It exits the loop with wither a
+			 * best_active_cpu or a target_cpu which should
+			 * represent an optimal choice for latency sensitive
+			 * tasks.
+			 */
+			if (prefer_idle) {
+
+				/*
+				 * Case A.1: IDLE CPU
+				 * Return the first IDLE CPU we find.
+				 */
+				if (idle_cpu(i)) {
+					trace_sched_find_best_target(p,
+							prefer_idle, min_util,
+							cpu, best_idle_cpu,
+							best_active_cpu, i);
+
+					return i;
+				}
+
+				/*
+				 * Case A.2: Target ACTIVE CPU
+				 * Favor CPUs with max spare capacity.
+				 */
+				if ((capacity_curr > new_util) &&
+					(capacity_orig - new_util > target_max_spare_cap)) {
+					target_max_spare_cap = capacity_orig - new_util;
+					target_cpu = i;
+					continue;
+				}
+				if (target_cpu != -1)
+					continue;
+
+
+				/*
+				 * Case A.3: Backup ACTIVE CPU
+				 * Favor CPUs with:
+				 * - lower utilization due to other tasks
+				 * - lower utilization with the task in
+				 */
+				if (wake_util > min_wake_util)
+					continue;
+				if (new_util > best_active_util)
+					continue;
+				min_wake_util = wake_util;
+				best_active_util = new_util;
+				best_active_cpu = i;
+				continue;
+			}
+
+			/*
+			 * Enforce EAS mode
+			 *
+			 * For non latency sensitive tasks, skip CPUs that
+			 * will be overutilized by moving the task there.
+			 *
+			 * The goal here is to remain in EAS mode as long as
+			 * possible at least for !prefer_idle tasks.
+			 */
+			if ((new_util * capacity_margin) >
+			    (capacity_orig * SCHED_CAPACITY_SCALE))
+				continue;
+
+			/*
+			 * Case B) Non latency sensitive tasks on IDLE CPUs.
+			 *
+			 * Find an optimal backup IDLE CPU for non latency
+			 * sensitive tasks.
+			 *
+			 * Looking for:
+			 * - minimizing the capacity_orig,
+			 *   i.e. preferring LITTLE CPUs
+			 * - favoring shallowest idle states
+			 *   i.e. avoid to wakeup deep-idle CPUs
+			 *
+			 * The following code path is used by non latency
+			 * sensitive tasks if IDLE CPUs are available. If at
+			 * least one of such CPUs are available it sets the
+			 * best_idle_cpu to the most suitable idle CPU to be
+			 * selected.
+			 *
+			 * If idle CPUs are available, favour these CPUs to
+			 * improve performances by spreading tasks.
+			 * Indeed, the energy_diff() computed by the caller
+			 * will take care to ensure the minimization of energy
+			 * consumptions without affecting performance.
+			 */
+			if (idle_cpu(i)) {
+				int idle_idx = idle_get_state_idx(cpu_rq(i));
+
+				/* Select idle CPU with lower cap_orig */
+				if (capacity_orig > best_idle_min_cap_orig)
+					continue;
+
+				/*
+				 * Skip CPUs in deeper idle state, but only
+				 * if they are also less energy efficient.
+				 * IOW, prefer a deep IDLE LITTLE CPU vs a
+				 * shallow idle big CPU.
+				 */
+				if (sysctl_sched_cstate_aware &&
+				    best_idle_cstate <= idle_idx)
+					continue;
+
+				/* Keep track of best idle CPU */
+				best_idle_min_cap_orig = capacity_orig;
+				best_idle_cstate = idle_idx;
+				best_idle_cpu = i;
+				continue;
+			}
+
+			/*
+			 * Case C) Non latency sensitive tasks on ACTIVE CPUs.
+			 *
+			 * Pack tasks in the most energy efficient capacities.
+			 *
+			 * This task packing strategy prefers more energy
+			 * efficient CPUs (i.e. pack on smaller maximum
+			 * capacity CPUs) while also trying to spread tasks to
+			 * run them all at the lower OPP.
+			 *
+			 * This assumes for example that it's more energy
+			 * efficient to run two tasks on two CPUs at a lower
+			 * OPP than packing both on a single CPU but running
+			 * that CPU at an higher OPP.
+			 *
+			 * Thus, this case keep track of the CPU with the
+			 * smallest maximum capacity and highest spare maximum
+			 * capacity.
+			 */
+
+			/* Favor CPUs with smaller capacity */
+			if (capacity_orig > target_capacity)
+				continue;
+
+			/* Favor CPUs with maximum spare capacity */
+			if ((capacity_orig - new_util) < target_max_spare_cap)
+				continue;
+
+			target_max_spare_cap = capacity_orig - new_util;
+			target_capacity = capacity_orig;
+			target_util = new_util;
+			target_cpu = i;
+		}
+
+	} while (sg = sg->next, sg != sd->groups);
+
+	/*
+	 * For non latency sensitive tasks, cases B and C in the previous loop,
+	 * we pick the best IDLE CPU only if we was not able to find a target
+	 * ACTIVE CPU.
+	 *
+	 * Policies priorities:
+	 *
+	 * - prefer_idle tasks:
+	 *
+	 *   a) IDLE CPU available, we return immediately
+	 *   b) ACTIVE CPU where task fits and has the bigger maximum spare
+	 *      capacity (i.e. target_cpu)
+	 *   c) ACTIVE CPU with less contention due to other tasks
+	 *      (i.e. best_active_cpu)
+	 *
+	 * - NON prefer_idle tasks:
+	 *
+	 *   a) ACTIVE CPU: target_cpu
+	 *   b) IDLE CPU: best_idle_cpu
+	 */
+	if (target_cpu == -1)
+		target_cpu = prefer_idle
+			? best_active_cpu
+			: best_idle_cpu;
+	else
+		*backup_cpu = prefer_idle
+		? best_active_cpu
+		: best_idle_cpu;
+
+	trace_sched_find_best_target(p, prefer_idle, min_util, cpu,
+				     best_idle_cpu, best_active_cpu,
+				     target_cpu);
+
+	/* it is possible for target and backup
+	 * to select same CPU - if so, drop backup
+	 */
+	if (*backup_cpu == target_cpu)
+		*backup_cpu = -1;
+
+	return target_cpu;
+}
+
 /*
  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
@@ -5923,7 +7176,288 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
 	/* Bring task utilization in sync with prev_cpu */
 	sync_entity_load_avg(&p->se);
 
-	return min_cap * 1024 < task_util(p) * capacity_margin;
+	return task_fits_capacity(p, min_cap);
+}
+
+static bool cpu_overutilized(int cpu)
+{
+	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
+}
+
+DEFINE_PER_CPU(struct energy_env, eenv_cache);
+
+/* kernels often have NR_CPUS defined to be much
+ * larger than exist in practise on booted systems.
+ * Allocate the cpu array for eenv calculations
+ * at boot time to avoid massive overprovisioning.
+ */
+#ifdef DEBUG_EENV_DECISIONS
+static inline int eenv_debug_size_per_dbg_entry(void)
+{
+	return sizeof(struct _eenv_debug) + (sizeof(unsigned long) * num_possible_cpus());
+}
+
+static inline int eenv_debug_size_per_cpu_entry(void)
+{
+	/* each cpu struct has an array of _eenv_debug structs
+	 * which have an array of unsigned longs at the end -
+	 * the allocation should be extended so that there are
+	 * at least 'num_possible_cpus' entries in the array.
+	 */
+	return EAS_EENV_DEBUG_LEVELS * eenv_debug_size_per_dbg_entry();
+}
+/* given a per-_eenv_cpu debug env ptr, get the ptr for a given index */
+static inline struct _eenv_debug *eenv_debug_entry_ptr(struct _eenv_debug *base, int idx)
+{
+	char *ptr = (char *)base;
+	ptr += (idx * eenv_debug_size_per_dbg_entry());
+	return (struct _eenv_debug *)ptr;
+}
+/* given a pointer to the per-cpu global copy of _eenv_debug, get
+ * a pointer to the specified _eenv_cpu debug env.
+ */
+static inline struct _eenv_debug *eenv_debug_percpu_debug_env_ptr(struct _eenv_debug *base, int cpu_idx)
+{
+	char *ptr = (char *)base;
+	ptr += (cpu_idx * eenv_debug_size_per_cpu_entry());
+	return (struct _eenv_debug *)ptr;
+}
+
+static inline int eenv_debug_size(void)
+{
+	return num_possible_cpus() * eenv_debug_size_per_cpu_entry();
+}
+#endif
+
+static inline void alloc_eenv(void)
+{
+	int cpu;
+	int cpu_count = num_possible_cpus();
+
+	for_each_possible_cpu(cpu) {
+		struct energy_env *eenv = &per_cpu(eenv_cache, cpu);
+		eenv->cpu = kmalloc(sizeof(struct eenv_cpu) * cpu_count, GFP_KERNEL);
+		eenv->eenv_cpu_count = cpu_count;
+#ifdef DEBUG_EENV_DECISIONS
+		eenv->debug = (struct _eenv_debug *)kmalloc(eenv_debug_size(), GFP_KERNEL);
+#endif
+	}
+}
+
+static inline void reset_eenv(struct energy_env *eenv)
+{
+	int cpu_count;
+	struct eenv_cpu *cpu;
+#ifdef DEBUG_EENV_DECISIONS
+	struct _eenv_debug *debug;
+	int cpu_idx;
+	debug = eenv->debug;
+#endif
+
+	cpu_count = eenv->eenv_cpu_count;
+	cpu = eenv->cpu;
+	memset(eenv, 0, sizeof(struct energy_env));
+	eenv->cpu = cpu;
+	memset(eenv->cpu, 0, sizeof(struct eenv_cpu)*cpu_count);
+	eenv->eenv_cpu_count = cpu_count;
+
+#ifdef DEBUG_EENV_DECISIONS
+	memset(debug, 0, eenv_debug_size());
+	eenv->debug = debug;
+	for(cpu_idx = 0; cpu_idx < eenv->cpu_array_len; cpu_idx++)
+		eenv->cpu[cpu_idx].debug = eenv_debug_percpu_debug_env_ptr(debug, cpu_idx);
+#endif
+}
+/*
+ * get_eenv - reset the eenv struct cached for this CPU
+ *
+ * When the eenv is returned, it is configured to do
+ * energy calculations for the maximum number of CPUs
+ * the task can be placed on. The prev_cpu entry is
+ * filled in here. Callers are responsible for adding
+ * other CPU candidates up to eenv->max_cpu_count.
+ */
+static inline struct energy_env *get_eenv(struct task_struct *p, int prev_cpu)
+{
+	struct energy_env *eenv;
+	cpumask_t cpumask_possible_cpus;
+	int cpu = smp_processor_id();
+	int i;
+
+	eenv = &(per_cpu(eenv_cache, cpu));
+	reset_eenv(eenv);
+
+	/* populate eenv */
+	eenv->p = p;
+	/* use boosted task util for capacity selection
+	 * during energy calculation, but unboosted task
+	 * util for group utilization calculations
+	 */
+	eenv->util_delta = task_util(p);
+	eenv->util_delta_boosted = boosted_task_util(p);
+
+	cpumask_and(&cpumask_possible_cpus, &p->cpus_allowed, cpu_online_mask);
+	eenv->max_cpu_count = cpumask_weight(&cpumask_possible_cpus);
+
+	for (i=0; i < eenv->max_cpu_count; i++)
+		eenv->cpu[i].cpu_id = -1;
+	eenv->cpu[EAS_CPU_PRV].cpu_id = prev_cpu;
+	eenv->next_idx = EAS_CPU_PRV;
+
+	return eenv;
+}
+
+/*
+ * Needs to be called inside rcu_read_lock critical section.
+ * sd is a pointer to the sched domain we wish to use for an
+ * energy-aware placement option.
+ */
+static int find_energy_efficient_cpu(struct sched_domain *sd,
+				     struct task_struct *p,
+				     int cpu, int prev_cpu,
+				     int sync)
+{
+	int use_fbt = sched_feat(FIND_BEST_TARGET);
+	int cpu_iter, eas_cpu_idx = EAS_CPU_NXT;
+	int energy_cpu = -1;
+	struct energy_env *eenv;
+
+	if (sysctl_sched_sync_hint_enable && sync) {
+		if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
+			return cpu;
+		}
+	}
+
+	/* prepopulate energy diff environment */
+	eenv = get_eenv(p, prev_cpu);
+	if (eenv->max_cpu_count < 2)
+		return energy_cpu;
+
+	if(!use_fbt) {
+		/*
+		 * using this function outside wakeup balance will not supply
+		 * an sd ptr. Instead, fetch the highest level with energy data.
+		 */
+		if (!sd)
+			sd = rcu_dereference(per_cpu(sd_ea, prev_cpu));
+
+		for_each_cpu_and(cpu_iter, &p->cpus_allowed, sched_domain_span(sd)) {
+			unsigned long spare;
+
+			/* prev_cpu already in list */
+			if (cpu_iter == prev_cpu)
+				continue;
+
+			spare = capacity_spare_wake(cpu_iter, p);
+
+			if (spare * 1024 < capacity_margin * task_util(p))
+				continue;
+
+			/* Add CPU candidate */
+			eenv->cpu[eas_cpu_idx++].cpu_id = cpu_iter;
+			eenv->max_cpu_count = eas_cpu_idx;
+
+			/* stop adding CPUs if we have no space left */
+			if (eas_cpu_idx >= eenv->eenv_cpu_count)
+				break;
+		}
+	} else {
+		int boosted = (schedtune_task_boost(p) > 0);
+		int prefer_idle;
+
+		/*
+		 * give compiler a hint that if sched_features
+		 * cannot be changed, it is safe to optimise out
+		 * all if(prefer_idle) blocks.
+		 */
+		prefer_idle = sched_feat(EAS_PREFER_IDLE) ?
+				(schedtune_prefer_idle(p) > 0) : 0;
+
+		eenv->max_cpu_count = EAS_CPU_BKP + 1;
+
+		/* Find a cpu with sufficient capacity */
+		eenv->cpu[EAS_CPU_NXT].cpu_id = find_best_target(p,
+				&eenv->cpu[EAS_CPU_BKP].cpu_id,
+				boosted, prefer_idle);
+
+		/* take note if no backup was found */
+		if (eenv->cpu[EAS_CPU_BKP].cpu_id < 0)
+			eenv->max_cpu_count = EAS_CPU_BKP;
+
+		/* take note if no target was found */
+		 if (eenv->cpu[EAS_CPU_NXT].cpu_id < 0)
+			 eenv->max_cpu_count = EAS_CPU_NXT;
+	}
+
+	if (eenv->max_cpu_count == EAS_CPU_NXT) {
+		/*
+		 * we did not find any energy-awareness
+		 * candidates beyond prev_cpu, so we will
+		 * fall-back to the regular slow-path.
+		 */
+		return energy_cpu;
+	}
+
+	/* find most energy-efficient CPU */
+	energy_cpu = select_energy_cpu_idx(eenv) < 0 ? -1 :
+					eenv->cpu[eenv->next_idx].cpu_id;
+
+	return energy_cpu;
+}
+
+static inline bool nohz_kick_needed(struct rq *rq, bool only_update);
+static void nohz_balancer_kick(bool only_update);
+
+/*
+ * wake_energy: Make the decision if we want to use an energy-aware
+ * wakeup task placement or not. This is limited to situations where
+ * we cannot use energy-awareness right now.
+ *
+ * Returns TRUE if we should attempt energy-aware wakeup, FALSE if not.
+ *
+ * Should only be called from select_task_rq_fair inside the RCU
+ * read-side critical section.
+ */
+static inline int wake_energy(struct task_struct *p, int prev_cpu,
+			      int sd_flag, int wake_flags)
+{
+	struct sched_domain *sd = NULL;
+	int sync = wake_flags & WF_SYNC;
+
+	sd = rcu_dereference_sched(cpu_rq(prev_cpu)->sd);
+
+	/*
+	 * Check all definite no-energy-awareness conditions
+	 */
+	if (!sd)
+		return false;
+
+	if (!energy_aware())
+		return false;
+
+	if (sd_overutilized(sd))
+		return false;
+
+	/*
+	 * we cannot do energy-aware wakeup placement sensibly
+	 * for tasks with 0 utilization, so let them be placed
+	 * according to the normal strategy.
+	 * However if fbt is in use we may still benefit from
+	 * the heuristics we use there in selecting candidate
+	 * CPUs.
+	 */
+	if (unlikely(!sched_feat(FIND_BEST_TARGET) && !task_util(p)))
+		return false;
+
+	if(!sched_feat(EAS_PREFER_IDLE)){
+		/*
+		 * Force prefer-idle tasks into the slow path, this may not happen
+		 * if none of the sd flags matched.
+		 */
+		if (schedtune_prefer_idle(p) > 0 && !sync)
+			return false;
+	}
+	return true;
 }
 
 /*
@@ -5939,21 +7473,28 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
  * preempt must be disabled.
  */
 static int
-select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
+select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags,
+		    int sibling_count_hint)
 {
-	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
+	struct sched_domain *tmp, *affine_sd = NULL;
+	struct sched_domain *sd = NULL, *energy_sd = NULL;
 	int cpu = smp_processor_id();
 	int new_cpu = prev_cpu;
 	int want_affine = 0;
+	int want_energy = 0;
 	int sync = wake_flags & WF_SYNC;
 
+	rcu_read_lock();
+
 	if (sd_flag & SD_BALANCE_WAKE) {
 		record_wakee(p);
-		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
-			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
+		want_energy = wake_energy(p, prev_cpu, sd_flag, wake_flags);
+		want_affine = !want_energy &&
+			      !wake_wide(p, sibling_count_hint) &&
+			      !wake_cap(p, cpu, prev_cpu) &&
+			      cpumask_test_cpu(cpu, &p->cpus_allowed);
 	}
 
-	rcu_read_lock();
 	for_each_domain(cpu, tmp) {
 		if (!(tmp->flags & SD_LOAD_BALANCE))
 			break;
@@ -5968,9 +7509,22 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
 			break;
 		}
 
+		/*
+		 * If we are able to try an energy-aware wakeup,
+		 * select the highest non-overutilized sched domain
+		 * which includes this cpu and prev_cpu
+		 *
+		 * maybe want to not test prev_cpu and only consider
+		 * the current one?
+		 */
+		if (want_energy &&
+		    !sd_overutilized(tmp) &&
+		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
+			energy_sd = tmp;
+
 		if (tmp->flags & sd_flag)
 			sd = tmp;
-		else if (!want_affine)
+		else if (!(want_affine || want_energy))
 			break;
 	}
 
@@ -5983,47 +7537,38 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
 			new_cpu = cpu;
 	}
 
+	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
+		/*
+		 * We're going to need the task's util for capacity_spare_wake
+		 * in find_idlest_group. Sync it up to prev_cpu's
+		 * last_update_time.
+		 */
+		sync_entity_load_avg(&p->se);
+	}
+
 	if (!sd) {
- pick_cpu:
+pick_cpu:
 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
 
-	} else while (sd) {
-		struct sched_group *group;
-		int weight;
+	} else {
+		if (energy_sd)
+			new_cpu = find_energy_efficient_cpu(energy_sd, p, cpu, prev_cpu, sync);
 
-		if (!(sd->flags & sd_flag)) {
-			sd = sd->child;
-			continue;
-		}
-
-		group = find_idlest_group(sd, p, cpu, sd_flag);
-		if (!group) {
-			sd = sd->child;
-			continue;
-		}
-
-		new_cpu = find_idlest_cpu(group, p, cpu);
-		if (new_cpu == -1 || new_cpu == cpu) {
-			/* Now try balancing at a lower domain level of cpu */
-			sd = sd->child;
-			continue;
-		}
-
-		/* Now try balancing at a lower domain level of new_cpu */
-		cpu = new_cpu;
-		weight = sd->span_weight;
-		sd = NULL;
-		for_each_domain(cpu, tmp) {
-			if (weight <= tmp->span_weight)
-				break;
-			if (tmp->flags & sd_flag)
-				sd = tmp;
-		}
-		/* while loop will break here if sd == NULL */
+		/* if we did an energy-aware placement and had no choices available
+		 * then fall back to the default find_idlest_cpu choice
+		 */
+		if (!energy_sd || (energy_sd && new_cpu == -1))
+			new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
 	}
+
 	rcu_read_unlock();
 
+#ifdef CONFIG_NO_HZ_COMMON
+	if (nohz_kick_needed(cpu_rq(new_cpu), true))
+		nohz_balancer_kick(true);
+#endif
+
 	return new_cpu;
 }
 
@@ -6248,6 +7793,29 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
 		set_last_buddy(se);
 }
 
+static inline void update_misfit_task(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+	rq->misfit_task = !task_fits_capacity(p, capacity_of(rq->cpu));
+#endif
+}
+
+static inline void clear_rq_misfit(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+	rq->misfit_task = 0;
+#endif
+}
+
+static inline unsigned int rq_has_misfit(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+	return rq->misfit_task;
+#else
+	return 0;
+#endif
+}
+
 static struct task_struct *
 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 {
@@ -6338,6 +7906,8 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
 	if (hrtick_enabled(rq))
 		hrtick_start_fair(rq, p);
 
+	update_misfit_task(rq, p);
+
 	return p;
 simple:
 #endif
@@ -6355,9 +7925,12 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
 	if (hrtick_enabled(rq))
 		hrtick_start_fair(rq, p);
 
+	update_misfit_task(rq, p);
+
 	return p;
 
 idle:
+	clear_rq_misfit(rq);
 	new_tasks = idle_balance(rq, rf);
 
 	/*
@@ -6563,6 +8136,13 @@ static unsigned long __read_mostly max_load_balance_interval = HZ/10;
 
 enum fbq_type { regular, remote, all };
 
+enum group_type {
+	group_other = 0,
+	group_misfit_task,
+	group_imbalanced,
+	group_overloaded,
+};
+
 #define LBF_ALL_PINNED	0x01
 #define LBF_NEED_BREAK	0x02
 #define LBF_DST_PINNED  0x04
@@ -6581,6 +8161,7 @@ struct lb_env {
 	int			new_dst_cpu;
 	enum cpu_idle_type	idle;
 	long			imbalance;
+	unsigned int		src_grp_nr_running;
 	/* The set of CPUs under consideration for load-balancing */
 	struct cpumask		*cpus;
 
@@ -6591,6 +8172,7 @@ struct lb_env {
 	unsigned int		loop_max;
 
 	enum fbq_type		fbq_type;
+	enum group_type		src_grp_type;
 	struct list_head	tasks;
 };
 
@@ -7004,6 +8586,10 @@ static void update_blocked_averages(int cpu)
 		if (cfs_rq_is_decayed(cfs_rq))
 			list_del_leaf_cfs_rq(cfs_rq);
 	}
+	update_rt_rq_load_avg(rq_clock_task(rq), cpu, &rq->rt, 0);
+#ifdef CONFIG_NO_HZ_COMMON
+	rq->last_blocked_load_update_tick = jiffies;
+#endif
 	rq_unlock_irqrestore(rq, &rf);
 }
 
@@ -7063,6 +8649,10 @@ static inline void update_blocked_averages(int cpu)
 	rq_lock_irqsave(rq, &rf);
 	update_rq_clock(rq);
 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
+	update_rt_rq_load_avg(rq_clock_task(rq), cpu, &rq->rt, 0);
+#ifdef CONFIG_NO_HZ_COMMON
+	rq->last_blocked_load_update_tick = jiffies;
+#endif
 	rq_unlock_irqrestore(rq, &rf);
 }
 
@@ -7074,12 +8664,6 @@ static unsigned long task_h_load(struct task_struct *p)
 
 /********** Helpers for find_busiest_group ************************/
 
-enum group_type {
-	group_other = 0,
-	group_imbalanced,
-	group_overloaded,
-};
-
 /*
  * sg_lb_stats - stats of a sched_group required for load_balancing
  */
@@ -7095,6 +8679,7 @@ struct sg_lb_stats {
 	unsigned int group_weight;
 	enum group_type group_type;
 	int group_no_capacity;
+	int group_misfit_task; /* A cpu has a task too big for its capacity */
 #ifdef CONFIG_NUMA_BALANCING
 	unsigned int nr_numa_running;
 	unsigned int nr_preferred_running;
@@ -7111,6 +8696,7 @@ struct sd_lb_stats {
 	unsigned long total_running;
 	unsigned long total_load;	/* Total load of all groups in sd */
 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
+	unsigned long total_util;	/* Total util of all groups in sd */
 	unsigned long avg_load;	/* Average load across all groups in sd */
 
 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
@@ -7131,6 +8717,7 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
 		.total_running = 0UL,
 		.total_load = 0UL,
 		.total_capacity = 0UL,
+		.total_util = 0UL,
 		.busiest_stat = {
 			.avg_load = 0UL,
 			.sum_nr_running = 0,
@@ -7216,7 +8803,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
 {
 	struct sched_domain *child = sd->child;
 	struct sched_group *group, *sdg = sd->groups;
-	unsigned long capacity, min_capacity;
+	unsigned long capacity, min_capacity, max_capacity;
 	unsigned long interval;
 
 	interval = msecs_to_jiffies(sd->balance_interval);
@@ -7230,6 +8817,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
 
 	capacity = 0;
 	min_capacity = ULONG_MAX;
+	max_capacity = 0;
 
 	if (child->flags & SD_OVERLAP) {
 		/*
@@ -7260,6 +8848,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
 			}
 
 			min_capacity = min(capacity, min_capacity);
+			max_capacity = max(capacity, max_capacity);
 		}
 	} else  {
 		/*
@@ -7273,12 +8862,14 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
 
 			capacity += sgc->capacity;
 			min_capacity = min(sgc->min_capacity, min_capacity);
+			max_capacity = max(sgc->max_capacity, max_capacity);
 			group = group->next;
 		} while (group != child->groups);
 	}
 
 	sdg->sgc->capacity = capacity;
 	sdg->sgc->min_capacity = min_capacity;
+	sdg->sgc->max_capacity = max_capacity;
 }
 
 /*
@@ -7384,6 +8975,19 @@ group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
 						ref->sgc->min_capacity * 1024;
 }
 
+/*
+ * group_similar_cpu_capacity: Returns true if the minimum capacity of the
+ * compared groups differ by less than 12.5%.
+ */
+static inline bool
+group_similar_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
+{
+	long diff = sg->sgc->min_capacity - ref->sgc->min_capacity;
+	long max = max(sg->sgc->min_capacity, ref->sgc->min_capacity);
+
+	return abs(diff) < max >> 3;
+}
+
 static inline enum
 group_type group_classify(struct sched_group *group,
 			  struct sg_lb_stats *sgs)
@@ -7394,6 +8998,9 @@ group_type group_classify(struct sched_group *group,
 	if (sg_imbalanced(group))
 		return group_imbalanced;
 
+	if (sgs->group_misfit_task)
+		return group_misfit_task;
+
 	return group_other;
 }
 
@@ -7405,11 +9012,12 @@ group_type group_classify(struct sched_group *group,
  * @local_group: Does group contain this_cpu.
  * @sgs: variable to hold the statistics for this group.
  * @overload: Indicate more than one runnable task for any CPU.
+ * @overutilized: Indicate overutilization for any CPU.
  */
 static inline void update_sg_lb_stats(struct lb_env *env,
 			struct sched_group *group, int load_idx,
 			int local_group, struct sg_lb_stats *sgs,
-			bool *overload)
+			bool *overload, bool *overutilized, bool *misfit_task)
 {
 	unsigned long load;
 	int i, nr_running;
@@ -7443,6 +9051,17 @@ static inline void update_sg_lb_stats(struct lb_env *env,
 		 */
 		if (!nr_running && idle_cpu(i))
 			sgs->idle_cpus++;
+
+		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
+		    !sgs->group_misfit_task && rq_has_misfit(rq))
+			sgs->group_misfit_task = capacity_of(i);
+
+		if (cpu_overutilized(i)) {
+			*overutilized = true;
+
+			if (rq_has_misfit(rq))
+				*misfit_task = true;
+		}
 	}
 
 	/* Adjust by relative CPU capacity of the group */
@@ -7478,6 +9097,14 @@ static bool update_sd_pick_busiest(struct lb_env *env,
 {
 	struct sg_lb_stats *busiest = &sds->busiest_stat;
 
+	/*
+	 * Don't try to pull misfit tasks we can't help.
+	 */
+	if (sgs->group_type == group_misfit_task &&
+	    (!group_smaller_cpu_capacity(sg, sds->local) ||
+	     !group_has_capacity(env, &sds->local_stat)))
+		return false;
+
 	if (sgs->group_type > busiest->group_type)
 		return true;
 
@@ -7500,6 +9127,15 @@ static bool update_sd_pick_busiest(struct lb_env *env,
 	    group_smaller_cpu_capacity(sds->local, sg))
 		return false;
 
+	/*
+	 * Candidate sg doesn't face any severe imbalance issues so
+	 * don't disturb unless the groups are of similar capacity
+	 * where balancing is more harmless.
+	 */
+	if (sgs->group_type == group_other &&
+		!group_similar_cpu_capacity(sds->local, sg))
+		return false;
+
 asym_packing:
 	/* This is the busiest node in its class. */
 	if (!(env->sd->flags & SD_ASYM_PACKING))
@@ -7557,6 +9193,18 @@ static inline enum fbq_type fbq_classify_rq(struct rq *rq)
 }
 #endif /* CONFIG_NUMA_BALANCING */
 
+#ifdef CONFIG_NO_HZ_COMMON
+static struct {
+	cpumask_var_t idle_cpus_mask;
+	atomic_t nr_cpus;
+	unsigned long next_balance;     /* in jiffy units */
+	unsigned long next_update;     /* in jiffy units */
+} nohz ____cacheline_aligned;
+#endif
+
+#define lb_sd_parent(sd) \
+	(sd->parent && sd->parent->groups != sd->parent->groups->next)
+
 /**
  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  * @env: The load balancing environment.
@@ -7569,11 +9217,35 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
 	struct sg_lb_stats *local = &sds->local_stat;
 	struct sg_lb_stats tmp_sgs;
 	int load_idx, prefer_sibling = 0;
-	bool overload = false;
+	bool overload = false, overutilized = false, misfit_task = false;
 
 	if (child && child->flags & SD_PREFER_SIBLING)
 		prefer_sibling = 1;
 
+#ifdef CONFIG_NO_HZ_COMMON
+	if (env->idle == CPU_NEWLY_IDLE) {
+		int cpu;
+
+		/* Update the stats of NOHZ idle CPUs in the sd */
+		for_each_cpu_and(cpu, sched_domain_span(env->sd),
+				 nohz.idle_cpus_mask) {
+			struct rq *rq = cpu_rq(cpu);
+
+			/* ... Unless we've already done since the last tick */
+			if (time_after(jiffies,
+                                       rq->last_blocked_load_update_tick))
+				update_blocked_averages(cpu);
+		}
+	}
+	/*
+	 * If we've just updated all of the NOHZ idle CPUs, then we can push
+	 * back the next nohz.next_update, which will prevent an unnecessary
+	 * wakeup for the nohz stats kick
+	 */
+	if (cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd)))
+		nohz.next_update = jiffies + LOAD_AVG_PERIOD;
+#endif
+
 	load_idx = get_sd_load_idx(env->sd, env->idle);
 
 	do {
@@ -7591,7 +9263,8 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
 		}
 
 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
-						&overload);
+						&overload, &overutilized,
+						&misfit_task);
 
 		if (local_group)
 			goto next_group;
@@ -7623,6 +9296,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
 		sds->total_running += sgs->sum_nr_running;
 		sds->total_load += sgs->group_load;
 		sds->total_capacity += sgs->group_capacity;
+		sds->total_util += sgs->group_util;
 
 		sg = sg->next;
 	} while (sg != env->sd->groups);
@@ -7630,11 +9304,52 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
 	if (env->sd->flags & SD_NUMA)
 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
 
-	if (!env->sd->parent) {
+	env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
+
+	if (!lb_sd_parent(env->sd)) {
 		/* update overload indicator if we are at root domain */
 		if (env->dst_rq->rd->overload != overload)
 			env->dst_rq->rd->overload = overload;
 	}
+
+	if (overutilized)
+		set_sd_overutilized(env->sd);
+	else
+		clear_sd_overutilized(env->sd);
+
+	/*
+	 * If there is a misfit task in one cpu in this sched_domain
+	 * it is likely that the imbalance cannot be sorted out among
+	 * the cpu's in this sched_domain. In this case set the
+	 * overutilized flag at the parent sched_domain.
+	 */
+	if (misfit_task) {
+		struct sched_domain *sd = env->sd->parent;
+
+		/*
+		 * In case of a misfit task, load balance at the parent
+		 * sched domain level will make sense only if the the cpus
+		 * have a different capacity. If cpus at a domain level have
+		 * the same capacity, the misfit task cannot be well
+		 * accomodated	in any of the cpus and there in no point in
+		 * trying a load balance at this level
+		 */
+		while (sd) {
+			if (sd->flags & SD_ASYM_CPUCAPACITY) {
+				set_sd_overutilized(sd);
+				break;
+			}
+			sd = sd->parent;
+		}
+	}
+
+	/*
+	 * If the domain util is greater that domain capacity, load balancing
+	 * needs to be done at the next sched domain level as well.
+	 */
+	if (lb_sd_parent(env->sd) &&
+	    sds->total_capacity * 1024 < sds->total_util * capacity_margin)
+		set_sd_overutilized(env->sd->parent);
 }
 
 /**
@@ -7783,8 +9498,9 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
 	 * factors in sg capacity and sgs with smaller group_type are
 	 * skipped when updating the busiest sg:
 	 */
-	if (busiest->avg_load <= sds->avg_load ||
-	    local->avg_load >= sds->avg_load) {
+	if (busiest->group_type != group_misfit_task &&
+	    (busiest->avg_load <= sds->avg_load ||
+	     local->avg_load >= sds->avg_load)) {
 		env->imbalance = 0;
 		return fix_small_imbalance(env, sds);
 	}
@@ -7818,6 +9534,12 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
 		(sds->avg_load - local->avg_load) * local->group_capacity
 	) / SCHED_CAPACITY_SCALE;
 
+	/* Boost imbalance to allow misfit task to be balanced. */
+	if (busiest->group_type == group_misfit_task) {
+		env->imbalance = max_t(long, env->imbalance,
+				       busiest->group_misfit_task);
+	}
+
 	/*
 	 * if *imbalance is less than the average load per runnable task
 	 * there is no guarantee that any tasks will be moved so we'll have
@@ -7853,6 +9575,10 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
 	 * this level.
 	 */
 	update_sd_lb_stats(env, &sds);
+
+	if (energy_aware() && !sd_overutilized(env->sd))
+		goto out_balanced;
+
 	local = &sds.local_stat;
 	busiest = &sds.busiest_stat;
 
@@ -7876,11 +9602,18 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
 	if (busiest->group_type == group_imbalanced)
 		goto force_balance;
 
-	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
-	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
+	/*
+	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
+	 * capacities from resulting in underutilization due to avg_load.
+	 */
+	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
 	    busiest->group_no_capacity)
 		goto force_balance;
 
+	/* Misfitting tasks should be dealt with regardless of the avg load */
+	if (busiest->group_type == group_misfit_task)
+		goto force_balance;
+
 	/*
 	 * If the local group is busier than the selected busiest group
 	 * don't try and pull any tasks.
@@ -7918,6 +9651,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
 
 force_balance:
 	/* Looks like there is an imbalance. Compute it */
+	env->src_grp_type = busiest->group_type;
 	calculate_imbalance(env, &sds);
 	return sds.busiest;
 
@@ -7965,6 +9699,13 @@ static struct rq *find_busiest_queue(struct lb_env *env,
 		if (rt > env->fbq_type)
 			continue;
 
+		/*
+		 * For ASYM_CPUCAPACITY domains with misfit tasks we ignore
+		 * load.
+		 */
+		if (env->src_grp_type == group_misfit_task && rq_has_misfit(rq))
+			return rq;
+
 		capacity = capacity_of(i);
 
 		wl = weighted_cpuload(rq);
@@ -8034,6 +9775,14 @@ static int need_active_balance(struct lb_env *env)
 			return 1;
 	}
 
+	if ((capacity_of(env->src_cpu) < capacity_of(env->dst_cpu)) &&
+	    ((capacity_orig_of(env->src_cpu) < capacity_orig_of(env->dst_cpu))) &&
+				env->src_rq->cfs.h_nr_running == 1 &&
+				cpu_overutilized(env->src_cpu) &&
+				!cpu_overutilized(env->dst_cpu)) {
+			return 1;
+	}
+
 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
 }
 
@@ -8086,7 +9835,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 			int *continue_balancing)
 {
 	int ld_moved, cur_ld_moved, active_balance = 0;
-	struct sched_domain *sd_parent = sd->parent;
+	struct sched_domain *sd_parent = lb_sd_parent(sd) ? sd->parent : NULL;
 	struct sched_group *group;
 	struct rq *busiest;
 	struct rq_flags rf;
@@ -8252,7 +10001,8 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 		 * excessive cache_hot migrations and active balances.
 		 */
 		if (idle != CPU_NEWLY_IDLE)
-			sd->nr_balance_failed++;
+			if (env.src_grp_nr_running > 1)
+				sd->nr_balance_failed++;
 
 		if (need_active_balance(&env)) {
 			unsigned long flags;
@@ -8348,6 +10098,7 @@ static inline unsigned long
 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 {
 	unsigned long interval = sd->balance_interval;
+	unsigned int cpu;
 
 	if (cpu_busy)
 		interval *= sd->busy_factor;
@@ -8356,6 +10107,24 @@ get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
 	interval = msecs_to_jiffies(interval);
 	interval = clamp(interval, 1UL, max_load_balance_interval);
 
+	/*
+	 * check if sched domain is marked as overutilized
+	 * we ought to only do this on systems which have SD_ASYMCAPACITY
+	 * but we want to do it for all sched domains in those systems
+	 * So for now, just check if overutilized as a proxy.
+	 */
+	/*
+	 * If we are overutilized and we have a misfit task, then
+	 * we want to balance as soon as practically possible, so
+	 * we return an interval of zero.
+	 */
+	if (energy_aware() && sd_overutilized(sd)) {
+		/* we know the root is overutilized, let's check for a misfit task */
+		for_each_cpu(cpu, sched_domain_span(sd)) {
+			if (rq_has_misfit(cpu_rq(cpu)))
+				return 1;
+		}
+	}
 	return interval;
 }
 
@@ -8589,11 +10358,6 @@ static inline int on_null_domain(struct rq *rq)
  *   needed, they will kick the idle load balancer, which then does idle
  *   load balancing for all the idle CPUs.
  */
-static struct {
-	cpumask_var_t idle_cpus_mask;
-	atomic_t nr_cpus;
-	unsigned long next_balance;     /* in jiffy units */
-} nohz ____cacheline_aligned;
 
 static inline int find_new_ilb(void)
 {
@@ -8610,7 +10374,7 @@ static inline int find_new_ilb(void)
  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  * CPU (if there is one).
  */
-static void nohz_balancer_kick(void)
+static void nohz_balancer_kick(bool only_update)
 {
 	int ilb_cpu;
 
@@ -8623,6 +10387,10 @@ static void nohz_balancer_kick(void)
 
 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
 		return;
+
+	if (only_update)
+		set_bit(NOHZ_STATS_KICK, nohz_flags(ilb_cpu));
+
 	/*
 	 * Use smp_send_reschedule() instead of resched_cpu().
 	 * This way we generate a sched IPI on the target cpu which
@@ -8710,6 +10478,8 @@ void nohz_balance_enter_idle(int cpu)
 	atomic_inc(&nohz.nr_cpus);
 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
 }
+#else
+static inline void nohz_balancer_kick(bool only_update) {}
 #endif
 
 static DEFINE_SPINLOCK(balancing);
@@ -8741,8 +10511,6 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 	int need_serialize, need_decay = 0;
 	u64 max_cost = 0;
 
-	update_blocked_averages(cpu);
-
 	rcu_read_lock();
 	for_each_domain(cpu, sd) {
 		/*
@@ -8757,6 +10525,9 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 		}
 		max_cost += sd->max_newidle_lb_cost;
 
+		if (energy_aware() && !sd_overutilized(sd))
+			continue;
+
 		if (!(sd->flags & SD_LOAD_BALANCE))
 			continue;
 
@@ -8841,6 +10612,7 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 {
 	int this_cpu = this_rq->cpu;
 	struct rq *rq;
+	struct sched_domain *sd;
 	int balance_cpu;
 	/* Earliest time when we have to do rebalance again */
 	unsigned long next_balance = jiffies + 60*HZ;
@@ -8850,6 +10622,23 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
 		goto end;
 
+	/*
+	 * This cpu is going to update the blocked load of idle CPUs either
+	 * before doing a rebalancing or just to keep metrics up to date. we
+	 * can safely update the next update timestamp
+	 */
+	rcu_read_lock();
+	sd = rcu_dereference(this_rq->sd);
+	/*
+	 * Check whether there is a sched_domain available for this cpu.
+	 * The last other cpu can have been unplugged since the ILB has been
+	 * triggered and the sched_domain can now be null. The idle balance
+	 * sequence will quickly be aborted as there is no more idle CPUs
+	 */
+	if (sd)
+		nohz.next_update = jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD);
+	rcu_read_unlock();
+
 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
 			continue;
@@ -8876,7 +10665,15 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 			cpu_load_update_idle(rq);
 			rq_unlock_irq(rq, &rf);
 
-			rebalance_domains(rq, CPU_IDLE);
+			update_blocked_averages(balance_cpu);
+			/*
+			 * This idle load balance softirq may have been
+			 * triggered only to update the blocked load and shares
+			 * of idle CPUs (which we have just done for
+			 * balance_cpu). In that case skip the actual balance.
+			 */
+			if (!test_bit(NOHZ_STATS_KICK, nohz_flags(this_cpu)))
+				rebalance_domains(rq, idle);
 		}
 
 		if (time_after(next_balance, rq->next_balance)) {
@@ -8907,7 +10704,7 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  *     domain span are idle.
  */
-static inline bool nohz_kick_needed(struct rq *rq)
+static inline bool nohz_kick_needed(struct rq *rq, bool only_update)
 {
 	unsigned long now = jiffies;
 	struct sched_domain_shared *sds;
@@ -8915,7 +10712,7 @@ static inline bool nohz_kick_needed(struct rq *rq)
 	int nr_busy, i, cpu = rq->cpu;
 	bool kick = false;
 
-	if (unlikely(rq->idle_balance))
+	if (unlikely(rq->idle_balance) && !only_update)
 		return false;
 
        /*
@@ -8932,15 +10729,27 @@ static inline bool nohz_kick_needed(struct rq *rq)
 	if (likely(!atomic_read(&nohz.nr_cpus)))
 		return false;
 
+	if (only_update) {
+		if (time_before(now, nohz.next_update))
+			return false;
+		else
+			return true;
+	}
+
 	if (time_before(now, nohz.next_balance))
 		return false;
 
-	if (rq->nr_running >= 2)
+	if (rq->nr_running >= 2 &&
+	    (!energy_aware() || cpu_overutilized(cpu)))
 		return true;
 
+	/* Do idle load balance if there have misfit task */
+	if (energy_aware())
+		return rq_has_misfit(rq);
+
 	rcu_read_lock();
 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
-	if (sds) {
+	if (sds && !energy_aware()) {
 		/*
 		 * XXX: write a coherent comment on why we do this.
 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
@@ -8981,6 +10790,7 @@ static inline bool nohz_kick_needed(struct rq *rq)
 }
 #else
 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
+static inline bool nohz_kick_needed(struct rq *rq, bool only_update) { return false; }
 #endif
 
 /*
@@ -9002,7 +10812,14 @@ static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
 	 * and abort nohz_idle_balance altogether if we pull some load.
 	 */
 	nohz_idle_balance(this_rq, idle);
+	update_blocked_averages(this_rq->cpu);
+#ifdef CONFIG_NO_HZ_COMMON
+	if (!test_bit(NOHZ_STATS_KICK, nohz_flags(this_rq->cpu)))
+		rebalance_domains(this_rq, idle);
+	clear_bit(NOHZ_STATS_KICK, nohz_flags(this_rq->cpu));
+#else
 	rebalance_domains(this_rq, idle);
+#endif
 }
 
 /*
@@ -9017,8 +10834,8 @@ void trigger_load_balance(struct rq *rq)
 	if (time_after_eq(jiffies, rq->next_balance))
 		raise_softirq(SCHED_SOFTIRQ);
 #ifdef CONFIG_NO_HZ_COMMON
-	if (nohz_kick_needed(rq))
-		nohz_balancer_kick();
+	if (nohz_kick_needed(rq, false))
+		nohz_balancer_kick(false);
 #endif
 }
 
@@ -9054,6 +10871,10 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 
 	if (static_branch_unlikely(&sched_numa_balancing))
 		task_tick_numa(rq, curr);
+
+	update_misfit_task(rq, curr);
+
+	update_overutilized_status(rq);
 }
 
 /*
@@ -9597,8 +11418,11 @@ __init void init_sched_fair_class(void)
 
 #ifdef CONFIG_NO_HZ_COMMON
 	nohz.next_balance = jiffies;
+	nohz.next_update = jiffies;
 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
 #endif
+
+	alloc_eenv();
 #endif /* SMP */
 
 }
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 9552fd5..306333b 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -85,3 +85,31 @@ SCHED_FEAT(ATTACH_AGE_LOAD, true)
 SCHED_FEAT(WA_IDLE, true)
 SCHED_FEAT(WA_WEIGHT, true)
 SCHED_FEAT(WA_BIAS, true)
+
+/*
+ * Energy aware scheduling. Use platform energy model to guide scheduling
+ * decisions optimizing for energy efficiency.
+ */
+#ifdef CONFIG_DEFAULT_USE_ENERGY_AWARE
+SCHED_FEAT(ENERGY_AWARE, true)
+#else
+SCHED_FEAT(ENERGY_AWARE, false)
+#endif
+
+/*
+ * Energy aware scheduling algorithm choices:
+ * EAS_PREFER_IDLE
+ *   Direct tasks in a schedtune.prefer_idle=1 group through
+ *   the EAS path for wakeup task placement. Otherwise, put
+ *   those tasks through the mainline slow path.
+ * FIND_BEST_TARGET
+ *   Limit the number of placement options for which we calculate
+ *   energy by using heuristics to select 'best idle' and
+ *   'best active' cpu options.
+ * FBT_STRICT_ORDER
+ *   ON: If the target CPU saves any energy, use that.
+ *   OFF: Use whichever of target or backup saves most.
+ */
+SCHED_FEAT(EAS_PREFER_IDLE, true)
+SCHED_FEAT(FIND_BEST_TARGET, true)
+SCHED_FEAT(FBT_STRICT_ORDER, true)
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 257f4f0..c1dbb2c 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -25,9 +25,10 @@ extern char __cpuidle_text_start[], __cpuidle_text_end[];
  * sched_idle_set_state - Record idle state for the current CPU.
  * @idle_state: State to record.
  */
-void sched_idle_set_state(struct cpuidle_state *idle_state)
+void sched_idle_set_state(struct cpuidle_state *idle_state, int index)
 {
 	idle_set_state(this_rq(), idle_state);
+	idle_set_state_idx(this_rq(), index);
 }
 
 static int __read_mostly cpu_idle_force_poll;
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index d518664..609abdf 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -10,7 +10,8 @@
 
 #ifdef CONFIG_SMP
 static int
-select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags,
+		    int sibling_count_hint)
 {
 	return task_cpu(p); /* IDLE tasks as never migrated */
 }
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 3c96c80..0e56601 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -9,6 +9,8 @@
 #include <linux/slab.h>
 #include <linux/irq_work.h>
 
+#include "walt.h"
+
 int sched_rr_timeslice = RR_TIMESLICE;
 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
 
@@ -1335,6 +1337,7 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 		rt_se->timeout = 0;
 
 	enqueue_rt_entity(rt_se, flags);
+	walt_inc_cumulative_runnable_avg(rq, p);
 
 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
 		enqueue_pushable_task(rq, p);
@@ -1346,6 +1349,7 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
 
 	update_curr_rt(rq);
 	dequeue_rt_entity(rt_se, flags);
+	walt_dec_cumulative_runnable_avg(rq, p);
 
 	dequeue_pushable_task(rq, p);
 }
@@ -1388,7 +1392,8 @@ static void yield_task_rt(struct rq *rq)
 static int find_lowest_rq(struct task_struct *task);
 
 static int
-select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
+		  int sibling_count_hint)
 {
 	struct task_struct *curr;
 	struct rq *rq;
@@ -1535,6 +1540,8 @@ static struct task_struct *_pick_next_task_rt(struct rq *rq)
 	return p;
 }
 
+extern int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running);
+
 static struct task_struct *
 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 {
@@ -1580,6 +1587,10 @@ pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 
 	queue_push_tasks(rq);
 
+	if (p)
+		update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), rt_rq,
+					rq->curr->sched_class == &rt_sched_class);
+
 	return p;
 }
 
@@ -1587,6 +1598,8 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
 {
 	update_curr_rt(rq);
 
+	update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
+
 	/*
 	 * The previous task needs to be made eligible for pushing
 	 * if it is still active
@@ -1854,7 +1867,9 @@ static int push_rt_task(struct rq *rq)
 	}
 
 	deactivate_task(rq, next_task, 0);
+	next_task->on_rq = TASK_ON_RQ_MIGRATING;
 	set_task_cpu(next_task, lowest_rq->cpu);
+	next_task->on_rq = TASK_ON_RQ_QUEUED;
 	activate_task(lowest_rq, next_task, 0);
 	ret = 1;
 
@@ -2189,7 +2204,9 @@ static void pull_rt_task(struct rq *this_rq)
 			resched = true;
 
 			deactivate_task(src_rq, p, 0);
+			p->on_rq = TASK_ON_RQ_MIGRATING;
 			set_task_cpu(p, this_cpu);
+			p->on_rq = TASK_ON_RQ_QUEUED;
 			activate_task(this_rq, p, 0);
 			/*
 			 * We continue with the search, just in
@@ -2369,6 +2386,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
 	struct sched_rt_entity *rt_se = &p->rt;
 
 	update_curr_rt(rq);
+	update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
 
 	watchdog(rq, p);
 
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 3b448ba..d767020 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -483,6 +483,10 @@ struct cfs_rq {
 	struct list_head leaf_cfs_rq_list;
 	struct task_group *tg;	/* group that "owns" this runqueue */
 
+#ifdef CONFIG_SCHED_WALT
+	u64 cumulative_runnable_avg;
+#endif
+
 #ifdef CONFIG_CFS_BANDWIDTH
 	int runtime_enabled;
 	u64 runtime_expires;
@@ -524,6 +528,9 @@ struct rt_rq {
 	unsigned long rt_nr_total;
 	int overloaded;
 	struct plist_head pushable_tasks;
+
+	struct sched_avg avg;
+
 #ifdef HAVE_RT_PUSH_IPI
 	int push_flags;
 	int push_cpu;
@@ -646,6 +653,9 @@ struct root_domain {
 	struct cpupri cpupri;
 
 	unsigned long max_cpu_capacity;
+
+	/* First cpu with maximum and minimum original capacity */
+	int max_cap_orig_cpu, min_cap_orig_cpu;
 };
 
 extern struct root_domain def_root_domain;
@@ -682,6 +692,7 @@ struct rq {
 #ifdef CONFIG_NO_HZ_COMMON
 #ifdef CONFIG_SMP
 	unsigned long last_load_update_tick;
+	unsigned long last_blocked_load_update_tick;
 #endif /* CONFIG_SMP */
 	unsigned long nohz_flags;
 #endif /* CONFIG_NO_HZ_COMMON */
@@ -731,6 +742,8 @@ struct rq {
 	struct callback_head *balance_callback;
 
 	unsigned char idle_balance;
+
+	unsigned int misfit_task;
 	/* For active balancing */
 	int active_balance;
 	int push_cpu;
@@ -750,6 +763,20 @@ struct rq {
 	u64 max_idle_balance_cost;
 #endif
 
+#ifdef CONFIG_SCHED_WALT
+	u64 cumulative_runnable_avg;
+	u64 window_start;
+	u64 curr_runnable_sum;
+	u64 prev_runnable_sum;
+	u64 nt_curr_runnable_sum;
+	u64 nt_prev_runnable_sum;
+	u64 cur_irqload;
+	u64 avg_irqload;
+	u64 irqload_ts;
+	u64 cum_window_demand;
+#endif /* CONFIG_SCHED_WALT */
+
+
 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 	u64 prev_irq_time;
 #endif
@@ -797,6 +824,7 @@ struct rq {
 #ifdef CONFIG_CPU_IDLE
 	/* Must be inspected within a rcu lock section */
 	struct cpuidle_state *idle_state;
+	int idle_state_idx;
 #endif
 };
 
@@ -1055,6 +1083,8 @@ DECLARE_PER_CPU(int, sd_llc_id);
 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
+DECLARE_PER_CPU(struct sched_domain *, sd_ea);
+DECLARE_PER_CPU(struct sched_domain *, sd_scs);
 
 struct sched_group_capacity {
 	atomic_t ref;
@@ -1064,6 +1094,7 @@ struct sched_group_capacity {
 	 */
 	unsigned long capacity;
 	unsigned long min_capacity; /* Min per-CPU capacity in group */
+	unsigned long max_capacity; /* Max per-CPU capacity in group */
 	unsigned long next_update;
 	int imbalance; /* XXX unrelated to capacity but shared group state */
 
@@ -1081,6 +1112,7 @@ struct sched_group {
 	unsigned int group_weight;
 	struct sched_group_capacity *sgc;
 	int asym_prefer_cpu;		/* cpu of highest priority in group */
+	const struct sched_group_energy const *sge;
 
 	/*
 	 * The CPUs this group covers.
@@ -1421,7 +1453,8 @@ struct sched_class {
 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
 #ifdef CONFIG_SMP
-	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
+			       int subling_count_hint);
 	void (*migrate_task_rq)(struct task_struct *p);
 
 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
@@ -1508,6 +1541,17 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 	SCHED_WARN_ON(!rcu_read_lock_held());
 	return rq->idle_state;
 }
+
+static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
+{
+	rq->idle_state_idx = idle_state_idx;
+}
+
+static inline int idle_get_state_idx(struct rq *rq)
+{
+	WARN_ON(!rcu_read_lock_held());
+	return rq->idle_state_idx;
+}
 #else
 static inline void idle_set_state(struct rq *rq,
 				  struct cpuidle_state *idle_state)
@@ -1518,6 +1562,15 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 {
 	return NULL;
 }
+
+static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
+{
+}
+
+static inline int idle_get_state_idx(struct rq *rq)
+{
+	return -1;
+}
 #endif
 
 extern void schedule_idle(void);
@@ -1654,6 +1707,7 @@ static inline int hrtick_enabled(struct rq *rq)
 
 #ifdef CONFIG_SMP
 extern void sched_avg_update(struct rq *rq);
+extern unsigned long sched_get_rt_rq_util(int cpu);
 
 #ifndef arch_scale_freq_capacity
 static __always_inline
@@ -1674,6 +1728,86 @@ unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
 }
 #endif
 
+#ifdef CONFIG_SMP
+static inline unsigned long capacity_of(int cpu)
+{
+	return cpu_rq(cpu)->cpu_capacity;
+}
+
+static inline unsigned long capacity_orig_of(int cpu)
+{
+	return cpu_rq(cpu)->cpu_capacity_orig;
+}
+
+extern unsigned int sysctl_sched_use_walt_cpu_util;
+extern unsigned int walt_ravg_window;
+extern bool walt_disabled;
+
+/*
+ * cpu_util returns the amount of capacity of a CPU that is used by CFS
+ * tasks. The unit of the return value must be the one of capacity so we can
+ * compare the utilization with the capacity of the CPU that is available for
+ * CFS task (ie cpu_capacity).
+ *
+ * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
+ * recent utilization of currently non-runnable tasks on a CPU. It represents
+ * the amount of utilization of a CPU in the range [0..capacity_orig] where
+ * capacity_orig is the cpu_capacity available at the highest frequency
+ * (arch_scale_freq_capacity()).
+ * The utilization of a CPU converges towards a sum equal to or less than the
+ * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
+ * the running time on this CPU scaled by capacity_curr.
+ *
+ * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
+ * higher than capacity_orig because of unfortunate rounding in
+ * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
+ * the average stabilizes with the new running time. We need to check that the
+ * utilization stays within the range of [0..capacity_orig] and cap it if
+ * necessary. Without utilization capping, a group could be seen as overloaded
+ * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
+ * available capacity. We allow utilization to overshoot capacity_curr (but not
+ * capacity_orig) as it useful for predicting the capacity required after task
+ * migrations (scheduler-driven DVFS).
+ */
+static inline unsigned long __cpu_util(int cpu, int delta)
+{
+	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
+	unsigned long capacity = capacity_orig_of(cpu);
+
+#ifdef CONFIG_SCHED_WALT
+	if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
+		util = cpu_rq(cpu)->cumulative_runnable_avg << SCHED_CAPACITY_SHIFT;
+		util = div_u64(util, walt_ravg_window);
+	}
+#endif
+	delta += util;
+	if (delta < 0)
+		return 0;
+
+	return (delta >= capacity) ? capacity : delta;
+}
+
+static inline unsigned long cpu_util(int cpu)
+{
+	return __cpu_util(cpu, 0);
+}
+
+static inline unsigned long cpu_util_freq(int cpu)
+{
+	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
+	unsigned long capacity = capacity_orig_of(cpu);
+
+#ifdef CONFIG_SCHED_WALT
+	if (!walt_disabled && sysctl_sched_use_walt_cpu_util) {
+		util = cpu_rq(cpu)->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
+		do_div(util, walt_ravg_window);
+	}
+#endif
+	return (util >= capacity) ? capacity : util;
+}
+
+#endif
+
 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
 {
 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
@@ -1979,6 +2113,7 @@ extern void cfs_bandwidth_usage_dec(void);
 enum rq_nohz_flag_bits {
 	NOHZ_TICK_STOPPED,
 	NOHZ_BALANCE_KICK,
+	NOHZ_STATS_KICK
 };
 
 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
@@ -1990,6 +2125,9 @@ static inline void nohz_balance_exit_idle(unsigned int cpu) { }
 
 
 #ifdef CONFIG_SMP
+
+extern void init_energy_aware_data(int cpu);
+
 static inline
 void __dl_update(struct dl_bw *dl_b, s64 bw)
 {
@@ -2083,6 +2221,17 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 #endif /* CONFIG_CPU_FREQ */
 
+#ifdef CONFIG_SCHED_WALT
+
+static inline bool
+walt_task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
+{
+	return cpu_of(rq) == task_cpu(p) &&
+	       (p->on_rq || p->last_sleep_ts >= rq->window_start);
+}
+
+#endif /* CONFIG_SCHED_WALT */
+
 #ifdef arch_scale_freq_capacity
 #ifndef arch_scale_freq_invariant
 #define arch_scale_freq_invariant()	(true)
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 45caf90..7ca03e5 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -1,5 +1,6 @@
 // SPDX-License-Identifier: GPL-2.0
 #include "sched.h"
+#include "walt.h"
 
 /*
  * stop-task scheduling class.
@@ -12,7 +13,8 @@
 
 #ifdef CONFIG_SMP
 static int
-select_task_rq_stop(struct task_struct *p, int cpu, int sd_flag, int flags)
+select_task_rq_stop(struct task_struct *p, int cpu, int sd_flag, int flags,
+		    int sibling_count_hint)
 {
 	return task_cpu(p); /* stop tasks as never migrate */
 }
@@ -43,12 +45,14 @@ static void
 enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
 {
 	add_nr_running(rq, 1);
+	walt_inc_cumulative_runnable_avg(rq, p);
 }
 
 static void
 dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
 {
 	sub_nr_running(rq, 1);
+	walt_dec_cumulative_runnable_avg(rq, p);
 }
 
 static void yield_task_stop(struct rq *rq)
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 6798276..f2f36d8 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -39,9 +39,6 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 
 	if (!(sd->flags & SD_LOAD_BALANCE)) {
 		printk("does not load-balance\n");
-		if (sd->parent)
-			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-					" has parent");
 		return -1;
 	}
 
@@ -154,8 +151,12 @@ static inline bool sched_debug(void)
 
 static int sd_degenerate(struct sched_domain *sd)
 {
-	if (cpumask_weight(sched_domain_span(sd)) == 1)
-		return 1;
+	if (cpumask_weight(sched_domain_span(sd)) == 1) {
+		if (sd->groups->sge)
+			sd->flags &= ~SD_LOAD_BALANCE;
+		else
+			return 1;
+	}
 
 	/* Following flags need at least 2 groups */
 	if (sd->flags & (SD_LOAD_BALANCE |
@@ -165,7 +166,8 @@ static int sd_degenerate(struct sched_domain *sd)
 			 SD_SHARE_CPUCAPACITY |
 			 SD_ASYM_CPUCAPACITY |
 			 SD_SHARE_PKG_RESOURCES |
-			 SD_SHARE_POWERDOMAIN)) {
+			 SD_SHARE_POWERDOMAIN |
+			 SD_SHARE_CAP_STATES)) {
 		if (sd->groups != sd->groups->next)
 			return 0;
 	}
@@ -198,7 +200,12 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 				SD_SHARE_CPUCAPACITY |
 				SD_SHARE_PKG_RESOURCES |
 				SD_PREFER_SIBLING |
-				SD_SHARE_POWERDOMAIN);
+				SD_SHARE_POWERDOMAIN |
+				SD_SHARE_CAP_STATES);
+		if (parent->groups->sge) {
+			parent->flags &= ~SD_LOAD_BALANCE;
+			return 0;
+		}
 		if (nr_node_ids == 1)
 			pflags &= ~SD_SERIALIZE;
 	}
@@ -275,6 +282,9 @@ static int init_rootdomain(struct root_domain *rd)
 
 	if (cpupri_init(&rd->cpupri) != 0)
 		goto free_cpudl;
+
+	rd->max_cap_orig_cpu = rd->min_cap_orig_cpu = -1;
+
 	return 0;
 
 free_cpudl:
@@ -386,11 +396,14 @@ DEFINE_PER_CPU(int, sd_llc_id);
 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
+DEFINE_PER_CPU(struct sched_domain *, sd_ea);
+DEFINE_PER_CPU(struct sched_domain *, sd_scs);
 
 static void update_top_cache_domain(int cpu)
 {
 	struct sched_domain_shared *sds = NULL;
 	struct sched_domain *sd;
+	struct sched_domain *ea_sd = NULL;
 	int id = cpu;
 	int size = 1;
 
@@ -411,6 +424,17 @@ static void update_top_cache_domain(int cpu)
 
 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
+
+	for_each_domain(cpu, sd) {
+		if (sd->groups->sge)
+			ea_sd = sd;
+		else
+			break;
+	}
+	rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
+
+	sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
+	rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
 }
 
 /*
@@ -695,6 +719,7 @@ static void init_overlap_sched_group(struct sched_domain *sd,
 	sg_span = sched_group_span(sg);
 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
+	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 }
 
 static int
@@ -943,6 +968,108 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
 	update_group_capacity(sd, cpu);
 }
 
+#define cap_state_power(s,i) (s->cap_states[i].power)
+#define cap_state_cap(s,i) (s->cap_states[i].cap)
+#define idle_state_power(s,i) (s->idle_states[i].power)
+
+static inline int sched_group_energy_equal(const struct sched_group_energy *a,
+		const struct sched_group_energy *b)
+{
+	int i;
+
+	/* check pointers first */
+	if (a == b)
+		return true;
+
+	/* check contents are equivalent */
+	if (a->nr_cap_states != b->nr_cap_states)
+		return false;
+	if (a->nr_idle_states != b->nr_idle_states)
+		return false;
+	for (i=0;i<a->nr_cap_states;i++){
+		if (cap_state_power(a,i) !=
+			cap_state_power(b,i))
+			return false;
+		if (cap_state_cap(a,i) !=
+			cap_state_cap(b,i))
+			return false;
+	}
+	for (i=0;i<a->nr_idle_states;i++){
+		if (idle_state_power(a,i) !=
+			idle_state_power(b,i))
+			return false;
+	}
+
+	return true;
+}
+
+#define energy_eff(e, n) \
+    ((e->cap_states[n].cap << SCHED_CAPACITY_SHIFT)/e->cap_states[n].power)
+
+static void init_sched_groups_energy(int cpu, struct sched_domain *sd,
+				     sched_domain_energy_f fn)
+{
+	struct sched_group *sg = sd->groups;
+	const struct sched_group_energy *sge;
+	int i;
+
+	if (!(fn && fn(cpu)))
+		return;
+
+	if (cpu != group_balance_cpu(sg))
+		return;
+
+	if (sd->flags & SD_OVERLAP) {
+		pr_err("BUG: EAS does not support overlapping sd spans\n");
+#ifdef CONFIG_SCHED_DEBUG
+		pr_err("     the %s domain has SD_OVERLAP set\n", sd->name);
+#endif
+		return;
+	}
+
+	if (sd->child && !sd->child->groups->sge) {
+		pr_err("BUG: EAS setup borken for CPU%d\n", cpu);
+#ifdef CONFIG_SCHED_DEBUG
+		pr_err("     energy data on %s but not on %s domain\n",
+			sd->name, sd->child->name);
+#endif
+		return;
+	}
+
+	sge = fn(cpu);
+
+	/*
+	 * Check that the per-cpu provided sd energy data is consistent for all
+	 * cpus within the mask.
+	 */
+	if (cpumask_weight(sched_group_span(sg)) > 1) {
+		struct cpumask mask;
+
+		cpumask_xor(&mask, sched_group_span(sg), get_cpu_mask(cpu));
+
+		for_each_cpu(i, &mask)
+			BUG_ON(!sched_group_energy_equal(sge,fn(i)));
+	}
+
+	/* Check that energy efficiency (capacity/power) is monotonically
+	 * decreasing in the capacity state vector with higher indexes
+	 */
+	for (i = 0; i < (sge->nr_cap_states - 1); i++) {
+		if (energy_eff(sge, i) > energy_eff(sge, i+1))
+			continue;
+#ifdef CONFIG_SCHED_DEBUG
+		pr_warn("WARN: cpu=%d, domain=%s: incr. energy eff %lu[%d]->%lu[%d]\n",
+			cpu, sd->name, energy_eff(sge, i), i,
+			energy_eff(sge, i+1), i+1);
+#else
+		pr_warn("WARN: cpu=%d: incr. energy eff %lu[%d]->%lu[%d]\n",
+			cpu, energy_eff(sge, i), i, energy_eff(sge, i+1), i+1);
+#endif
+	}
+
+	sd->groups->sge = fn(cpu);
+}
+
 /*
  * Initializers for schedule domains
  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
@@ -1062,6 +1189,7 @@ static int sched_domains_curr_level;
  *   SD_NUMA                - describes NUMA topologies
  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
+ *   SD_SHARE_CAP_STATES    - describes shared capacity states
  *
  * Odd one out, which beside describing the topology has a quirk also
  * prescribes the desired behaviour that goes along with it:
@@ -1074,7 +1202,8 @@ static int sched_domains_curr_level;
 	 SD_NUMA |			\
 	 SD_ASYM_PACKING |		\
 	 SD_ASYM_CPUCAPACITY |		\
-	 SD_SHARE_POWERDOMAIN)
+	 SD_SHARE_POWERDOMAIN |		\
+	 SD_SHARE_CAP_STATES)
 
 static struct sched_domain *
 sd_init(struct sched_domain_topology_level *tl,
@@ -1183,15 +1312,11 @@ sd_init(struct sched_domain_topology_level *tl,
 		sd->idle_idx = 1;
 	}
 
-	/*
-	 * For all levels sharing cache; connect a sched_domain_shared
-	 * instance.
-	 */
-	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
-		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
-		atomic_inc(&sd->shared->ref);
+	sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
+	atomic_inc(&sd->shared->ref);
+
+	if (sd->flags & SD_SHARE_PKG_RESOURCES)
 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
-	}
 
 	sd->private = sdd;
 
@@ -1650,8 +1775,6 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
 				*per_cpu_ptr(d.sd, i) = sd;
 			if (tl->flags & SDTL_OVERLAP)
 				sd->flags |= SD_OVERLAP;
-			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
-				break;
 		}
 	}
 
@@ -1671,10 +1794,13 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
 
 	/* Calculate CPU capacity for physical packages and nodes */
 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
+		struct sched_domain_topology_level *tl = sched_domain_topology;
+
 		if (!cpumask_test_cpu(i, cpu_map))
 			continue;
 
-		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
+		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
+			init_sched_groups_energy(i, sd, tl->energy);
 			claim_allocations(i, sd);
 			init_sched_groups_capacity(i, sd);
 		}
@@ -1683,6 +1809,9 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
 	/* Attach the domains */
 	rcu_read_lock();
 	for_each_cpu(i, cpu_map) {
+		int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
+		int min_cpu = READ_ONCE(d.rd->min_cap_orig_cpu);
+
 		rq = cpu_rq(i);
 		sd = *per_cpu_ptr(d.sd, i);
 
@@ -1690,6 +1819,14 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
 
+		if ((max_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig >
+		    cpu_rq(max_cpu)->cpu_capacity_orig))
+			WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
+
+		if ((min_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig <
+		    cpu_rq(min_cpu)->cpu_capacity_orig))
+			WRITE_ONCE(d.rd->min_cap_orig_cpu, i);
+
 		cpu_attach_domain(sd, d.rd, i);
 	}
 	rcu_read_unlock();
diff --git a/kernel/sched/tune.c b/kernel/sched/tune.c
new file mode 100644
index 0000000..2e6ef5f
--- /dev/null
+++ b/kernel/sched/tune.c
@@ -0,0 +1,559 @@
+#include <linux/cgroup.h>
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/rcupdate.h>
+#include <linux/slab.h>
+
+#include <trace/events/sched.h>
+
+#include "sched.h"
+#include "tune.h"
+
+bool schedtune_initialized = false;
+extern struct reciprocal_value schedtune_spc_rdiv;
+
+/*
+ * EAS scheduler tunables for task groups.
+ */
+
+/* SchdTune tunables for a group of tasks */
+struct schedtune {
+	/* SchedTune CGroup subsystem */
+	struct cgroup_subsys_state css;
+
+	/* Boost group allocated ID */
+	int idx;
+
+	/* Boost value for tasks on that SchedTune CGroup */
+	int boost;
+
+	/* Hint to bias scheduling of tasks on that SchedTune CGroup
+	 * towards idle CPUs */
+	int prefer_idle;
+};
+
+static inline struct schedtune *css_st(struct cgroup_subsys_state *css)
+{
+	return css ? container_of(css, struct schedtune, css) : NULL;
+}
+
+static inline struct schedtune *task_schedtune(struct task_struct *tsk)
+{
+	return css_st(task_css(tsk, schedtune_cgrp_id));
+}
+
+static inline struct schedtune *parent_st(struct schedtune *st)
+{
+	return css_st(st->css.parent);
+}
+
+/*
+ * SchedTune root control group
+ * The root control group is used to defined a system-wide boosting tuning,
+ * which is applied to all tasks in the system.
+ * Task specific boost tuning could be specified by creating and
+ * configuring a child control group under the root one.
+ * By default, system-wide boosting is disabled, i.e. no boosting is applied
+ * to tasks which are not into a child control group.
+ */
+static struct schedtune
+root_schedtune = {
+	.boost	= 0,
+	.prefer_idle = 0,
+};
+
+/*
+ * Maximum number of boost groups to support
+ * When per-task boosting is used we still allow only limited number of
+ * boost groups for two main reasons:
+ * 1. on a real system we usually have only few classes of workloads which
+ *    make sense to boost with different values (e.g. background vs foreground
+ *    tasks, interactive vs low-priority tasks)
+ * 2. a limited number allows for a simpler and more memory/time efficient
+ *    implementation especially for the computation of the per-CPU boost
+ *    value
+ */
+#define BOOSTGROUPS_COUNT 5
+
+/* Array of configured boostgroups */
+static struct schedtune *allocated_group[BOOSTGROUPS_COUNT] = {
+	&root_schedtune,
+	NULL,
+};
+
+/* SchedTune boost groups
+ * Keep track of all the boost groups which impact on CPU, for example when a
+ * CPU has two RUNNABLE tasks belonging to two different boost groups and thus
+ * likely with different boost values.
+ * Since on each system we expect only a limited number of boost groups, here
+ * we use a simple array to keep track of the metrics required to compute the
+ * maximum per-CPU boosting value.
+ */
+struct boost_groups {
+	/* Maximum boost value for all RUNNABLE tasks on a CPU */
+	bool idle;
+	int boost_max;
+	struct {
+		/* The boost for tasks on that boost group */
+		int boost;
+		/* Count of RUNNABLE tasks on that boost group */
+		unsigned tasks;
+	} group[BOOSTGROUPS_COUNT];
+	/* CPU's boost group locking */
+	raw_spinlock_t lock;
+};
+
+/* Boost groups affecting each CPU in the system */
+DEFINE_PER_CPU(struct boost_groups, cpu_boost_groups);
+
+static void
+schedtune_cpu_update(int cpu)
+{
+	struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+	int boost_max;
+	int idx;
+
+	/* The root boost group is always active */
+	boost_max = bg->group[0].boost;
+	for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) {
+		/*
+		 * A boost group affects a CPU only if it has
+		 * RUNNABLE tasks on that CPU
+		 */
+		if (bg->group[idx].tasks == 0)
+			continue;
+
+		boost_max = max(boost_max, bg->group[idx].boost);
+	}
+	/* Ensures boost_max is non-negative when all cgroup boost values
+	 * are neagtive. Avoids under-accounting of cpu capacity which may cause
+	 * task stacking and frequency spikes.*/
+	boost_max = max(boost_max, 0);
+	bg->boost_max = boost_max;
+}
+
+static int
+schedtune_boostgroup_update(int idx, int boost)
+{
+	struct boost_groups *bg;
+	int cur_boost_max;
+	int old_boost;
+	int cpu;
+
+	/* Update per CPU boost groups */
+	for_each_possible_cpu(cpu) {
+		bg = &per_cpu(cpu_boost_groups, cpu);
+
+		/*
+		 * Keep track of current boost values to compute the per CPU
+		 * maximum only when it has been affected by the new value of
+		 * the updated boost group
+		 */
+		cur_boost_max = bg->boost_max;
+		old_boost = bg->group[idx].boost;
+
+		/* Update the boost value of this boost group */
+		bg->group[idx].boost = boost;
+
+		/* Check if this update increase current max */
+		if (boost > cur_boost_max && bg->group[idx].tasks) {
+			bg->boost_max = boost;
+			trace_sched_tune_boostgroup_update(cpu, 1, bg->boost_max);
+			continue;
+		}
+
+		/* Check if this update has decreased current max */
+		if (cur_boost_max == old_boost && old_boost > boost) {
+			schedtune_cpu_update(cpu);
+			trace_sched_tune_boostgroup_update(cpu, -1, bg->boost_max);
+			continue;
+		}
+
+		trace_sched_tune_boostgroup_update(cpu, 0, bg->boost_max);
+	}
+
+	return 0;
+}
+
+#define ENQUEUE_TASK  1
+#define DEQUEUE_TASK -1
+
+static inline void
+schedtune_tasks_update(struct task_struct *p, int cpu, int idx, int task_count)
+{
+	struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+	int tasks = bg->group[idx].tasks + task_count;
+
+	/* Update boosted tasks count while avoiding to make it negative */
+	bg->group[idx].tasks = max(0, tasks);
+
+	trace_sched_tune_tasks_update(p, cpu, tasks, idx,
+			bg->group[idx].boost, bg->boost_max);
+
+	/* Boost group activation or deactivation on that RQ */
+	if (tasks == 1 || tasks == 0)
+		schedtune_cpu_update(cpu);
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_enqueue_task(struct task_struct *p, int cpu)
+{
+	struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+	unsigned long irq_flags;
+	struct schedtune *st;
+	int idx;
+
+	if (unlikely(!schedtune_initialized))
+		return;
+
+	/*
+	 * Boost group accouting is protected by a per-cpu lock and requires
+	 * interrupt to be disabled to avoid race conditions for example on
+	 * do_exit()::cgroup_exit() and task migration.
+	 */
+	raw_spin_lock_irqsave(&bg->lock, irq_flags);
+	rcu_read_lock();
+
+	st = task_schedtune(p);
+	idx = st->idx;
+
+	schedtune_tasks_update(p, cpu, idx, ENQUEUE_TASK);
+
+	rcu_read_unlock();
+	raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+int schedtune_can_attach(struct cgroup_taskset *tset)
+{
+	struct task_struct *task;
+	struct cgroup_subsys_state *css;
+	struct boost_groups *bg;
+	struct rq_flags rq_flags;
+	unsigned int cpu;
+	struct rq *rq;
+	int src_bg; /* Source boost group index */
+	int dst_bg; /* Destination boost group index */
+	int tasks;
+
+	if (unlikely(!schedtune_initialized))
+		return 0;
+
+
+	cgroup_taskset_for_each(task, css, tset) {
+
+		/*
+		 * Lock the CPU's RQ the task is enqueued to avoid race
+		 * conditions with migration code while the task is being
+		 * accounted
+		 */
+		rq = task_rq_lock(task, &rq_flags);
+
+		if (!task->on_rq) {
+			task_rq_unlock(rq, task, &rq_flags);
+			continue;
+		}
+
+		/*
+		 * Boost group accouting is protected by a per-cpu lock and requires
+		 * interrupt to be disabled to avoid race conditions on...
+		 */
+		cpu = cpu_of(rq);
+		bg = &per_cpu(cpu_boost_groups, cpu);
+		raw_spin_lock(&bg->lock);
+
+		dst_bg = css_st(css)->idx;
+		src_bg = task_schedtune(task)->idx;
+
+		/*
+		 * Current task is not changing boostgroup, which can
+		 * happen when the new hierarchy is in use.
+		 */
+		if (unlikely(dst_bg == src_bg)) {
+			raw_spin_unlock(&bg->lock);
+			task_rq_unlock(rq, task, &rq_flags);
+			continue;
+		}
+
+		/*
+		 * This is the case of a RUNNABLE task which is switching its
+		 * current boost group.
+		 */
+
+		/* Move task from src to dst boost group */
+		tasks = bg->group[src_bg].tasks - 1;
+		bg->group[src_bg].tasks = max(0, tasks);
+		bg->group[dst_bg].tasks += 1;
+
+		raw_spin_unlock(&bg->lock);
+		task_rq_unlock(rq, task, &rq_flags);
+
+		/* Update CPU boost group */
+		if (bg->group[src_bg].tasks == 0 || bg->group[dst_bg].tasks == 1)
+			schedtune_cpu_update(task_cpu(task));
+
+	}
+
+	return 0;
+}
+
+void schedtune_cancel_attach(struct cgroup_taskset *tset)
+{
+	/* This can happen only if SchedTune controller is mounted with
+	 * other hierarchies ane one of them fails. Since usually SchedTune is
+	 * mouted on its own hierarcy, for the time being we do not implement
+	 * a proper rollback mechanism */
+	WARN(1, "SchedTune cancel attach not implemented");
+}
+
+/*
+ * NOTE: This function must be called while holding the lock on the CPU RQ
+ */
+void schedtune_dequeue_task(struct task_struct *p, int cpu)
+{
+	struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu);
+	unsigned long irq_flags;
+	struct schedtune *st;
+	int idx;
+
+	if (unlikely(!schedtune_initialized))
+		return;
+
+	/*
+	 * Boost group accouting is protected by a per-cpu lock and requires
+	 * interrupt to be disabled to avoid race conditions on...
+	 */
+	raw_spin_lock_irqsave(&bg->lock, irq_flags);
+	rcu_read_lock();
+
+	st = task_schedtune(p);
+	idx = st->idx;
+
+	schedtune_tasks_update(p, cpu, idx, DEQUEUE_TASK);
+
+	rcu_read_unlock();
+	raw_spin_unlock_irqrestore(&bg->lock, irq_flags);
+}
+
+int schedtune_cpu_boost(int cpu)
+{
+	struct boost_groups *bg;
+
+	bg = &per_cpu(cpu_boost_groups, cpu);
+	return bg->boost_max;
+}
+
+int schedtune_task_boost(struct task_struct *p)
+{
+	struct schedtune *st;
+	int task_boost;
+
+	if (unlikely(!schedtune_initialized))
+		return 0;
+
+	/* Get task boost value */
+	rcu_read_lock();
+	st = task_schedtune(p);
+	task_boost = st->boost;
+	rcu_read_unlock();
+
+	return task_boost;
+}
+
+int schedtune_prefer_idle(struct task_struct *p)
+{
+	struct schedtune *st;
+	int prefer_idle;
+
+	if (unlikely(!schedtune_initialized))
+		return 0;
+
+	/* Get prefer_idle value */
+	rcu_read_lock();
+	st = task_schedtune(p);
+	prefer_idle = st->prefer_idle;
+	rcu_read_unlock();
+
+	return prefer_idle;
+}
+
+static u64
+prefer_idle_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+	struct schedtune *st = css_st(css);
+
+	return st->prefer_idle;
+}
+
+static int
+prefer_idle_write(struct cgroup_subsys_state *css, struct cftype *cft,
+	    u64 prefer_idle)
+{
+	struct schedtune *st = css_st(css);
+	st->prefer_idle = prefer_idle;
+
+	return 0;
+}
+
+static s64
+boost_read(struct cgroup_subsys_state *css, struct cftype *cft)
+{
+	struct schedtune *st = css_st(css);
+
+	return st->boost;
+}
+
+static int
+boost_write(struct cgroup_subsys_state *css, struct cftype *cft,
+	    s64 boost)
+{
+	struct schedtune *st = css_st(css);
+
+	if (boost < 0 || boost > 100)
+		return -EINVAL;
+
+	st->boost = boost;
+
+	/* Update CPU boost */
+	schedtune_boostgroup_update(st->idx, st->boost);
+
+	return 0;
+}
+
+static struct cftype files[] = {
+	{
+		.name = "boost",
+		.read_s64 = boost_read,
+		.write_s64 = boost_write,
+	},
+	{
+		.name = "prefer_idle",
+		.read_u64 = prefer_idle_read,
+		.write_u64 = prefer_idle_write,
+	},
+	{ }	/* terminate */
+};
+
+static int
+schedtune_boostgroup_init(struct schedtune *st)
+{
+	struct boost_groups *bg;
+	int cpu;
+
+	/* Keep track of allocated boost groups */
+	allocated_group[st->idx] = st;
+
+	/* Initialize the per CPU boost groups */
+	for_each_possible_cpu(cpu) {
+		bg = &per_cpu(cpu_boost_groups, cpu);
+		bg->group[st->idx].boost = 0;
+		bg->group[st->idx].tasks = 0;
+		raw_spin_lock_init(&bg->lock);
+	}
+
+	return 0;
+}
+
+static struct cgroup_subsys_state *
+schedtune_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+	struct schedtune *st;
+	int idx;
+
+	if (!parent_css)
+		return &root_schedtune.css;
+
+	/* Allow only single level hierachies */
+	if (parent_css != &root_schedtune.css) {
+		pr_err("Nested SchedTune boosting groups not allowed\n");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	/* Allow only a limited number of boosting groups */
+	for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx)
+		if (!allocated_group[idx])
+			break;
+	if (idx == BOOSTGROUPS_COUNT) {
+		pr_err("Trying to create more than %d SchedTune boosting groups\n",
+		       BOOSTGROUPS_COUNT);
+		return ERR_PTR(-ENOSPC);
+	}
+
+	st = kzalloc(sizeof(*st), GFP_KERNEL);
+	if (!st)
+		goto out;
+
+	/* Initialize per CPUs boost group support */
+	st->idx = idx;
+	if (schedtune_boostgroup_init(st))
+		goto release;
+
+	return &st->css;
+
+release:
+	kfree(st);
+out:
+	return ERR_PTR(-ENOMEM);
+}
+
+static void
+schedtune_boostgroup_release(struct schedtune *st)
+{
+	/* Reset this boost group */
+	schedtune_boostgroup_update(st->idx, 0);
+
+	/* Keep track of allocated boost groups */
+	allocated_group[st->idx] = NULL;
+}
+
+static void
+schedtune_css_free(struct cgroup_subsys_state *css)
+{
+	struct schedtune *st = css_st(css);
+
+	schedtune_boostgroup_release(st);
+	kfree(st);
+}
+
+struct cgroup_subsys schedtune_cgrp_subsys = {
+	.css_alloc	= schedtune_css_alloc,
+	.css_free	= schedtune_css_free,
+	.can_attach     = schedtune_can_attach,
+	.cancel_attach  = schedtune_cancel_attach,
+	.legacy_cftypes	= files,
+	.early_init	= 1,
+};
+
+static inline void
+schedtune_init_cgroups(void)
+{
+	struct boost_groups *bg;
+	int cpu;
+
+	/* Initialize the per CPU boost groups */
+	for_each_possible_cpu(cpu) {
+		bg = &per_cpu(cpu_boost_groups, cpu);
+		memset(bg, 0, sizeof(struct boost_groups));
+		raw_spin_lock_init(&bg->lock);
+	}
+
+	pr_info("schedtune: configured to support %d boost groups\n",
+		BOOSTGROUPS_COUNT);
+
+	schedtune_initialized = true;
+}
+
+/*
+ * Initialize the cgroup structures
+ */
+static int
+schedtune_init(void)
+{
+	schedtune_spc_rdiv = reciprocal_value(100);
+	schedtune_init_cgroups();
+	return 0;
+}
+postcore_initcall(schedtune_init);
diff --git a/kernel/sched/tune.h b/kernel/sched/tune.h
new file mode 100644
index 0000000..e79e1b1
--- /dev/null
+++ b/kernel/sched/tune.h
@@ -0,0 +1,33 @@
+
+#ifdef CONFIG_SCHED_TUNE
+
+#include <linux/reciprocal_div.h>
+
+/*
+ * System energy normalization constants
+ */
+struct target_nrg {
+	unsigned long min_power;
+	unsigned long max_power;
+	struct reciprocal_value rdiv;
+};
+
+int schedtune_cpu_boost(int cpu);
+int schedtune_task_boost(struct task_struct *tsk);
+
+int schedtune_prefer_idle(struct task_struct *tsk);
+
+void schedtune_enqueue_task(struct task_struct *p, int cpu);
+void schedtune_dequeue_task(struct task_struct *p, int cpu);
+
+#else /* CONFIG_SCHED_TUNE */
+
+#define schedtune_cpu_boost(cpu)  0
+#define schedtune_task_boost(tsk) 0
+
+#define schedtune_prefer_idle(tsk) 0
+
+#define schedtune_enqueue_task(task, cpu) do { } while (0)
+#define schedtune_dequeue_task(task, cpu) do { } while (0)
+
+#endif /* CONFIG_SCHED_TUNE */
diff --git a/kernel/sched/walt.c b/kernel/sched/walt.c
new file mode 100644
index 0000000..01a411b
--- /dev/null
+++ b/kernel/sched/walt.c
@@ -0,0 +1,921 @@
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ *
+ * Window Assisted Load Tracking (WALT) implementation credits:
+ * Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
+ * Pavan Kumar Kondeti, Olav Haugan
+ *
+ * 2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
+ *             and Todd Kjos
+ */
+
+#include <linux/acpi.h>
+#include <linux/syscore_ops.h>
+#include <trace/events/sched.h>
+#include "sched.h"
+#include "walt.h"
+
+#define WINDOW_STATS_RECENT		0
+#define WINDOW_STATS_MAX		1
+#define WINDOW_STATS_MAX_RECENT_AVG	2
+#define WINDOW_STATS_AVG		3
+#define WINDOW_STATS_INVALID_POLICY	4
+
+#define EXITING_TASK_MARKER	0xdeaddead
+
+static __read_mostly unsigned int walt_ravg_hist_size = 5;
+static __read_mostly unsigned int walt_window_stats_policy =
+	WINDOW_STATS_MAX_RECENT_AVG;
+static __read_mostly unsigned int walt_account_wait_time = 1;
+static __read_mostly unsigned int walt_freq_account_wait_time = 0;
+static __read_mostly unsigned int walt_io_is_busy = 0;
+
+unsigned int sysctl_sched_walt_init_task_load_pct = 15;
+
+/* true -> use PELT based load stats, false -> use window-based load stats */
+bool __read_mostly walt_disabled = false;
+
+/*
+ * Window size (in ns). Adjust for the tick size so that the window
+ * rollover occurs just before the tick boundary.
+ */
+__read_mostly unsigned int walt_ravg_window =
+					    (20000000 / TICK_NSEC) * TICK_NSEC;
+#define MIN_SCHED_RAVG_WINDOW ((10000000 / TICK_NSEC) * TICK_NSEC)
+#define MAX_SCHED_RAVG_WINDOW ((1000000000 / TICK_NSEC) * TICK_NSEC)
+
+static unsigned int sync_cpu;
+static ktime_t ktime_last;
+static __read_mostly bool walt_ktime_suspended;
+
+static unsigned int task_load(struct task_struct *p)
+{
+	return p->ravg.demand;
+}
+
+static inline void fixup_cum_window_demand(struct rq *rq, s64 delta)
+{
+	rq->cum_window_demand += delta;
+	if (unlikely((s64)rq->cum_window_demand < 0))
+		rq->cum_window_demand = 0;
+}
+
+void
+walt_inc_cumulative_runnable_avg(struct rq *rq,
+				 struct task_struct *p)
+{
+	rq->cumulative_runnable_avg += p->ravg.demand;
+
+	/*
+	 * Add a task's contribution to the cumulative window demand when
+	 *
+	 * (1) task is enqueued with on_rq = 1 i.e migration,
+	 *     prio/cgroup/class change.
+	 * (2) task is waking for the first time in this window.
+	 */
+	if (p->on_rq || (p->last_sleep_ts < rq->window_start))
+		fixup_cum_window_demand(rq, p->ravg.demand);
+}
+
+void
+walt_dec_cumulative_runnable_avg(struct rq *rq,
+				 struct task_struct *p)
+{
+	rq->cumulative_runnable_avg -= p->ravg.demand;
+	BUG_ON((s64)rq->cumulative_runnable_avg < 0);
+
+	/*
+	 * on_rq will be 1 for sleeping tasks. So check if the task
+	 * is migrating or dequeuing in RUNNING state to change the
+	 * prio/cgroup/class.
+	 */
+	if (task_on_rq_migrating(p) || p->state == TASK_RUNNING)
+		fixup_cum_window_demand(rq, -(s64)p->ravg.demand);
+}
+
+static void
+fixup_cumulative_runnable_avg(struct rq *rq,
+			      struct task_struct *p, u64 new_task_load)
+{
+	s64 task_load_delta = (s64)new_task_load - task_load(p);
+
+	rq->cumulative_runnable_avg += task_load_delta;
+	if ((s64)rq->cumulative_runnable_avg < 0)
+		panic("cra less than zero: tld: %lld, task_load(p) = %u\n",
+			task_load_delta, task_load(p));
+
+	fixup_cum_window_demand(rq, task_load_delta);
+}
+
+u64 walt_ktime_clock(void)
+{
+	if (unlikely(walt_ktime_suspended))
+		return ktime_to_ns(ktime_last);
+	return ktime_get_ns();
+}
+
+static void walt_resume(void)
+{
+	walt_ktime_suspended = false;
+}
+
+static int walt_suspend(void)
+{
+	ktime_last = ktime_get();
+	walt_ktime_suspended = true;
+	return 0;
+}
+
+static struct syscore_ops walt_syscore_ops = {
+	.resume	= walt_resume,
+	.suspend = walt_suspend
+};
+
+static int __init walt_init_ops(void)
+{
+	register_syscore_ops(&walt_syscore_ops);
+	return 0;
+}
+late_initcall(walt_init_ops);
+
+void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
+		struct task_struct *p)
+{
+	cfs_rq->cumulative_runnable_avg += p->ravg.demand;
+}
+
+void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *cfs_rq,
+		struct task_struct *p)
+{
+	cfs_rq->cumulative_runnable_avg -= p->ravg.demand;
+}
+
+static int exiting_task(struct task_struct *p)
+{
+	if (p->flags & PF_EXITING) {
+		if (p->ravg.sum_history[0] != EXITING_TASK_MARKER) {
+			p->ravg.sum_history[0] = EXITING_TASK_MARKER;
+		}
+		return 1;
+	}
+	return 0;
+}
+
+static int __init set_walt_ravg_window(char *str)
+{
+	unsigned int adj_window;
+	bool no_walt = walt_disabled;
+
+	get_option(&str, &walt_ravg_window);
+
+	/* Adjust for CONFIG_HZ */
+	adj_window = (walt_ravg_window / TICK_NSEC) * TICK_NSEC;
+
+	/* Warn if we're a bit too far away from the expected window size */
+	WARN(adj_window < walt_ravg_window - NSEC_PER_MSEC,
+	     "tick-adjusted window size %u, original was %u\n", adj_window,
+	     walt_ravg_window);
+
+	walt_ravg_window = adj_window;
+
+	walt_disabled = walt_disabled ||
+			(walt_ravg_window < MIN_SCHED_RAVG_WINDOW ||
+			 walt_ravg_window > MAX_SCHED_RAVG_WINDOW);
+
+	WARN(!no_walt && walt_disabled,
+	     "invalid window size, disabling WALT\n");
+
+	return 0;
+}
+
+early_param("walt_ravg_window", set_walt_ravg_window);
+
+static void
+update_window_start(struct rq *rq, u64 wallclock)
+{
+	s64 delta;
+	int nr_windows;
+
+	delta = wallclock - rq->window_start;
+	/* If the MPM global timer is cleared, set delta as 0 to avoid kernel BUG happening */
+	if (delta < 0) {
+		delta = 0;
+		WARN_ONCE(1, "WALT wallclock appears to have gone backwards or reset\n");
+	}
+
+	if (delta < walt_ravg_window)
+		return;
+
+	nr_windows = div64_u64(delta, walt_ravg_window);
+	rq->window_start += (u64)nr_windows * (u64)walt_ravg_window;
+
+	rq->cum_window_demand = rq->cumulative_runnable_avg;
+}
+
+extern unsigned long capacity_curr_of(int cpu);
+/*
+ * Translate absolute delta time accounted on a CPU
+ * to a scale where 1024 is the capacity of the most
+ * capable CPU running at FMAX
+ */
+static u64 scale_exec_time(u64 delta, struct rq *rq)
+{
+	unsigned long capcurr = capacity_curr_of(cpu_of(rq));
+
+	return (delta * capcurr) >> SCHED_CAPACITY_SHIFT;
+}
+
+static int cpu_is_waiting_on_io(struct rq *rq)
+{
+	if (!walt_io_is_busy)
+		return 0;
+
+	return atomic_read(&rq->nr_iowait);
+}
+
+void walt_account_irqtime(int cpu, struct task_struct *curr,
+				 u64 delta, u64 wallclock)
+{
+	struct rq *rq = cpu_rq(cpu);
+	unsigned long flags, nr_windows;
+	u64 cur_jiffies_ts;
+
+	raw_spin_lock_irqsave(&rq->lock, flags);
+
+	/*
+	 * cputime (wallclock) uses sched_clock so use the same here for
+	 * consistency.
+	 */
+	delta += sched_clock() - wallclock;
+	cur_jiffies_ts = get_jiffies_64();
+
+	if (is_idle_task(curr))
+		walt_update_task_ravg(curr, rq, IRQ_UPDATE, walt_ktime_clock(),
+				 delta);
+
+	nr_windows = cur_jiffies_ts - rq->irqload_ts;
+
+	if (nr_windows) {
+		if (nr_windows < 10) {
+			/* Decay CPU's irqload by 3/4 for each window. */
+			rq->avg_irqload *= (3 * nr_windows);
+			rq->avg_irqload = div64_u64(rq->avg_irqload,
+						    4 * nr_windows);
+		} else {
+			rq->avg_irqload = 0;
+		}
+		rq->avg_irqload += rq->cur_irqload;
+		rq->cur_irqload = 0;
+	}
+
+	rq->cur_irqload += delta;
+	rq->irqload_ts = cur_jiffies_ts;
+	raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+
+#define WALT_HIGH_IRQ_TIMEOUT 3
+
+u64 walt_irqload(int cpu) {
+	struct rq *rq = cpu_rq(cpu);
+	s64 delta;
+	delta = get_jiffies_64() - rq->irqload_ts;
+
+        /*
+	 * Current context can be preempted by irq and rq->irqload_ts can be
+	 * updated by irq context so that delta can be negative.
+	 * But this is okay and we can safely return as this means there
+	 * was recent irq occurrence.
+	 */
+
+        if (delta < WALT_HIGH_IRQ_TIMEOUT)
+		return rq->avg_irqload;
+        else
+		return 0;
+}
+
+int walt_cpu_high_irqload(int cpu) {
+	return walt_irqload(cpu) >= sysctl_sched_walt_cpu_high_irqload;
+}
+
+static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
+				     u64 irqtime, int event)
+{
+	if (is_idle_task(p)) {
+		/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
+		if (event == PICK_NEXT_TASK)
+			return 0;
+
+		/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
+		return irqtime || cpu_is_waiting_on_io(rq);
+	}
+
+	if (event == TASK_WAKE)
+		return 0;
+
+	if (event == PUT_PREV_TASK || event == IRQ_UPDATE ||
+					 event == TASK_UPDATE)
+		return 1;
+
+	/* Only TASK_MIGRATE && PICK_NEXT_TASK left */
+	return walt_freq_account_wait_time;
+}
+
+/*
+ * Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
+ */
+static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
+	     int event, u64 wallclock, u64 irqtime)
+{
+	int new_window, nr_full_windows = 0;
+	int p_is_curr_task = (p == rq->curr);
+	u64 mark_start = p->ravg.mark_start;
+	u64 window_start = rq->window_start;
+	u32 window_size = walt_ravg_window;
+	u64 delta;
+
+	new_window = mark_start < window_start;
+	if (new_window) {
+		nr_full_windows = div64_u64((window_start - mark_start),
+						window_size);
+		if (p->ravg.active_windows < USHRT_MAX)
+			p->ravg.active_windows++;
+	}
+
+	/* Handle per-task window rollover. We don't care about the idle
+	 * task or exiting tasks. */
+	if (new_window && !is_idle_task(p) && !exiting_task(p)) {
+		u32 curr_window = 0;
+
+		if (!nr_full_windows)
+			curr_window = p->ravg.curr_window;
+
+		p->ravg.prev_window = curr_window;
+		p->ravg.curr_window = 0;
+	}
+
+	if (!account_busy_for_cpu_time(rq, p, irqtime, event)) {
+		/* account_busy_for_cpu_time() = 0, so no update to the
+		 * task's current window needs to be made. This could be
+		 * for example
+		 *
+		 *   - a wakeup event on a task within the current
+		 *     window (!new_window below, no action required),
+		 *   - switching to a new task from idle (PICK_NEXT_TASK)
+		 *     in a new window where irqtime is 0 and we aren't
+		 *     waiting on IO */
+
+		if (!new_window)
+			return;
+
+		/* A new window has started. The RQ demand must be rolled
+		 * over if p is the current task. */
+		if (p_is_curr_task) {
+			u64 prev_sum = 0;
+
+			/* p is either idle task or an exiting task */
+			if (!nr_full_windows) {
+				prev_sum = rq->curr_runnable_sum;
+			}
+
+			rq->prev_runnable_sum = prev_sum;
+			rq->curr_runnable_sum = 0;
+		}
+
+		return;
+	}
+
+	if (!new_window) {
+		/* account_busy_for_cpu_time() = 1 so busy time needs
+		 * to be accounted to the current window. No rollover
+		 * since we didn't start a new window. An example of this is
+		 * when a task starts execution and then sleeps within the
+		 * same window. */
+
+		if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
+			delta = wallclock - mark_start;
+		else
+			delta = irqtime;
+		delta = scale_exec_time(delta, rq);
+		rq->curr_runnable_sum += delta;
+		if (!is_idle_task(p) && !exiting_task(p))
+			p->ravg.curr_window += delta;
+
+		return;
+	}
+
+	if (!p_is_curr_task) {
+		/* account_busy_for_cpu_time() = 1 so busy time needs
+		 * to be accounted to the current window. A new window
+		 * has also started, but p is not the current task, so the
+		 * window is not rolled over - just split up and account
+		 * as necessary into curr and prev. The window is only
+		 * rolled over when a new window is processed for the current
+		 * task.
+		 *
+		 * Irqtime can't be accounted by a task that isn't the
+		 * currently running task. */
+
+		if (!nr_full_windows) {
+			/* A full window hasn't elapsed, account partial
+			 * contribution to previous completed window. */
+			delta = scale_exec_time(window_start - mark_start, rq);
+			if (!exiting_task(p))
+				p->ravg.prev_window += delta;
+		} else {
+			/* Since at least one full window has elapsed,
+			 * the contribution to the previous window is the
+			 * full window (window_size). */
+			delta = scale_exec_time(window_size, rq);
+			if (!exiting_task(p))
+				p->ravg.prev_window = delta;
+		}
+		rq->prev_runnable_sum += delta;
+
+		/* Account piece of busy time in the current window. */
+		delta = scale_exec_time(wallclock - window_start, rq);
+		rq->curr_runnable_sum += delta;
+		if (!exiting_task(p))
+			p->ravg.curr_window = delta;
+
+		return;
+	}
+
+	if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
+		/* account_busy_for_cpu_time() = 1 so busy time needs
+		 * to be accounted to the current window. A new window
+		 * has started and p is the current task so rollover is
+		 * needed. If any of these three above conditions are true
+		 * then this busy time can't be accounted as irqtime.
+		 *
+		 * Busy time for the idle task or exiting tasks need not
+		 * be accounted.
+		 *
+		 * An example of this would be a task that starts execution
+		 * and then sleeps once a new window has begun. */
+
+		if (!nr_full_windows) {
+			/* A full window hasn't elapsed, account partial
+			 * contribution to previous completed window. */
+			delta = scale_exec_time(window_start - mark_start, rq);
+			if (!is_idle_task(p) && !exiting_task(p))
+				p->ravg.prev_window += delta;
+
+			delta += rq->curr_runnable_sum;
+		} else {
+			/* Since at least one full window has elapsed,
+			 * the contribution to the previous window is the
+			 * full window (window_size). */
+			delta = scale_exec_time(window_size, rq);
+			if (!is_idle_task(p) && !exiting_task(p))
+				p->ravg.prev_window = delta;
+
+		}
+		/*
+		 * Rollover for normal runnable sum is done here by overwriting
+		 * the values in prev_runnable_sum and curr_runnable_sum.
+		 * Rollover for new task runnable sum has completed by previous
+		 * if-else statement.
+		 */
+		rq->prev_runnable_sum = delta;
+
+		/* Account piece of busy time in the current window. */
+		delta = scale_exec_time(wallclock - window_start, rq);
+		rq->curr_runnable_sum = delta;
+		if (!is_idle_task(p) && !exiting_task(p))
+			p->ravg.curr_window = delta;
+
+		return;
+	}
+
+	if (irqtime) {
+		/* account_busy_for_cpu_time() = 1 so busy time needs
+		 * to be accounted to the current window. A new window
+		 * has started and p is the current task so rollover is
+		 * needed. The current task must be the idle task because
+		 * irqtime is not accounted for any other task.
+		 *
+		 * Irqtime will be accounted each time we process IRQ activity
+		 * after a period of idleness, so we know the IRQ busy time
+		 * started at wallclock - irqtime. */
+
+		BUG_ON(!is_idle_task(p));
+		mark_start = wallclock - irqtime;
+
+		/* Roll window over. If IRQ busy time was just in the current
+		 * window then that is all that need be accounted. */
+		rq->prev_runnable_sum = rq->curr_runnable_sum;
+		if (mark_start > window_start) {
+			rq->curr_runnable_sum = scale_exec_time(irqtime, rq);
+			return;
+		}
+
+		/* The IRQ busy time spanned multiple windows. Process the
+		 * busy time preceding the current window start first. */
+		delta = window_start - mark_start;
+		if (delta > window_size)
+			delta = window_size;
+		delta = scale_exec_time(delta, rq);
+		rq->prev_runnable_sum += delta;
+
+		/* Process the remaining IRQ busy time in the current window. */
+		delta = wallclock - window_start;
+		rq->curr_runnable_sum = scale_exec_time(delta, rq);
+
+		return;
+	}
+
+	BUG();
+}
+
+static int account_busy_for_task_demand(struct task_struct *p, int event)
+{
+	/* No need to bother updating task demand for exiting tasks
+	 * or the idle task. */
+	if (exiting_task(p) || is_idle_task(p))
+		return 0;
+
+	/* When a task is waking up it is completing a segment of non-busy
+	 * time. Likewise, if wait time is not treated as busy time, then
+	 * when a task begins to run or is migrated, it is not running and
+	 * is completing a segment of non-busy time. */
+	if (event == TASK_WAKE || (!walt_account_wait_time &&
+			 (event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
+		return 0;
+
+	return 1;
+}
+
+/*
+ * Called when new window is starting for a task, to record cpu usage over
+ * recently concluded window(s). Normally 'samples' should be 1. It can be > 1
+ * when, say, a real-time task runs without preemption for several windows at a
+ * stretch.
+ */
+static void update_history(struct rq *rq, struct task_struct *p,
+			 u32 runtime, int samples, int event)
+{
+	u32 *hist = &p->ravg.sum_history[0];
+	int ridx, widx;
+	u32 max = 0, avg, demand;
+	u64 sum = 0;
+
+	/* Ignore windows where task had no activity */
+	if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
+			goto done;
+
+	/* Push new 'runtime' value onto stack */
+	widx = walt_ravg_hist_size - 1;
+	ridx = widx - samples;
+	for (; ridx >= 0; --widx, --ridx) {
+		hist[widx] = hist[ridx];
+		sum += hist[widx];
+		if (hist[widx] > max)
+			max = hist[widx];
+	}
+
+	for (widx = 0; widx < samples && widx < walt_ravg_hist_size; widx++) {
+		hist[widx] = runtime;
+		sum += hist[widx];
+		if (hist[widx] > max)
+			max = hist[widx];
+	}
+
+	p->ravg.sum = 0;
+
+	if (walt_window_stats_policy == WINDOW_STATS_RECENT) {
+		demand = runtime;
+	} else if (walt_window_stats_policy == WINDOW_STATS_MAX) {
+		demand = max;
+	} else {
+		avg = div64_u64(sum, walt_ravg_hist_size);
+		if (walt_window_stats_policy == WINDOW_STATS_AVG)
+			demand = avg;
+		else
+			demand = max(avg, runtime);
+	}
+
+	/*
+	 * A throttled deadline sched class task gets dequeued without
+	 * changing p->on_rq. Since the dequeue decrements hmp stats
+	 * avoid decrementing it here again.
+	 *
+	 * When window is rolled over, the cumulative window demand
+	 * is reset to the cumulative runnable average (contribution from
+	 * the tasks on the runqueue). If the current task is dequeued
+	 * already, it's demand is not included in the cumulative runnable
+	 * average. So add the task demand separately to cumulative window
+	 * demand.
+	 */
+	if (!task_has_dl_policy(p) || !p->dl.dl_throttled) {
+		if (task_on_rq_queued(p))
+			fixup_cumulative_runnable_avg(rq, p, demand);
+		else if (rq->curr == p)
+			fixup_cum_window_demand(rq, demand);
+	}
+
+	p->ravg.demand = demand;
+
+done:
+	trace_walt_update_history(rq, p, runtime, samples, event);
+	return;
+}
+
+static void add_to_task_demand(struct rq *rq, struct task_struct *p,
+				u64 delta)
+{
+	delta = scale_exec_time(delta, rq);
+	p->ravg.sum += delta;
+	if (unlikely(p->ravg.sum > walt_ravg_window))
+		p->ravg.sum = walt_ravg_window;
+}
+
+/*
+ * Account cpu demand of task and/or update task's cpu demand history
+ *
+ * ms = p->ravg.mark_start;
+ * wc = wallclock
+ * ws = rq->window_start
+ *
+ * Three possibilities:
+ *
+ *	a) Task event is contained within one window.
+ *		window_start < mark_start < wallclock
+ *
+ *		ws   ms  wc
+ *		|    |   |
+ *		V    V   V
+ *		|---------------|
+ *
+ *	In this case, p->ravg.sum is updated *iff* event is appropriate
+ *	(ex: event == PUT_PREV_TASK)
+ *
+ *	b) Task event spans two windows.
+ *		mark_start < window_start < wallclock
+ *
+ *		ms   ws   wc
+ *		|    |    |
+ *		V    V    V
+ *		-----|-------------------
+ *
+ *	In this case, p->ravg.sum is updated with (ws - ms) *iff* event
+ *	is appropriate, then a new window sample is recorded followed
+ *	by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
+ *
+ *	c) Task event spans more than two windows.
+ *
+ *		ms ws_tmp			   ws  wc
+ *		|  |				   |   |
+ *		V  V				   V   V
+ *		---|-------|-------|-------|-------|------
+ *		   |				   |
+ *		   |<------ nr_full_windows ------>|
+ *
+ *	In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
+ *	event is appropriate, window sample of p->ravg.sum is recorded,
+ *	'nr_full_window' samples of window_size is also recorded *iff*
+ *	event is appropriate and finally p->ravg.sum is set to (wc - ws)
+ *	*iff* event is appropriate.
+ *
+ * IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
+ * depends on it!
+ */
+static void update_task_demand(struct task_struct *p, struct rq *rq,
+	     int event, u64 wallclock)
+{
+	u64 mark_start = p->ravg.mark_start;
+	u64 delta, window_start = rq->window_start;
+	int new_window, nr_full_windows;
+	u32 window_size = walt_ravg_window;
+
+	new_window = mark_start < window_start;
+	if (!account_busy_for_task_demand(p, event)) {
+		if (new_window)
+			/* If the time accounted isn't being accounted as
+			 * busy time, and a new window started, only the
+			 * previous window need be closed out with the
+			 * pre-existing demand. Multiple windows may have
+			 * elapsed, but since empty windows are dropped,
+			 * it is not necessary to account those. */
+			update_history(rq, p, p->ravg.sum, 1, event);
+		return;
+	}
+
+	if (!new_window) {
+		/* The simple case - busy time contained within the existing
+		 * window. */
+		add_to_task_demand(rq, p, wallclock - mark_start);
+		return;
+	}
+
+	/* Busy time spans at least two windows. Temporarily rewind
+	 * window_start to first window boundary after mark_start. */
+	delta = window_start - mark_start;
+	nr_full_windows = div64_u64(delta, window_size);
+	window_start -= (u64)nr_full_windows * (u64)window_size;
+
+	/* Process (window_start - mark_start) first */
+	add_to_task_demand(rq, p, window_start - mark_start);
+
+	/* Push new sample(s) into task's demand history */
+	update_history(rq, p, p->ravg.sum, 1, event);
+	if (nr_full_windows)
+		update_history(rq, p, scale_exec_time(window_size, rq),
+			       nr_full_windows, event);
+
+	/* Roll window_start back to current to process any remainder
+	 * in current window. */
+	window_start += (u64)nr_full_windows * (u64)window_size;
+
+	/* Process (wallclock - window_start) next */
+	mark_start = window_start;
+	add_to_task_demand(rq, p, wallclock - mark_start);
+}
+
+/* Reflect task activity on its demand and cpu's busy time statistics */
+void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
+	     int event, u64 wallclock, u64 irqtime)
+{
+	if (walt_disabled || !rq->window_start)
+		return;
+
+	/* there's a bug here - there are many cases where
+	 * we enter here without holding this lock, coming from
+	 * walt_fixup_busy_time - looks like in 4.14 we don't
+	 * hold the dest_rq at time of migration, but I haven't
+	 * yet worked out if it is safe to always lock dest_rq there.
+	 *
+	 * temporarily disable this assert to continue checking the
+	 * rest of the locking here.
+	 */
+	//lockdep_assert_held(&rq->lock);
+
+	update_window_start(rq, wallclock);
+
+	if (!p->ravg.mark_start)
+		goto done;
+
+	update_task_demand(p, rq, event, wallclock);
+	update_cpu_busy_time(p, rq, event, wallclock, irqtime);
+
+done:
+	trace_walt_update_task_ravg(p, rq, event, wallclock, irqtime);
+
+	p->ravg.mark_start = wallclock;
+}
+
+static void reset_task_stats(struct task_struct *p)
+{
+	u32 sum = 0;
+
+	if (exiting_task(p))
+		sum = EXITING_TASK_MARKER;
+
+	memset(&p->ravg, 0, sizeof(struct ravg));
+	/* Retain EXITING_TASK marker */
+	p->ravg.sum_history[0] = sum;
+}
+
+void walt_mark_task_starting(struct task_struct *p)
+{
+	u64 wallclock;
+	struct rq *rq = task_rq(p);
+
+	if (!rq->window_start) {
+		reset_task_stats(p);
+		return;
+	}
+
+	wallclock = walt_ktime_clock();
+	p->ravg.mark_start = wallclock;
+}
+
+void walt_set_window_start(struct rq *rq, struct rq_flags *rf)
+{
+	if (likely(rq->window_start))
+		return;
+
+	if (cpu_of(rq) == sync_cpu) {
+		rq->window_start = 1;
+	} else {
+		struct rq *sync_rq = cpu_rq(sync_cpu);
+		rq_unpin_lock(rq, rf);
+		double_lock_balance(rq, sync_rq);
+		rq->window_start = sync_rq->window_start;
+		rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
+		raw_spin_unlock(&sync_rq->lock);
+		rq_repin_lock(rq, rf);
+	}
+
+	rq->curr->ravg.mark_start = rq->window_start;
+}
+
+void walt_migrate_sync_cpu(int cpu)
+{
+	if (cpu == sync_cpu)
+		sync_cpu = smp_processor_id();
+}
+
+void walt_fixup_busy_time(struct task_struct *p, int new_cpu)
+{
+	struct rq *src_rq = task_rq(p);
+	struct rq *dest_rq = cpu_rq(new_cpu);
+	u64 wallclock;
+
+	if (!p->on_rq && p->state != TASK_WAKING)
+		return;
+
+	if (exiting_task(p)) {
+		return;
+	}
+
+	if (p->state == TASK_WAKING)
+		double_rq_lock(src_rq, dest_rq);
+
+	wallclock = walt_ktime_clock();
+
+//#define LOCK_CONDITION(rq) (debug_locks && !lockdep_is_held(&rq->lock))
+//	WARN(LOCK_CONDITION(task_rq(p)), "task_rq(p) not held. p->state=%08lx new_cpu=%d task_cpu=%d", p->state, new_cpu, p->cpu);
+//	WARN(LOCK_CONDITION(dest_rq), "dest_rq not held. p->state=%08lx new_cpu=%d task_cpu=%d", p->state, new_cpu, p->cpu);
+
+	/*
+	 * It seems that in lots of cases we don't have
+	 * dest_rq locked when we get here, which means
+	 * we can't be sure to the WALT stats - someone
+	 * needs to fix this.
+	 */
+	walt_update_task_ravg(task_rq(p)->curr, task_rq(p),
+			TASK_UPDATE, wallclock, 0);
+	walt_update_task_ravg(dest_rq->curr, dest_rq,
+			TASK_UPDATE, wallclock, 0);
+
+//	WARN(LOCK_CONDITION(task_rq(p)), "task_rq(p) not held after rq update. p->state=%08lx new_cpu=%d task_cpu=%d", p->state, new_cpu, p->cpu);
+	walt_update_task_ravg(p, task_rq(p), TASK_MIGRATE, wallclock, 0);
+
+	/*
+	 * When a task is migrating during the wakeup, adjust
+	 * the task's contribution towards cumulative window
+	 * demand.
+	 */
+	if (p->state == TASK_WAKING &&
+	    p->last_sleep_ts >= src_rq->window_start) {
+		fixup_cum_window_demand(src_rq, -(s64)p->ravg.demand);
+		fixup_cum_window_demand(dest_rq, p->ravg.demand);
+	}
+
+	if (p->ravg.curr_window) {
+		src_rq->curr_runnable_sum -= p->ravg.curr_window;
+		dest_rq->curr_runnable_sum += p->ravg.curr_window;
+	}
+
+	if (p->ravg.prev_window) {
+		src_rq->prev_runnable_sum -= p->ravg.prev_window;
+		dest_rq->prev_runnable_sum += p->ravg.prev_window;
+	}
+
+	if ((s64)src_rq->prev_runnable_sum < 0) {
+		src_rq->prev_runnable_sum = 0;
+		WARN_ON(1);
+	}
+	if ((s64)src_rq->curr_runnable_sum < 0) {
+		src_rq->curr_runnable_sum = 0;
+		WARN_ON(1);
+	}
+
+	trace_walt_migration_update_sum(src_rq, p);
+	trace_walt_migration_update_sum(dest_rq, p);
+
+	if (p->state == TASK_WAKING)
+		double_rq_unlock(src_rq, dest_rq);
+}
+
+void walt_init_new_task_load(struct task_struct *p)
+{
+	int i;
+	u32 init_load_windows =
+			div64_u64((u64)sysctl_sched_walt_init_task_load_pct *
+                          (u64)walt_ravg_window, 100);
+	u32 init_load_pct = current->init_load_pct;
+
+	p->init_load_pct = 0;
+	memset(&p->ravg, 0, sizeof(struct ravg));
+
+	if (init_load_pct) {
+		init_load_windows = div64_u64((u64)init_load_pct *
+			  (u64)walt_ravg_window, 100);
+	}
+
+	p->ravg.demand = init_load_windows;
+	for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
+		p->ravg.sum_history[i] = init_load_windows;
+}
diff --git a/kernel/sched/walt.h b/kernel/sched/walt.h
new file mode 100644
index 0000000..c7a4ef9
--- /dev/null
+++ b/kernel/sched/walt.h
@@ -0,0 +1,62 @@
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __WALT_H
+#define __WALT_H
+
+#ifdef CONFIG_SCHED_WALT
+
+void walt_update_task_ravg(struct task_struct *p, struct rq *rq, int event,
+		u64 wallclock, u64 irqtime);
+void walt_inc_cumulative_runnable_avg(struct rq *rq, struct task_struct *p);
+void walt_dec_cumulative_runnable_avg(struct rq *rq, struct task_struct *p);
+void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+		struct task_struct *p);
+void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+		struct task_struct *p);
+void walt_fixup_busy_time(struct task_struct *p, int new_cpu);
+void walt_init_new_task_load(struct task_struct *p);
+void walt_mark_task_starting(struct task_struct *p);
+void walt_set_window_start(struct rq *rq, struct rq_flags *rf);
+void walt_migrate_sync_cpu(int cpu);
+u64 walt_ktime_clock(void);
+void walt_account_irqtime(int cpu, struct task_struct *curr, u64 delta,
+                                  u64 wallclock);
+
+u64 walt_irqload(int cpu);
+int walt_cpu_high_irqload(int cpu);
+
+#else /* CONFIG_SCHED_WALT */
+
+static inline void walt_update_task_ravg(struct task_struct *p, struct rq *rq,
+		int event, u64 wallclock, u64 irqtime) { }
+static inline void walt_inc_cumulative_runnable_avg(struct rq *rq, struct task_struct *p) { }
+static inline void walt_dec_cumulative_runnable_avg(struct rq *rq, struct task_struct *p) { }
+static inline void walt_inc_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+		struct task_struct *p) { }
+static inline void walt_dec_cfs_cumulative_runnable_avg(struct cfs_rq *rq,
+		struct task_struct *p) { }
+static inline void walt_fixup_busy_time(struct task_struct *p, int new_cpu) { }
+static inline void walt_init_new_task_load(struct task_struct *p) { }
+static inline void walt_mark_task_starting(struct task_struct *p) { }
+static inline void walt_set_window_start(struct rq *rq, struct rq_flags *rf) { }
+static inline void walt_migrate_sync_cpu(int cpu) { }
+static inline u64 walt_ktime_clock(void) { return 0; }
+
+#define walt_cpu_high_irqload(cpu) false
+
+#endif /* CONFIG_SCHED_WALT */
+
+extern bool walt_disabled;
+
+#endif
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index d9c31bc..bc15c2a 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -329,6 +329,50 @@ static struct ctl_table kern_table[] = {
 		.extra1		= &min_sched_granularity_ns,
 		.extra2		= &max_sched_granularity_ns,
 	},
+#ifdef CONFIG_SCHED_WALT
+	{
+		.procname	= "sched_use_walt_cpu_util",
+		.data		= &sysctl_sched_use_walt_cpu_util,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "sched_use_walt_task_util",
+		.data		= &sysctl_sched_use_walt_task_util,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "sched_walt_init_task_load_pct",
+		.data		= &sysctl_sched_walt_init_task_load_pct,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "sched_walt_cpu_high_irqload",
+		.data		= &sysctl_sched_walt_cpu_high_irqload,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+#endif
+	{
+		.procname	= "sched_sync_hint_enable",
+		.data		= &sysctl_sched_sync_hint_enable,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "sched_cstate_aware",
+		.data		= &sysctl_sched_cstate_aware,
+		.maxlen		= sizeof(unsigned int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
 	{
 		.procname	= "sched_wakeup_granularity_ns",
 		.data		= &sysctl_sched_wakeup_granularity,