blob: 913aad21be5c51fa105581e696e875a6819354af [file] [log] [blame]
/*
* Linux cfg80211 Vendor Extension Code
*
* Copyright (C) 2020, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Dual:>>
*/
/*
* New vendor interface additon to nl80211/cfg80211 to allow vendors
* to implement proprietary features over the cfg80211 stack.
*/
#include <typedefs.h>
#include <linuxver.h>
#include <osl.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <bcmutils.h>
#include <bcmwifi_channels.h>
#include <bcmendian.h>
#include <ethernet.h>
#include <802.11.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#include <dngl_stats.h>
#include "wifi_stats.h"
#include <dhd.h>
#include <dhd_debug.h>
#include <dhdioctl.h>
#include <wlioctl.h>
#include <wlioctl_utils.h>
#include <dhd_cfg80211.h>
#ifdef DHD_PKT_LOGGING
#include <dhd_pktlog.h>
#endif /* DHD_PKT_LOGGING */
#ifdef PNO_SUPPORT
#include <dhd_pno.h>
#endif /* PNO_SUPPORT */
#ifdef RTT_SUPPORT
#include <dhd_rtt.h>
#endif /* RTT_SUPPORT */
#include <ethernet.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <wlioctl.h>
#include <wldev_common.h>
#include <wl_cfg80211.h>
#include <wl_cfgp2p.h>
#ifdef WL_NAN
#include <wl_cfgnan.h>
#endif /* WL_NAN */
#include <wl_android.h>
#include <wl_cfgvendor.h>
#ifdef PROP_TXSTATUS
#include <dhd_wlfc.h>
#endif
#include <brcm_nl80211.h>
char*
wl_get_kernel_timestamp(void)
{
static char buf[32];
u64 ts_nsec;
unsigned long rem_nsec;
ts_nsec = local_clock();
rem_nsec = DIV_AND_MOD_U64_BY_U32(ts_nsec, NSEC_PER_SEC);
snprintf(buf, sizeof(buf), "%5lu.%06lu",
(unsigned long)ts_nsec, rem_nsec / NSEC_PER_USEC);
return buf;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(3, 13, 0)) || defined(WL_VENDOR_EXT_SUPPORT)
#if defined(WL_SUPP_EVENT)
int
wl_cfgvendor_send_supp_eventstring(const char *func_name, const char *fmt, ...)
{
char buf[SUPP_LOG_LEN] = {0};
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
va_list args;
int len;
int prefix_len;
int rem_len;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_DBG(("supp evt invalid arg\n"));
return BCME_OK;
}
wiphy = cfg->wdev->wiphy;
prefix_len = snprintf(buf, SUPP_LOG_LEN, "[DHD]<%s> %s: ",
wl_get_kernel_timestamp(), __func__);
/* Remaining buffer len */
rem_len = SUPP_LOG_LEN - (prefix_len + 1);
/* Print the arg list on to the remaining part of the buffer */
va_start(args, fmt);
len = vsnprintf((buf + prefix_len), rem_len, fmt, args);
va_end(args);
if (len < 0) {
return -EINVAL;
}
if (len > rem_len) {
/* If return length is greater than buffer len,
* then its truncated buffer case.
*/
len = rem_len;
}
/* Ensure the buffer is null terminated */
len += prefix_len;
buf[len] = '\0';
len++;
return wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_PRIV_STR, buf, len);
}
int
wl_cfgvendor_notify_supp_event_str(const char *evt_name, const char *fmt, ...)
{
char buf[SUPP_LOG_LEN] = {0};
struct bcm_cfg80211 *cfg;
struct wiphy *wiphy;
va_list args;
int len;
int prefix_len;
int rem_len;
cfg = wl_cfg80211_get_bcmcfg();
if (!cfg || !cfg->wdev) {
WL_DBG(("supp evt invalid arg\n"));
return BCME_OK;
}
wiphy = cfg->wdev->wiphy;
prefix_len = snprintf(buf, SUPP_LOG_LEN, "%s ", evt_name);
/* Remaining buffer len */
rem_len = SUPP_LOG_LEN - (prefix_len + 1);
/* Print the arg list on to the remaining part of the buffer */
va_start(args, fmt);
len = vsnprintf((buf + prefix_len), rem_len, fmt, args);
va_end(args);
if (len < 0) {
return -EINVAL;
}
if (len > rem_len) {
/* If return length is greater than buffer len,
* then its truncated buffer case.
*/
len = rem_len;
}
/* Ensure the buffer is null terminated */
len += prefix_len;
buf[len] = '\0';
len++;
return wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_PRIV_STR, buf, len);
}
#endif /* WL_SUPP_EVENT */
/*
* This API is to be used for asynchronous vendor events. This
* shouldn't be used in response to a vendor command from its
* do_it handler context (instead wl_cfgvendor_send_cmd_reply should
* be used).
*/
int wl_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len)
{
gfp_t kflags;
struct sk_buff *skb;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), len, event_id, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
cfg80211_vendor_event(skb, kflags);
return 0;
}
static int
wl_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
const void *data, int len)
{
struct sk_buff *skb;
int err;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
err = cfg80211_vendor_cmd_reply(skb);
exit:
WL_DBG(("wl_cfgvendor_send_cmd_reply status %d", err));
return err;
}
static int
wl_cfgvendor_get_feature_set(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int reply;
reply = dhd_dev_get_feature_set(bcmcfg_to_prmry_ndev(cfg));
err = wl_cfgvendor_send_cmd_reply(wiphy, &reply, sizeof(int));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
return err;
}
static int
wl_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *skb;
int reply;
int mem_needed, i;
mem_needed = VENDOR_REPLY_OVERHEAD +
(ATTRIBUTE_U32_LEN * MAX_FEATURE_SET_CONCURRRENT_GROUPS) + ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
err = nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET,
MAX_FEATURE_SET_CONCURRRENT_GROUPS);
if (unlikely(err)) {
kfree_skb(skb);
goto exit;
}
for (i = 0; i < MAX_FEATURE_SET_CONCURRRENT_GROUPS; i++) {
reply = dhd_dev_get_feature_set_matrix(bcmcfg_to_prmry_ndev(cfg), i);
if (reply != WIFI_FEATURE_INVALID) {
err = nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET,
reply);
if (unlikely(err)) {
kfree_skb(skb);
goto exit;
}
}
}
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
return err;
}
static int
wl_cfgvendor_set_rand_mac_oui(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
if (!data) {
WL_ERR(("data is not available\n"));
goto exit;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
goto exit;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI) {
if (nla_len(data) != DOT11_OUI_LEN) {
WL_ERR(("nla_len not matched.\n"));
goto exit;
}
err = dhd_dev_cfg_rand_mac_oui(bcmcfg_to_prmry_ndev(cfg), nla_data(data));
if (unlikely(err))
WL_ERR(("Bad OUI, could not set:%d \n", err));
}
exit:
return err;
}
#ifdef CUSTOM_FORCE_NODFS_FLAG
static int
wl_cfgvendor_set_nodfs_flag(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
u32 nodfs;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_NODFS_SET) {
nodfs = nla_get_u32(data);
err = dhd_dev_set_nodfs(bcmcfg_to_prmry_ndev(cfg), nodfs);
}
return err;
}
#endif /* CUSTOM_FORCE_NODFS_FLAG */
static int
wl_cfgvendor_set_country(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_ERROR, rem, type;
char country_code[WLC_CNTRY_BUF_SZ] = {0};
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *primary_ndev = bcmcfg_to_prmry_ndev(cfg);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_COUNTRY:
err = memcpy_s(country_code, WLC_CNTRY_BUF_SZ,
nla_data(iter), nla_len(iter));
if (err) {
WL_ERR(("Failed to copy country code: %d\n", err));
return err;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return err;
}
}
/* country code is unique for dongle..hence using primary interface. */
err = wl_cfg80211_set_country_code(primary_ndev, country_code, true, true, -1);
if (err < 0) {
WL_ERR(("Set country failed ret:%d\n", err));
}
return err;
}
#ifdef GSCAN_SUPPORT
int
wl_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, wl_vendor_event_t event)
{
gfp_t kflags;
const void *ptr;
struct sk_buff *skb;
int malloc_len, total, iter_cnt_to_send, cnt;
gscan_results_cache_t *cache = (gscan_results_cache_t *)data;
total = len/sizeof(wifi_gscan_result_t);
while (total > 0) {
malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
if (malloc_len > NLMSG_DEFAULT_SIZE) {
malloc_len = NLMSG_DEFAULT_SIZE;
}
iter_cnt_to_send =
(malloc_len - VENDOR_DATA_OVERHEAD)/sizeof(wifi_gscan_result_t);
total = total - iter_cnt_to_send;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev),
malloc_len, event, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, malloc_len, event, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
while (cache && iter_cnt_to_send) {
ptr = (const void *) &cache->results[cache->tot_consumed];
if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed)) {
cnt = iter_cnt_to_send;
} else {
cnt = (cache->tot_count - cache->tot_consumed);
}
iter_cnt_to_send -= cnt;
cache->tot_consumed += cnt;
/* Push the data to the skb */
nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
if (cache->tot_consumed == cache->tot_count) {
cache = cache->next;
}
}
cfg80211_vendor_event(skb, kflags);
}
return 0;
}
static int
wl_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_gscan_capabilities_t *reply = NULL;
uint32 reply_len = 0;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
if (!reply) {
WL_ERR(("Could not get capabilities\n"));
err = -EINVAL;
return err;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, reply, reply_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
MFREE(cfg->osh, reply, reply_len);
return err;
}
static int
wl_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_results_cache_t *results, *iter;
uint32 reply_len, is_done = 1;
int32 mem_needed, num_results_iter;
wifi_gscan_result_t *ptr;
uint16 num_scan_ids, num_results;
struct sk_buff *skb;
struct nlattr *scan_hdr, *complete_flag;
err = dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK)
return -EBUSY;
err = dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK) {
WL_ERR(("Can't obtain lock to access batch results %d\n", err));
return -EBUSY;
}
results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);
if (!results) {
WL_ERR(("No results to send %d\n", err));
err = wl_cfgvendor_send_cmd_reply(wiphy, results, 0);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
num_scan_ids = reply_len & 0xFFFF;
num_results = (reply_len & 0xFFFF0000) >> 16;
mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
(num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;
if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
mem_needed = (int32)NLMSG_DEFAULT_SIZE;
}
WL_TRACE(("is_done %d mem_needed %d max_mem %d\n", is_done, mem_needed,
(int)NLMSG_DEFAULT_SIZE));
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
iter = results;
complete_flag = nla_reserve(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE,
sizeof(is_done));
if (unlikely(!complete_flag)) {
WL_ERR(("complete_flag could not be reserved"));
kfree_skb(skb);
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);
while (iter) {
num_results_iter = (mem_needed - (int32)GSCAN_BATCH_RESULT_HDR_LEN);
num_results_iter /= (int32)sizeof(wifi_gscan_result_t);
if (num_results_iter <= 0 ||
((iter->tot_count - iter->tot_consumed) > num_results_iter)) {
break;
}
scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
/* no more room? we are done then (for now) */
if (scan_hdr == NULL) {
is_done = 0;
break;
}
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
if (unlikely(err)) {
goto fail;
}
err = nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
if (unlikely(err)) {
goto fail;
}
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_CH_BUCKET_BITMASK, iter->scan_ch_bucket);
if (unlikely(err)) {
goto fail;
}
num_results_iter = iter->tot_count - iter->tot_consumed;
err = nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
if (unlikely(err)) {
goto fail;
}
if (num_results_iter) {
ptr = &iter->results[iter->tot_consumed];
err = nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
num_results_iter * sizeof(wifi_gscan_result_t), ptr);
if (unlikely(err)) {
goto fail;
}
iter->tot_consumed += num_results_iter;
}
nla_nest_end(skb, scan_hdr);
mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
(num_results_iter * sizeof(wifi_gscan_result_t));
iter = iter->next;
}
/* Cleans up consumed results and returns TRUE if all results are consumed */
is_done = dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
memcpy(nla_data(complete_flag), &is_done, sizeof(is_done));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return cfg80211_vendor_cmd_reply(skb);
fail:
/* Free up consumed results which will now not be sent */
(void)dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
kfree_skb(skb);
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
static int
wl_cfgvendor_initiate_gscan(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type, tmp = len;
int run = 0xFF;
int flush = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
run = nla_get_u32(iter);
else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
flush = nla_get_u32(iter);
}
if (run != 0xFF) {
err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
return err;
} else {
return -EINVAL;
}
}
static int
wl_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
bool real_time = FALSE;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
real_time = nla_get_u32(data);
err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
} else {
err = -EINVAL;
}
return err;
}
static int
wl_cfgvendor_set_scan_cfg_bucket(const struct nlattr *prev,
gscan_scan_params_t *scan_param, int num)
{
struct dhd_pno_gscan_channel_bucket *ch_bucket;
int k = 0;
int type, err = 0, rem;
const struct nlattr *cur, *next;
nla_for_each_nested(cur, prev, rem) {
type = nla_type(cur);
ch_bucket = scan_param->channel_bucket;
switch (type) {
case GSCAN_ATTRIBUTE_BUCKET_ID:
break;
case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].bucket_freq_multiple =
nla_get_u32(cur) / MSEC_PER_SEC;
break;
case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].num_channels = nla_get_u32(cur);
if (ch_bucket[num].num_channels >
GSCAN_MAX_CHANNELS_IN_BUCKET) {
WL_ERR(("channel range:%d,bucket:%d\n",
ch_bucket[num].num_channels,
num));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
nla_for_each_nested(next, cur, rem) {
if (k >= GSCAN_MAX_CHANNELS_IN_BUCKET)
break;
if (nla_len(next) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].chan_list[k] = nla_get_u32(next);
k++;
}
break;
case GSCAN_ATTRIBUTE_BUCKETS_BAND:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].band = (uint16)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_REPORT_EVENTS:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].report_flag = (uint8)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_BUCKET_STEP_COUNT:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].repeat = (uint16)nla_get_u32(cur);
break;
case GSCAN_ATTRIBUTE_BUCKET_MAX_PERIOD:
if (nla_len(cur) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
ch_bucket[num].bucket_max_multiple =
nla_get_u32(cur) / MSEC_PER_SEC;
break;
default:
WL_ERR(("unknown attr type:%d\n", type));
err = -EINVAL;
goto exit;
}
}
exit:
return err;
}
static int
wl_cfgvendor_set_scan_cfg(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_scan_params_t *scan_param;
int j = 0;
int type, tmp;
const struct nlattr *iter;
scan_param = (gscan_scan_params_t *)MALLOCZ(cfg->osh,
sizeof(gscan_scan_params_t));
if (!scan_param) {
WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
err = -EINVAL;
return err;
}
scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (j >= GSCAN_MAX_CH_BUCKETS) {
break;
}
switch (type) {
case GSCAN_ATTRIBUTE_BASE_PERIOD:
if (nla_len(iter) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
scan_param->scan_fr = nla_get_u32(iter) / MSEC_PER_SEC;
break;
case GSCAN_ATTRIBUTE_NUM_BUCKETS:
if (nla_len(iter) != sizeof(uint32)) {
err = -EINVAL;
goto exit;
}
scan_param->nchannel_buckets = nla_get_u32(iter);
if (scan_param->nchannel_buckets >=
GSCAN_MAX_CH_BUCKETS) {
WL_ERR(("ncha_buck out of range %d\n",
scan_param->nchannel_buckets));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_CH_BUCKET_1:
case GSCAN_ATTRIBUTE_CH_BUCKET_2:
case GSCAN_ATTRIBUTE_CH_BUCKET_3:
case GSCAN_ATTRIBUTE_CH_BUCKET_4:
case GSCAN_ATTRIBUTE_CH_BUCKET_5:
case GSCAN_ATTRIBUTE_CH_BUCKET_6:
case GSCAN_ATTRIBUTE_CH_BUCKET_7:
err = wl_cfgvendor_set_scan_cfg_bucket(iter, scan_param, j);
if (err < 0) {
WL_ERR(("set_scan_cfg_buck error:%d\n", err));
goto exit;
}
j++;
break;
default:
WL_ERR(("Unknown type %d\n", type));
err = -EINVAL;
goto exit;
}
}
err = dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SCAN_CFG_ID, scan_param, FALSE);
if (err < 0) {
WL_ERR(("Could not set GSCAN scan cfg\n"));
err = -EINVAL;
}
exit:
MFREE(cfg->osh, scan_param, sizeof(gscan_scan_params_t));
return err;
}
static int
wl_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_hotlist_scan_params_t *hotlist_params;
int tmp, tmp1, tmp2, type, j = 0, dummy;
const struct nlattr *outer, *inner = NULL, *iter;
bool flush = FALSE;
struct bssid_t *pbssid;
BCM_REFERENCE(dummy);
if (len < sizeof(*hotlist_params) || len >= WLC_IOCTL_MAXLEN) {
WL_ERR(("buffer length :%d wrong - bail out.\n", len));
return -EINVAL;
}
hotlist_params = (gscan_hotlist_scan_params_t *)MALLOCZ(cfg->osh,
sizeof(*hotlist_params)
+ (sizeof(struct bssid_t) * (PFN_SWC_MAX_NUM_APS - 1)));
if (!hotlist_params) {
WL_ERR(("Cannot Malloc memory.\n"));
return -ENOMEM;
}
hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_HOTLIST_BSSID_COUNT:
if (nla_len(iter) != sizeof(uint32)) {
WL_DBG(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
hotlist_params->nbssid = (uint16)nla_get_u32(iter);
if ((hotlist_params->nbssid == 0) ||
(hotlist_params->nbssid > PFN_SWC_MAX_NUM_APS)) {
WL_ERR(("nbssid:%d exceed limit.\n",
hotlist_params->nbssid));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
if (hotlist_params->nbssid == 0) {
WL_ERR(("nbssid not retrieved.\n"));
err = -EINVAL;
goto exit;
}
pbssid = hotlist_params->bssid;
nla_for_each_nested(outer, iter, tmp) {
if (j >= hotlist_params->nbssid)
break;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID:
if (nla_len(inner) != sizeof(pbssid[j].macaddr)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
memcpy(
&(pbssid[j].macaddr),
nla_data(inner),
sizeof(pbssid[j].macaddr));
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
if (nla_len(inner) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
pbssid[j].rssi_reporting_threshold =
(int8)nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
if (nla_len(inner) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(inner)));
err = -EINVAL;
goto exit;
}
dummy = (int8)nla_get_u8(inner);
WL_DBG(("dummy %d\n", dummy));
break;
default:
WL_ERR(("ATTR unknown %d\n", type));
err = -EINVAL;
goto exit;
}
}
j++;
}
if (j != hotlist_params->nbssid) {
WL_ERR(("bssid_cnt:%d != nbssid:%d.\n", j,
hotlist_params->nbssid));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
if (nla_len(iter) != sizeof(uint8)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("type:%d length:%d not matching.\n",
type, nla_len(iter)));
err = -EINVAL;
goto exit;
}
hotlist_params->lost_ap_window = (uint16)nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
err = -EINVAL;
goto exit;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GEOFENCE_SCAN_CFG_ID, hotlist_params, flush) < 0) {
WL_ERR(("Could not set GSCAN HOTLIST cfg error: %d\n", err));
err = -EINVAL;
goto exit;
}
exit:
MFREE(cfg->osh, hotlist_params, sizeof(*hotlist_params)
+ (sizeof(struct bssid_t) * (PFN_SWC_MAX_NUM_APS - 1)));
return err;
}
static int wl_cfgvendor_epno_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_ssid_t *ssid_elem = NULL;
int tmp, tmp1, tmp2, type = 0, num = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = FALSE, i = 0;
wl_ssid_ext_params_t params;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID_LIST:
nla_for_each_nested(outer, iter, tmp) {
ssid_elem = (dhd_pno_ssid_t *)
dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_NEW_EPNO_SSID_ELEM,
NULL, &num);
if (!ssid_elem) {
WL_ERR(("Failed to get SSID LIST buffer\n"));
err = -ENOMEM;
goto exit;
}
i++;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID:
memcpy(ssid_elem->SSID,
nla_data(inner),
DOT11_MAX_SSID_LEN);
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_LEN:
ssid_elem->SSID_len =
nla_get_u32(inner);
if (ssid_elem->SSID_len >
DOT11_MAX_SSID_LEN) {
WL_ERR(("SSID too"
"long %d\n",
ssid_elem->SSID_len));
err = -EINVAL;
MFREE(cfg->osh, ssid_elem,
num);
goto exit;
}
break;
case GSCAN_ATTRIBUTE_EPNO_FLAGS:
ssid_elem->flags =
nla_get_u32(inner);
ssid_elem->hidden =
((ssid_elem->flags &
DHD_EPNO_HIDDEN_SSID) != 0);
break;
case GSCAN_ATTRIBUTE_EPNO_AUTH:
ssid_elem->wpa_auth =
nla_get_u32(inner);
break;
}
}
if (!ssid_elem->SSID_len) {
WL_ERR(("Broadcast SSID is illegal for ePNO\n"));
err = -EINVAL;
MFREE(cfg->osh, ssid_elem, num);
goto exit;
}
dhd_pno_translate_epno_fw_flags(&ssid_elem->flags);
dhd_pno_set_epno_auth_flag(&ssid_elem->wpa_auth);
MFREE(cfg->osh, ssid_elem, num);
}
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_NUM:
num = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_FLUSH:
flush = (bool)nla_get_u32(iter);
/* Flush attribute is expected before any ssid attribute */
if (i && flush) {
WL_ERR(("Bad attributes\n"));
err = -EINVAL;
goto exit;
}
/* Need to flush driver and FW cfg */
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, NULL, flush);
dhd_dev_flush_fw_epno(bcmcfg_to_prmry_ndev(cfg));
break;
case GSCAN_ATTRIBUTE_EPNO_5G_RSSI_THR:
params.min5G_rssi = nla_get_s8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_2G_RSSI_THR:
params.min2G_rssi = nla_get_s8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_INIT_SCORE_MAX:
params.init_score_max = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_CUR_CONN_BONUS:
params.cur_bssid_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_SAME_NETWORK_BONUS:
params.same_ssid_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_SECURE_BONUS:
params.secure_bonus = nla_get_s16(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_5G_BONUS:
params.band_5g_bonus = nla_get_s16(iter);
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
err = -EINVAL;
goto exit;
}
}
if (i != num) {
WL_ERR(("%s: num_ssid %d does not match ssids sent %d\n", __FUNCTION__,
num, i));
err = -EINVAL;
}
exit:
/* Flush all configs if error condition */
if (err < 0) {
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, NULL, TRUE);
dhd_dev_flush_fw_epno(bcmcfg_to_prmry_ndev(cfg));
} else if (type != GSCAN_ATTRIBUTE_EPNO_FLUSH) {
/* If the last attribute was FLUSH, nothing else to do */
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_PARAMS_ID, &params, FALSE);
err = dhd_dev_set_epno(bcmcfg_to_prmry_ndev(cfg));
}
return err;
}
static int
wl_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_batch_params_t batch_param;
const struct nlattr *iter;
batch_param.mscan = batch_param.bestn = 0;
batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
batch_param.bestn = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
batch_param.mscan = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
batch_param.buffer_threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_BATCH_SCAN_CFG_ID, &batch_param, FALSE) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
return err;
}
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(DHD_GET_VALID_CHANNELS)
static int
wl_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, type, band;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint16 *reply = NULL;
uint32 reply_len = 0, num_channels, mem_needed;
struct sk_buff *skb;
dhd_pub_t *dhdp;
struct net_device *ndev = wdev->netdev;
if (!ndev) {
WL_ERR(("ndev null\n"));
return -EINVAL;
}
dhdp = wl_cfg80211_get_dhdp(ndev);
if (!dhdp) {
WL_ERR(("dhdp null\n"));
return -EINVAL;
}
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_BAND) {
band = nla_get_u32(data);
} else {
return -EINVAL;
}
reply = dhd_pno_get_gscan(dhdp,
DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);
if (!reply) {
WL_ERR(("Could not get channel list\n"));
err = -EINVAL;
return err;
}
num_channels = reply_len/ sizeof(uint32);
mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
MFREE(cfg->osh, reply, reply_len);
return err;
}
#endif /* GSCAN_SUPPORT || DHD_GET_VALID_CHANNELS */
#ifdef RSSI_MONITOR_SUPPORT
static int wl_cfgvendor_set_rssi_monitor(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type, start = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int8 max_rssi = 0, min_rssi = 0;
const struct nlattr *iter;
if (!wl_get_drv_status(cfg, CONNECTED, wdev_to_ndev(wdev))) {
WL_ERR(("Sta is not connected to an AP, rssi monitoring is not allowed\n"));
return -EINVAL;
}
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case RSSI_MONITOR_ATTRIBUTE_MAX_RSSI:
max_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_MIN_RSSI:
min_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_START:
start = nla_get_u32(iter);
}
}
if (dhd_dev_set_rssi_monitor_cfg(bcmcfg_to_prmry_ndev(cfg),
start, max_rssi, min_rssi) < 0) {
WL_ERR(("Could not set rssi monitor cfg\n"));
err = -EINVAL;
}
return err;
}
#endif /* RSSI_MONITOR_SUPPORT */
#ifdef DHD_WAKE_STATUS
static int
wl_cfgvendor_get_wake_reason_stats(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
wake_counts_t *pwake_count_info;
int ret, mem_needed;
#if defined(DHD_DEBUG) && defined(DHD_WAKE_EVENT_STATUS)
int flowid;
#endif /* DHD_DEBUG && DHD_WAKE_EVENT_STATUS */
struct sk_buff *skb = NULL;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(ndev);
WL_DBG(("Recv get wake status info cmd.\n"));
pwake_count_info = dhd_get_wakecount(dhdp);
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 20) +
(WLC_E_LAST * sizeof(uint));
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
ret = -ENOMEM;
goto exit;
}
#ifdef DHD_WAKE_EVENT_STATUS
WL_ERR(("pwake_count_info->rcwake %d\n", pwake_count_info->rcwake));
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_TOTAL_CMD_EVENT, pwake_count_info->rcwake);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total count of CMD event, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_CMD_EVENT_COUNT_USED, WLC_E_LAST);
if (unlikely(ret)) {
WL_ERR(("Failed to put Max count of event used, ret=%d\n", ret));
goto exit;
}
ret = nla_put(skb, WAKE_STAT_ATTRIBUTE_CMD_EVENT_WAKE, (WLC_E_LAST * sizeof(uint)),
pwake_count_info->rc_event);
if (unlikely(ret)) {
WL_ERR(("Failed to put Event wake data, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_DEBUG
for (flowid = 0; flowid < WLC_E_LAST; flowid++) {
if (pwake_count_info->rc_event[flowid] != 0) {
WL_ERR((" %s = %u\n", bcmevent_get_name(flowid),
pwake_count_info->rc_event[flowid]));
}
}
#endif /* DHD_DEBUG */
#endif /* DHD_WAKE_EVENT_STATUS */
#ifdef DHD_WAKE_RX_STATUS
WL_ERR(("pwake_count_info->rxwake %d\n", pwake_count_info->rxwake));
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_TOTAL_RX_DATA_WAKE, pwake_count_info->rxwake);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total Wake due RX data, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_UNICAST_COUNT, pwake_count_info->rx_ucast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX unicast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_MULTICAST_COUNT, pwake_count_info->rx_mcast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due RX multicast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_BROADCAST_COUNT, pwake_count_info->rx_bcast);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX broadcast, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP_PKT, pwake_count_info->rx_arp);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMP pkt, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_PKT, pwake_count_info->rx_icmpv6);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due ICMPV6 pkt, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_RA, pwake_count_info->rx_icmpv6_ra);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_RA, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_NA, pwake_count_info->rx_icmpv6_na);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_NA, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_RX_ICMP6_NS, pwake_count_info->rx_icmpv6_ns);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to ICMPV6_NS, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_IPV4_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_ipv4);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX IPV4 MULTICAST, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_IPV6_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_ipv6);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to RX IPV6 MULTICAST, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, WAKE_STAT_ATTRIBUTE_OTHER_RX_MULTICAST_ADD_CNT,
pwake_count_info->rx_multi_other);
if (unlikely(ret)) {
WL_ERR(("Failed to put Total wake due to Other RX Multicast, ret=%d\n", ret));
goto exit;
}
#endif /* #ifdef DHD_WAKE_RX_STATUS */
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("Vendor cmd reply for -get wake status failed:%d \n", ret));
}
/* On cfg80211_vendor_cmd_reply() skb is consumed and freed in case of success or failure */
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
#endif /* DHD_WAKE_STATUS */
#ifdef DHDTCPACK_SUPPRESS
static int
wl_cfgvendor_set_tcpack_sup_mode(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
uint8 enable = 0;
if (!data) {
WL_ERR(("data is not available\n"));
err = BCME_BADARG;
goto exit;
}
if (len <= 0) {
WL_ERR(("Length of the nlattr is not valid len : %d\n", len));
err = BCME_BADARG;
goto exit;
}
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_TCPACK_SUP_VALUE) {
enable = (uint8) nla_get_u32(data);
err = dhd_dev_set_tcpack_sup_mode_cfg(ndev, enable);
if (unlikely(err)) {
WL_ERR(("Could not set TCP Ack Suppress mode cfg: %d\n", err));
}
} else {
err = BCME_BADARG;
}
exit:
return err;
}
#endif /* DHDTCPACK_SUPPRESS */
#if defined(WL_CFG80211) && defined(DHD_FILE_DUMP_EVENT)
static int
wl_cfgvendor_notify_dump_completion(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
unsigned long flags = 0;
WL_INFORM(("%s, [DUMP] received file dump notification from HAL\n", __FUNCTION__));
DHD_GENERAL_LOCK(dhd_pub, flags);
/* call wmb() to synchronize with the previous memory operations */
OSL_SMP_WMB();
DHD_BUS_BUSY_CLEAR_IN_HALDUMP(dhd_pub);
/* Call another wmb() to make sure wait_for_dump_completion value
* gets updated before waking up waiting context.
*/
OSL_SMP_WMB();
dhd_os_busbusy_wake(dhd_pub);
DHD_GENERAL_UNLOCK(dhd_pub, flags);
return BCME_OK;
}
#endif /* WL_CFG80211 && DHD_FILE_DUMP_EVENT */
#if defined(WL_CFG80211)
static int
wl_cfgvendor_set_hal_started(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
#ifdef WL_STA_ASSOC_RAND
struct ether_addr primary_mac;
dhd_pub_t *dhd = (dhd_pub_t *)(cfg->pub);
#endif /* WL_STA_ASSOC_RAND */
int ret = BCME_OK;
#if defined(WIFI_TURNON_USE_HALINIT)
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
uint32 type;
if (!data) {
WL_DBG(("%s,data is not available\n", __FUNCTION__));
} else {
if (len > 0) {
type = nla_type(data);
WL_INFORM(("%s,type: %xh\n", __FUNCTION__, type));
if (type == SET_HAL_START_ATTRIBUTE_PRE_INIT) {
if (nla_len(data)) {
WL_INFORM(("%s, HAL version: %s\n", __FUNCTION__,
(char*)nla_data(data)));
}
WL_INFORM(("%s, dhd_open start\n", __FUNCTION__));
ret = dhd_open(ndev);
if (ret != BCME_OK) {
WL_INFORM(("%s, dhd_open failed\n", __FUNCTION__));
return ret;
} else {
WL_INFORM(("%s, dhd_open succeeded\n", __FUNCTION__));
}
return ret;
}
} else {
WL_ERR(("invalid len %d\n", len));
}
}
#endif /* WIFI_TURNON_USE_HALINIT */
RETURN_EIO_IF_NOT_UP(cfg);
WL_INFORM(("%s,[DUMP] HAL STARTED\n", __FUNCTION__));
cfg->hal_started = true;
#ifdef WL_STA_ASSOC_RAND
/* If mac randomization is enabled and primary macaddress is not
* randomized, randomize it from HAL init context
*/
get_primary_mac(cfg, &primary_mac);
if ((!ETHER_IS_LOCALADDR(&primary_mac)) &&
(!wl_get_drv_status(cfg, CONNECTED, wdev_to_ndev(wdev)))) {
WL_DBG_MEM(("%s, Local admin bit not set, randomize"
"STA MAC address \n", __FUNCTION__));
if ((ret = dhd_update_rand_mac_addr(dhd)) < 0) {
WL_ERR(("%s: failed to set macaddress, ret = %d\n", __FUNCTION__, ret));
return ret;
}
}
#endif /* WL_STA_ASSOC_RAND */
return ret;
}
static int
wl_cfgvendor_stop_hal(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
WL_INFORM(("%s,[DUMP] HAL STOPPED\n", __FUNCTION__));
cfg->hal_started = false;
return BCME_OK;
}
#endif /* WL_CFG80211 */
#ifdef RTT_SUPPORT
void
wl_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
struct wireless_dev *wdev = (struct wireless_dev *)ctx;
struct wiphy *wiphy;
struct sk_buff *skb = NULL;
uint32 evt_complete = 0;
gfp_t kflags;
rtt_result_t *rtt_result;
rtt_results_header_t *rtt_header;
struct list_head *rtt_cache_list;
struct nlattr *rtt_nl_hdr;
int ret = BCME_OK;
wiphy = wdev->wiphy;
WL_DBG(("In\n"));
/* Push the data to the skb */
if (!rtt_data) {
WL_ERR(("rtt_data is NULL\n"));
return;
}
rtt_cache_list = (struct list_head *)rtt_data;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
if (list_empty(rtt_cache_list)) {
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, 100, GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
evt_complete = 1;
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, evt_complete);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto free_mem;
}
cfg80211_vendor_event(skb, kflags);
return;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
list_for_each_entry(rtt_header, rtt_cache_list, list) {
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
if (list_is_last(&rtt_header->list, rtt_cache_list)) {
evt_complete = 1;
}
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, evt_complete);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto free_mem;
}
rtt_nl_hdr = nla_nest_start(skb, RTT_ATTRIBUTE_RESULTS_PER_TARGET);
if (!rtt_nl_hdr) {
WL_ERR(("rtt_nl_hdr is NULL\n"));
dev_kfree_skb_any(skb);
break;
}
ret = nla_put(skb, RTT_ATTRIBUTE_TARGET_MAC, ETHER_ADDR_LEN,
&rtt_header->peer_mac);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_TARGET_MAC, ret:%d\n", ret));
goto free_mem;
}
ret = nla_put_u32(skb, RTT_ATTRIBUTE_RESULT_CNT, rtt_header->result_cnt);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_CNT, ret:%d\n", ret));
goto free_mem;
}
list_for_each_entry(rtt_result, &rtt_header->result_list, list) {
ret = nla_put(skb, RTT_ATTRIBUTE_RESULT,
rtt_result->report_len, &rtt_result->report);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT, ret:%d\n", ret));
goto free_mem;
}
ret = nla_put(skb, RTT_ATTRIBUTE_RESULT_DETAIL,
rtt_result->detail_len, &rtt_result->rtt_detail);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_DETAIL, ret:%d\n",
ret));
goto free_mem;
}
}
nla_nest_end(skb, rtt_nl_hdr);
cfg80211_vendor_event(skb, kflags);
}
GCC_DIAGNOSTIC_POP();
return;
free_mem:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
}
static int
wl_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len) {
int err = 0, rem, rem1, rem2, type;
int target_cnt = 0;
rtt_config_params_t rtt_param;
rtt_target_info_t* rtt_target = NULL;
const struct nlattr *iter, *iter1, *iter2;
int8 eabuf[ETHER_ADDR_STR_LEN];
int8 chanbuf[CHANSPEC_STR_LEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
bzero(&rtt_param, sizeof(rtt_param));
WL_DBG(("In\n"));
err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
if (err < 0) {
WL_ERR(("failed to register rtt_noti_callback\n"));
goto exit;
}
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (err < 0) {
WL_ERR(("failed to get the capability\n"));
goto exit;
}
if (len <= 0) {
WL_ERR(("Length of the nlattr is not valid len : %d\n", len));
err = BCME_ERROR;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
if (target_cnt != 0) {
WL_ERR(("attempt to overwrite target_cnt"));
err = -EINVAL;
goto exit;
}
target_cnt = nla_get_u8(iter);
if ((target_cnt <= 0) || (target_cnt > RTT_MAX_TARGET_CNT)) {
WL_ERR(("target_cnt is not valid : %d\n",
target_cnt));
err = BCME_RANGE;
goto exit;
}
rtt_param.rtt_target_cnt = target_cnt;
rtt_param.target_info = (rtt_target_info_t *)MALLOCZ(cfg->osh,
TARGET_INFO_SIZE(target_cnt));
if (rtt_param.target_info == NULL) {
WL_ERR(("failed to allocate target info for (%d)\n", target_cnt));
err = BCME_NOMEM;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_INFO:
/* Added this variable for safe check to avoid crash
* incase the caller did not respect the order
*/
if (rtt_param.target_info == NULL) {
WL_ERR(("rtt_target_info is NULL\n"));
err = BCME_NOMEM;
goto exit;
}
rtt_target = rtt_param.target_info;
nla_for_each_nested(iter1, iter, rem1) {
if ((uint8 *)rtt_target >= ((uint8 *)rtt_param.target_info +
TARGET_INFO_SIZE(target_cnt))) {
WL_ERR(("rtt_target increased over its max size"));
err = -EINVAL;
goto exit;
}
nla_for_each_nested(iter2, iter1, rem2) {
type = nla_type(iter2);
switch (type) {
case RTT_ATTRIBUTE_TARGET_MAC:
if (nla_len(iter2) != ETHER_ADDR_LEN) {
WL_ERR(("mac_addr length not match\n"));
err = -EINVAL;
goto exit;
}
memcpy(&rtt_target->addr, nla_data(iter2),
ETHER_ADDR_LEN);
break;
case RTT_ATTRIBUTE_TARGET_TYPE:
rtt_target->type = nla_get_u8(iter2);
if (rtt_target->type == RTT_INVALID ||
(rtt_target->type == RTT_ONE_WAY &&
!capability.rtt_one_sided_supported)) {
WL_ERR(("doesn't support RTT type"
" : %d\n",
rtt_target->type));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_PEER:
rtt_target->peer = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_CHAN:
memcpy(&rtt_target->channel, nla_data(iter2),
sizeof(rtt_target->channel));
break;
case RTT_ATTRIBUTE_TARGET_PERIOD:
rtt_target->burst_period = nla_get_u32(iter2);
if (rtt_target->burst_period < 32) {
/* 100ms unit */
rtt_target->burst_period *= 100;
} else {
WL_ERR(("%d value must in (0-31)\n",
rtt_target->burst_period));
err = EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_NUM_BURST:
rtt_target->num_burst = nla_get_u32(iter2);
if (rtt_target->num_burst > 16) {
WL_ERR(("%d value must in (0-15)\n",
rtt_target->num_burst));
err = -EINVAL;
goto exit;
}
rtt_target->num_burst = BIT(rtt_target->num_burst);
break;
case RTT_ATTRIBUTE_TARGET_NUM_FTM_BURST:
rtt_target->num_frames_per_burst =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTM:
rtt_target->num_retries_per_ftm =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTMR:
rtt_target->num_retries_per_ftmr =
nla_get_u32(iter2);
if (rtt_target->num_retries_per_ftmr > 3) {
WL_ERR(("%d value must in (0-3)\n",
rtt_target->num_retries_per_ftmr));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_LCI:
rtt_target->LCI_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_LCR:
rtt_target->LCI_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_BURST_DURATION:
if ((nla_get_u32(iter2) > 1 &&
nla_get_u32(iter2) < 12)) {
rtt_target->burst_duration =
dhd_rtt_idx_to_burst_duration(
nla_get_u32(iter2));
} else if (nla_get_u32(iter2) == 15) {
/* use default value */
rtt_target->burst_duration = 0;
} else {
WL_ERR(("%d value must in (2-11) or 15\n",
nla_get_u32(iter2)));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_BW:
rtt_target->bw = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_PREAMBLE:
rtt_target->preamble = nla_get_u8(iter2);
break;
}
}
/* convert to chanspec value */
rtt_target->chanspec =
dhd_rtt_convert_to_chspec(rtt_target->channel);
if (rtt_target->chanspec == 0) {
WL_ERR(("Channel is not valid \n"));
err = -EINVAL;
goto exit;
}
WL_INFORM_MEM(("Target addr %s, Channel : %s for RTT \n",
bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr,
eabuf),
wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
rtt_target++;
}
break;
}
}
WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
WL_ERR(("Could not set RTT configuration\n"));
err = -EINVAL;
}
exit:
/* free the target info list */
if (rtt_param.target_info) {
MFREE(cfg->osh, rtt_param.target_info,
TARGET_INFO_SIZE(target_cnt));
}
return err;
}
static int
wl_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, type, target_cnt = 0;
int target_idx = 0;
const struct nlattr *iter;
struct ether_addr *mac_list = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
if (len <= 0) {
WL_ERR(("Length of nlattr is not valid len : %d\n", len));
err = -EINVAL;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
if (mac_list != NULL) {
WL_ERR(("mac_list is not NULL\n"));
err = -EINVAL;
goto exit;
}
target_cnt = nla_get_u8(iter);
if ((target_cnt > 0) && (target_cnt < RTT_MAX_TARGET_CNT)) {
mac_list = (struct ether_addr *)MALLOCZ(cfg->osh,
target_cnt * ETHER_ADDR_LEN);
if (mac_list == NULL) {
WL_ERR(("failed to allocate mem for mac list\n"));
err = -EINVAL;
goto exit;
}
} else {
/* cancel the current whole RTT process */
goto cancel;
}
break;
case RTT_ATTRIBUTE_TARGET_MAC:
if (mac_list == NULL) {
WL_ERR(("ATTRIBUTE_TARGET_CNT not found before "
" ATTRIBUTE_TARGET_MAC\n"));
err = -EINVAL;
goto exit;
}
if (target_idx >= target_cnt) {
WL_ERR(("More TARGET_MAC entries found, "
"expected TARGET_CNT:%d\n", target_cnt));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != ETHER_ADDR_LEN) {
WL_ERR(("Invalid TARGET_MAC ATTR len :%d\n", nla_len(iter)));
err = -EINVAL;
goto exit;
}
memcpy(&mac_list[target_idx], nla_data(iter), ETHER_ADDR_LEN);
target_idx++;
break;
default:
WL_ERR(("Uknown type : %d\n", type));
err = -EINVAL;
goto exit;
}
}
cancel:
if (mac_list && dhd_dev_rtt_cancel_cfg(
bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
WL_ERR(("Could not cancel RTT configuration\n"));
err = -EINVAL;
}
exit:
if (mac_list) {
MFREE(cfg->osh, mac_list, target_cnt * ETHER_ADDR_LEN);
}
return err;
}
static int
wl_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
goto exit;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, &capability, sizeof(capability));
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
return err;
}
static int
get_responder_info(struct bcm_cfg80211 *cfg,
struct wifi_rtt_responder *responder_info)
{
int err = 0;
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Could not get responder capability:%d \n", err));
return err;
}
if (capability.preamble_support & RTT_PREAMBLE_VHT) {
responder_info->preamble |= RTT_PREAMBLE_VHT;
}
if (capability.preamble_support & RTT_PREAMBLE_HT) {
responder_info->preamble |= RTT_PREAMBLE_HT;
}
err = dhd_dev_rtt_avail_channel(bcmcfg_to_prmry_ndev(cfg), &(responder_info->channel));
if (unlikely(err)) {
WL_ERR(("Could not get available channel:%d \n", err));
return err;
}
return err;
}
static int
wl_cfgvendor_rtt_get_responder_info(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wifi_rtt_responder_t responder_info;
WL_DBG(("Recv -get_avail_ch command \n"));
bzero(&responder_info, sizeof(responder_info));
err = get_responder_info(cfg, &responder_info);
if (unlikely(err)) {
WL_ERR(("Failed to get responder info:%d \n", err));
return err;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, &responder_info, sizeof(responder_info));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for -get_avail_ch failed ret:%d \n", err));
}
return err;
}
static int
wl_cfgvendor_rtt_set_responder(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct net_device *ndev = wdev_to_wlc_ndev(wdev, cfg);
wifi_rtt_responder_t responder_info;
WL_DBG(("Recv rtt -enable_resp cmd.\n"));
bzero(&responder_info, sizeof(responder_info));
/*
*Passing channel as NULL until implementation
*to get chan info from upper layers is donex
*/
err = dhd_dev_rtt_enable_responder(ndev, NULL);
if (unlikely(err)) {
WL_ERR(("Could not enable responder ret:%d \n", err));
goto done;
}
err = get_responder_info(cfg, &responder_info);
if (unlikely(err)) {
WL_ERR(("Failed to get responder info:%d \n", err));
dhd_dev_rtt_cancel_responder(ndev);
goto done;
}
done:
err = wl_cfgvendor_send_cmd_reply(wiphy, &responder_info, sizeof(responder_info));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for -enable_resp failed ret:%d \n", err));
}
return err;
}
static int
wl_cfgvendor_rtt_cancel_responder(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
WL_DBG(("Recv rtt -cancel_resp cmd \n"));
err = dhd_dev_rtt_cancel_responder(bcmcfg_to_prmry_ndev(cfg));
if (unlikely(err)) {
WL_ERR(("Vendor cmd -cancel_resp failed ret:%d \n", err));
}
return err;
}
#endif /* RTT_SUPPORT */
#ifdef GSCAN_SUPPORT
static int wl_cfgvendor_enable_lazy_roam(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
uint32 lazy_roam_enable_flag;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invaild len %d\n", len));
return -EINVAL;
}
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_LAZY_ROAM_ENABLE) {
lazy_roam_enable_flag = nla_get_u32(data);
err = dhd_dev_lazy_roam_enable(bcmcfg_to_prmry_ndev(cfg),
lazy_roam_enable_flag);
if (unlikely(err))
WL_ERR(("Could not enable lazy roam:%d \n", err));
}
return err;
}
static int wl_cfgvendor_set_lazy_roam_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wlc_roam_exp_params_t roam_param;
const struct nlattr *iter;
bzero(&roam_param, sizeof(roam_param));
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_A_BAND_BOOST_THRESHOLD:
roam_param.a_band_boost_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_THRESHOLD:
roam_param.a_band_penalty_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_BOOST_FACTOR:
roam_param.a_band_boost_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_FACTOR:
roam_param.a_band_penalty_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_MAX_BOOST:
roam_param.a_band_max_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_LAZY_ROAM_HYSTERESIS:
roam_param.cur_bssid_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_ALERT_ROAM_RSSI_TRIGGER:
roam_param.alert_roam_trigger_threshold = nla_get_u32(iter);
break;
}
}
if (dhd_dev_set_lazy_roam_cfg(bcmcfg_to_prmry_ndev(cfg), &roam_param) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
}
return err;
}
/* small helper function */
static wl_bssid_pref_cfg_t *
create_bssid_pref_cfg(struct bcm_cfg80211 *cfg, uint32 num, uint32 *buf_len)
{
wl_bssid_pref_cfg_t *bssid_pref;
*buf_len = sizeof(wl_bssid_pref_cfg_t);
if (num) {
*buf_len += (num - 1) * sizeof(wl_bssid_pref_list_t);
}
bssid_pref = (wl_bssid_pref_cfg_t *)MALLOC(cfg->osh, *buf_len);
return bssid_pref;
}
static int
wl_cfgvendor_set_bssid_pref(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_bssid_pref_cfg_t *bssid_pref = NULL;
wl_bssid_pref_list_t *bssids;
int tmp, tmp1, tmp2, type;
const struct nlattr *outer, *inner, *iter;
uint32 flush = 0, num = 0, buf_len = 0;
uint8 bssid_found = 0, rssi_found = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
if (num) {
WL_ERR(("attempt overide bssid num.\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("nla_len not match\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_BSSID_PREF_LIST_NUM) {
WL_ERR(("wrong BSSID num:%d\n", num));
err = -EINVAL;
goto exit;
}
if ((bssid_pref = create_bssid_pref_cfg(cfg, num, &buf_len))
== NULL) {
WL_ERR(("Can't malloc memory\n"));
err = -ENOMEM;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("nla_len not match\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("wrong flush value\n"));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_LIST:
if (!num || !bssid_pref) {
WL_ERR(("bssid list count not set\n"));
err = -EINVAL;
goto exit;
}
bssid_pref->count = 0;
bssids = bssid_pref->bssids;
nla_for_each_nested(outer, iter, tmp) {
if (bssid_pref->count >= num) {
WL_ERR(("too many bssid list\n"));
err = -EINVAL;
goto exit;
}
bssid_found = 0;
rssi_found = 0;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID_PREF:
if (nla_len(inner) != ETHER_ADDR_LEN) {
WL_ERR(("nla_len not match.\n"));
err = -EINVAL;
goto exit;
}
memcpy(&(bssids[bssid_pref->count].bssid),
nla_data(inner), ETHER_ADDR_LEN);
/* not used for now */
bssids[bssid_pref->count].flags = 0;
bssid_found = 1;
break;
case GSCAN_ATTRIBUTE_RSSI_MODIFIER:
if (nla_len(inner) != sizeof(uint32)) {
WL_ERR(("nla_len not match.\n"));
err = -EINVAL;
goto exit;
}
bssids[bssid_pref->count].rssi_factor =
(int8) nla_get_u32(inner);
rssi_found = 1;
break;
default:
WL_ERR(("wrong type:%d\n", type));
err = -EINVAL;
goto exit;
}
if (bssid_found && rssi_found) {
break;
}
}
bssid_pref->count++;
}
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
break;
}
}
if (!bssid_pref) {
/* What if only flush is desired? */
if (flush) {
if ((bssid_pref = create_bssid_pref_cfg(cfg, 0, &buf_len)) == NULL) {
WL_ERR(("%s: Can't malloc memory\n", __FUNCTION__));
err = -ENOMEM;
goto exit;
}
bssid_pref->count = 0;
} else {
err = -EINVAL;
goto exit;
}
}
err = dhd_dev_set_lazy_roam_bssid_pref(bcmcfg_to_prmry_ndev(cfg),
bssid_pref, flush);
exit:
if (bssid_pref) {
MFREE(cfg->osh, bssid_pref, buf_len);
}
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(ROAMEXP_SUPPORT)
static int
wl_cfgvendor_set_bssid_blacklist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
maclist_t *blacklist = NULL;
int err = 0;
int type, tmp;
const struct nlattr *iter;
uint32 mem_needed = 0, flush = 0, num = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
if (num != 0) {
WL_ERR(("attempt to change BSSID num\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_BSSID_BLACKLIST_NUM) {
WL_ERR(("wrong BSSID count:%d\n", num));
err = -EINVAL;
goto exit;
}
if (!blacklist) {
mem_needed = (uint32) (OFFSETOF(maclist_t, ea) +
sizeof(struct ether_addr) * (num));
blacklist = (maclist_t *)
MALLOCZ(cfg->osh, mem_needed);
if (!blacklist) {
WL_ERR(("MALLOCZ failed.\n"));
err = -ENOMEM;
goto exit;
}
}
break;
case GSCAN_ATTRIBUTE_BSSID_BLACKLIST_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("flush arg is worng:%d\n", flush));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BLACKLIST_BSSID:
if (num == 0 || !blacklist) {
WL_ERR(("number of BSSIDs not received.\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != ETHER_ADDR_LEN) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
if (blacklist->count >= num) {
WL_ERR(("too many BSSIDs than expected:%d\n",
blacklist->count));
err = -EINVAL;
goto exit;
}
memcpy(&(blacklist->ea[blacklist->count]), nla_data(iter),
ETHER_ADDR_LEN);
blacklist->count++;
break;
default:
WL_ERR(("No such attribute:%d\n", type));
break;
}
}
if (blacklist && (blacklist->count != num)) {
WL_ERR(("not matching bssid count:%d to expected:%d\n",
blacklist->count, num));
err = -EINVAL;
goto exit;
}
err = dhd_dev_set_blacklist_bssid(bcmcfg_to_prmry_ndev(cfg),
blacklist, mem_needed, flush);
exit:
MFREE(cfg->osh, blacklist, mem_needed);
return err;
}
static int
wl_cfgvendor_set_ssid_whitelist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_ssid_whitelist_t *ssid_whitelist = NULL;
wlc_ssid_t *ssid_elem;
int tmp, tmp1, mem_needed = 0, type;
const struct nlattr *iter, *iter1;
uint32 flush = 0, num = 0;
int ssid_found = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_WL_SSID:
if (num != 0) {
WL_ERR(("try to change SSID num\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
num = nla_get_u32(iter);
if (num == 0 || num > MAX_SSID_WHITELIST_NUM) {
WL_ERR(("wrong SSID count:%d\n", num));
err = -EINVAL;
goto exit;
}
mem_needed = sizeof(wl_ssid_whitelist_t) +
sizeof(wlc_ssid_t) * num;
ssid_whitelist = (wl_ssid_whitelist_t *)
MALLOCZ(cfg->osh, mem_needed);
if (ssid_whitelist == NULL) {
WL_ERR(("failed to alloc mem\n"));
err = -ENOMEM;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WL_SSID_FLUSH:
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("not matching nla_len.\n"));
err = -EINVAL;
goto exit;
}
flush = nla_get_u32(iter);
if (flush != 1) {
WL_ERR(("flush arg worng:%d\n", flush));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WHITELIST_SSID_ELEM:
if (!num || !ssid_whitelist) {
WL_ERR(("num ssid is not set!\n"));
err = -EINVAL;
goto exit;
}
if (ssid_whitelist->ssid_count >= num) {
WL_ERR(("too many SSIDs:%d\n",
ssid_whitelist->ssid_count));
err = -EINVAL;
goto exit;
}
ssid_elem = &ssid_whitelist->ssids[
ssid_whitelist->ssid_count];
ssid_found = 0;
nla_for_each_nested(iter1, iter, tmp1) {
type = nla_type(iter1);
switch (type) {
case GSCAN_ATTRIBUTE_WL_SSID_LEN:
if (nla_len(iter1) != sizeof(uint32)) {
WL_ERR(("not match nla_len\n"));
err = -EINVAL;
goto exit;
}
ssid_elem->SSID_len = nla_get_u32(iter1);
if (ssid_elem->SSID_len >
DOT11_MAX_SSID_LEN) {
WL_ERR(("wrong SSID len:%d\n",
ssid_elem->SSID_len));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_WHITELIST_SSID:
if (ssid_elem->SSID_len == 0) {
WL_ERR(("SSID_len not received\n"));
err = -EINVAL;
goto exit;
}
if (nla_len(iter1) != ssid_elem->SSID_len) {
WL_ERR(("not match nla_len\n"));
err = -EINVAL;
goto exit;
}
memcpy(ssid_elem->SSID, nla_data(iter1),
ssid_elem->SSID_len);
ssid_found = 1;
break;
}
if (ssid_found) {
ssid_whitelist->ssid_count++;
break;
}
}
break;
default:
WL_ERR(("No such attribute: %d\n", type));
break;
}
}
if (ssid_whitelist && (ssid_whitelist->ssid_count != num)) {
WL_ERR(("not matching ssid count:%d to expected:%d\n",
ssid_whitelist->ssid_count, num));
err = -EINVAL;
goto exit;
}
err = dhd_dev_set_whitelist_ssid(bcmcfg_to_prmry_ndev(cfg),
ssid_whitelist, mem_needed, flush);
if (err == BCME_UNSUPPORTED) {
/* If firmware doesn't support feature, ignore the error
* Android framework doesn't populate/use whitelist ssids
* as of now, but invokes whitelist as part of roam config
* API. so this handler cannot be compiled out. but its
* safe to ignore.
*/
WL_ERR(("whilelist ssid not supported. Ignore."));
err = BCME_OK;
}
exit:
MFREE(cfg->osh, ssid_whitelist, mem_needed);
return err;
}
#endif /* GSCAN_SUPPORT || ROAMEXP_SUPPORT */
#ifdef ROAMEXP_SUPPORT
typedef enum {
FW_ROAMING_ENABLE = 1,
FW_ROAMING_DISABLE,
FW_ROAMING_PAUSE,
FW_ROAMING_RESUME
} fw_roaming_state_t;
static int
wl_cfgvendor_set_fw_roaming_state(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
fw_roaming_state_t requested_roaming_state;
int type;
int err = 0;
if (!data) {
WL_ERR(("data is not available\n"));
return -EINVAL;
}
if (len <= 0) {
WL_ERR(("invalid len %d\n", len));
return -EINVAL;
}
/* Get the requested fw roaming state */
type = nla_type(data);
if (type != GSCAN_ATTRIBUTE_ROAM_STATE_SET) {
WL_ERR(("%s: Invalid attribute %d\n", __FUNCTION__, type));
return -EINVAL;
}
requested_roaming_state = nla_get_u32(data);
WL_INFORM(("setting FW roaming state to %d\n", requested_roaming_state));
if ((requested_roaming_state == FW_ROAMING_ENABLE) ||
(requested_roaming_state == FW_ROAMING_RESUME)) {
err = wldev_iovar_setint(wdev_to_ndev(wdev), "roam_off", FALSE);
} else if ((requested_roaming_state == FW_ROAMING_DISABLE) ||
(requested_roaming_state == FW_ROAMING_PAUSE)) {
err = wldev_iovar_setint(wdev_to_ndev(wdev), "roam_off", TRUE);
} else {
err = -EINVAL;
}
return err;
}
static int
wl_cfgvendor_fw_roam_get_capability(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
wifi_roaming_capabilities_t roaming_capability;
/* Update max number of blacklist bssids supported */
roaming_capability.max_blacklist_size = MAX_BSSID_BLACKLIST_NUM;
roaming_capability.max_whitelist_size = MAX_SSID_WHITELIST_NUM;
err = wl_cfgvendor_send_cmd_reply(wiphy, &roaming_capability,
sizeof(roaming_capability));
if (unlikely(err)) {
WL_ERR(("Vendor cmd reply for fw roam capability failed ret:%d \n", err));
}
return err;
}
#endif /* ROAMEXP_SUPPORT */
static int
wl_cfgvendor_priv_string_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int ret = 0;
int ret_len = 0, payload = 0, msglen;
const struct bcm_nlmsg_hdr *nlioc = data;
void *buf = NULL, *cur;
int maxmsglen = PAGE_SIZE - 0x100;
struct sk_buff *reply;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
/* send to dongle only if we are not waiting for reload already */
if (dhdp && dhdp->hang_was_sent) {
WL_INFORM(("Bus down. HANG was sent up earlier\n"));
DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(dhdp, DHD_EVENT_TIMEOUT_MS);
DHD_OS_WAKE_UNLOCK(dhdp);
return OSL_ERROR(BCME_DONGLE_DOWN);
}
if (!data) {
WL_ERR(("data is not available\n"));
return BCME_BADARG;
}
if (len <= sizeof(struct bcm_nlmsg_hdr)) {
WL_ERR(("invalid len %d\n", len));
return BCME_BADARG;
}
WL_DBG(("entry: cmd = %d\n", nlioc->cmd));
if (nlioc->offset != sizeof(struct bcm_nlmsg_hdr)) {
WL_ERR(("invalid offset %d\n", nlioc->offset));
return BCME_BADARG;
}
len -= sizeof(struct bcm_nlmsg_hdr);
ret_len = nlioc->len;
if (ret_len > 0 || len > 0) {
if (len >= DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize input buffer %d\n", len));
len = DHD_IOCTL_MAXLEN - 1;
}
if (ret_len >= DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize return buffer %d\n", ret_len));
ret_len = DHD_IOCTL_MAXLEN - 1;
}
payload = max(ret_len, len) + 1;
buf = vzalloc(payload);
if (!buf) {
return -ENOMEM;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
memcpy(buf, (void *)((char *)nlioc + nlioc->offset), len);
GCC_DIAGNOSTIC_POP();
*((char *)buf + len) = '\0';
}
ret = dhd_cfgvendor_priv_string_handler(cfg, wdev, nlioc, buf);
if (ret) {
WL_ERR(("dhd_cfgvendor returned error %d", ret));
vfree(buf);
return ret;
}
cur = buf;
while (ret_len > 0) {
msglen = ret_len > maxmsglen ? maxmsglen : ret_len;
ret_len -= msglen;
payload = msglen + sizeof(msglen);
reply = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, payload);
if (!reply) {
WL_ERR(("Failed to allocate reply msg\n"));
ret = -ENOMEM;
break;
}
if (nla_put(reply, BCM_NLATTR_DATA, msglen, cur) ||
nla_put_u16(reply, BCM_NLATTR_LEN, msglen)) {
kfree_skb(reply);
ret = -ENOBUFS;
break;
}
ret = cfg80211_vendor_cmd_reply(reply);
if (ret) {
WL_ERR(("testmode reply failed:%d\n", ret));
break;
}
cur = (void *)((char *)cur + msglen);
}
return ret;
}
struct net_device *
wl_cfgvendor_get_ndev(struct bcm_cfg80211 *cfg, struct wireless_dev *wdev,
const char *data, unsigned long int *out_addr)
{
char *pos, *pos1;
char ifname[IFNAMSIZ + 1] = {0};
struct net_info *iter, *next;
struct net_device *ndev = NULL;
ulong ifname_len;
*out_addr = (unsigned long int) data; /* point to command str by default */
/* check whether ifname=<ifname> is provided in the command */
pos = strstr(data, "ifname=");
if (pos) {
pos += strlen("ifname=");
pos1 = strstr(pos, " ");
if (!pos1) {
WL_ERR(("command format error \n"));
return NULL;
}
ifname_len = pos1 - pos;
if (memcpy_s(ifname, (sizeof(ifname) - 1), pos, ifname_len) != BCME_OK) {
WL_ERR(("Failed to copy data. len: %ld\n", ifname_len));
return NULL;
}
GCC_DIAGNOSTIC_PUSH_SUPPRESS_CAST();
for_each_ndev(cfg, iter, next) {
if (iter->ndev) {
if (strncmp(iter->ndev->name, ifname,
strlen(iter->ndev->name)) == 0) {
/* matching ifname found */
WL_DBG(("matching interface (%s) found ndev:%p \n",
iter->ndev->name, iter->ndev));
*out_addr = (unsigned long int)(pos1 + 1);
/* Returns the command portion after ifname=<name> */
return iter->ndev;
}
}
}
GCC_DIAGNOSTIC_POP();
WL_ERR(("Couldn't find ifname:%s in the netinfo list \n",
ifname));
return NULL;
}
/* If ifname=<name> arg is not provided, use default ndev */
ndev = wdev->netdev ? wdev->netdev : bcmcfg_to_prmry_ndev(cfg);
WL_DBG(("Using default ndev (%s) \n", ndev->name));
return ndev;
}
#ifdef WL_SAE
static int wl_cfgvendor_map_supp_sae_pwe_to_fw(u32 sup_value, u32 *sae_pwe)
{
s32 ret = BCME_OK;
switch (sup_value) {
case SUPP_SAE_PWE_LOOP:
*sae_pwe = SAE_PWE_LOOP;
break;
case SUPP_SAE_PWE_H2E:
*sae_pwe = SAE_PWE_H2E;
break;
case SUPP_SAE_PWE_TRANS:
*sae_pwe = SAE_PWE_LOOP | SAE_PWE_H2E;
break;
default:
ret = BCME_BADARG;
}
return ret;
}
#endif /* WL_SAE */
int
wl_cfgvendor_connect_params_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *net = wdev->netdev;
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
BCM_REFERENCE(net);
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
WL_DBG(("attr type: (%u)\n", attr_type));
switch (attr_type) {
#ifdef WL_SAE
case BRCM_ATTR_SAE_PWE: {
u32 sae_pwe = 0;
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("Invalid value of sae_pwe\n"));
ret = -EINVAL;
break;
}
ret = wl_cfgvendor_map_supp_sae_pwe_to_fw(nla_get_u32(iter), &sae_pwe);
if (unlikely(ret)) {
WL_ERR(("Invalid sae_pwe\n"));
break;
}
ret = wl_cfg80211_set_wsec_info(net, &sae_pwe,
sizeof(sae_pwe), WL_WSEC_INFO_BSS_SAE_PWE);
if (unlikely(ret)) {
WL_ERR(("set wsec_info_sae_pwe failed \n"));
}
break;
}
#endif /* WL_SAE */
/* Add new attributes here */
default:
WL_DBG(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
}
}
return ret;
}
int
wl_cfgvendor_start_ap_params_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *net = wdev->netdev;
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
BCM_REFERENCE(net);
nla_for_each_attr(iter, data, len, rem) {
attr_type = nla_type(iter);
WL_DBG(("attr type: (%u)\n", attr_type));
switch (attr_type) {
#ifdef WL_SAE
case BRCM_ATTR_SAE_PWE: {
u32 sae_pwe = 0;
if (nla_len(iter) != sizeof(uint32)) {
WL_ERR(("Invalid value of sae_pwe\n"));
ret = -EINVAL;
break;
}
ret = wl_cfgvendor_map_supp_sae_pwe_to_fw(nla_get_u32(iter), &sae_pwe);
if (unlikely(ret)) {
WL_ERR(("Invalid sae_pwe\n"));
break;
}
ret = wl_cfg80211_set_wsec_info(net, &sae_pwe,
sizeof(sae_pwe), WL_WSEC_INFO_BSS_SAE_PWE);
if (unlikely(ret)) {
WL_ERR(("set wsec_info_sae_pwe failed \n"));
}
break;
}
#endif /* WL_SAE */
/* Add new attributes here */
default:
WL_DBG(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
}
}
return ret;
}
#ifdef WL_SAE
static int
wl_cfgvendor_set_sae_password(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_OK;
struct net_device *net = wdev->netdev;
struct bcm_cfg80211 *cfg = wl_get_cfg(net);
wsec_pmk_t pmk;
s32 bssidx;
/* clear the content of pmk structure before usage */
(void)memset_s(&pmk, sizeof(wsec_pmk_t), 0x0, sizeof(wsec_pmk_t));
if ((bssidx = wl_get_bssidx_by_wdev(cfg, net->ieee80211_ptr)) < 0) {
WL_ERR(("Find p2p index from wdev(%p) failed\n", net->ieee80211_ptr));
return BCME_ERROR;
}
if ((len < WSEC_MIN_PSK_LEN) || (len >= WSEC_MAX_PASSPHRASE_LEN)) {
WL_ERR(("Invalid passphrase length %d..should be >= 8 and < 256\n",
len));
err = BCME_BADLEN;
goto done;
}
/* Set AUTH to SAE */
err = wldev_iovar_setint_bsscfg(net, "wpa_auth", WPA3_AUTH_SAE_PSK, bssidx);
if (unlikely(err)) {
WL_ERR(("could not set wpa_auth (0x%x)\n", err));
goto done;
}
pmk.key_len = htod16(len);
bcopy((const u8*)data, pmk.key, len);
pmk.flags = htod16(WSEC_PASSPHRASE);
err = wldev_ioctl_set(net, WLC_SET_WSEC_PMK, &pmk, sizeof(pmk));
if (err) {
WL_ERR(("\n failed to set pmk %d\n", err));
goto done;
} else {
WL_INFORM_MEM(("sae passphrase set successfully\n"));
}
done:
return err;
}
#endif /* WL_SAE */
#ifdef BCM_PRIV_CMD_SUPPORT
/* strlen("ifname=") + IFNAMESIZE + strlen(" ") + '\0' */
#define ANDROID_PRIV_CMD_IF_PREFIX_LEN (7 + IFNAMSIZ + 2)
/* Max length for the reply buffer. For BRCM_ATTR_DRIVER_CMD, the reply
* would be a formatted string and reply buf would be the size of the
* string.
*/
#define WL_DRIVER_PRIV_CMD_LEN 512
static int
wl_cfgvendor_priv_bcm_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
const struct nlattr *iter;
int err = 0;
int data_len = 0, cmd_len = 0, tmp = 0, type = 0;
struct net_device *ndev = wdev->netdev;
char *cmd = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int bytes_written;
struct net_device *net = NULL;
unsigned long int cmd_out = 0;
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
u32 cmd_buf_len = WL_DRIVER_PRIV_CMD_LEN;
char cmd_prefix[ANDROID_PRIV_CMD_IF_PREFIX_LEN + 1] = {0};
char *cmd_buf = NULL;
char *current_pos;
u32 cmd_offset;
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
WL_DBG(("%s: Enter \n", __func__));
/* hold wake lock */
net_os_wake_lock(ndev);
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
cmd = nla_data(iter);
cmd_len = nla_len(iter);
WL_DBG(("%s: type: %d cmd_len:%d cmd_ptr:%p \n", __func__, type, cmd_len, cmd));
if (!cmd || !cmd_len) {
WL_ERR(("Invalid cmd data \n"));
err = -EINVAL;
goto exit;
}
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
if (type == BRCM_ATTR_DRIVER_CMD) {
if ((cmd_len >= WL_DRIVER_PRIV_CMD_LEN) ||
(cmd_len < ANDROID_PRIV_CMD_IF_PREFIX_LEN)) {
WL_ERR(("Unexpected command length (%u)."
"Ignore the command\n", cmd_len));
err = -EINVAL;
goto exit;
}
/* check whether there is any ifname prefix provided */
if (memcpy_s(cmd_prefix, (sizeof(cmd_prefix) - 1),
cmd, ANDROID_PRIV_CMD_IF_PREFIX_LEN) != BCME_OK) {
WL_ERR(("memcpy failed for cmd buffer. len:%d\n", cmd_len));
err = -ENOMEM;
goto exit;
}
net = wl_cfgvendor_get_ndev(cfg, wdev, cmd_prefix, &cmd_out);
if (!cmd_out || !net) {
WL_ERR(("ndev not found\n"));
err = -ENODEV;
goto exit;
}
/* find offset of the command */
current_pos = (char *)cmd_out;
cmd_offset = current_pos - cmd_prefix;
if (!current_pos || (cmd_offset) > ANDROID_PRIV_CMD_IF_PREFIX_LEN) {
WL_ERR(("Invalid len cmd_offset: %u \n", cmd_offset));
err = -EINVAL;
goto exit;
}
/* Private command data in expected to be in str format. To ensure that
* the data is null terminated, copy to a local buffer before use
*/
cmd_buf = (char *)MALLOCZ(cfg->osh, cmd_buf_len);
if (!cmd_buf) {
WL_ERR(("memory alloc failed for %u \n", cmd_buf_len));
err = -ENOMEM;
goto exit;
}
/* Point to the start of command */
if (memcpy_s(cmd_buf, (WL_DRIVER_PRIV_CMD_LEN - 1),
(const void *)(cmd + cmd_offset),
(cmd_len - cmd_offset - 1)) != BCME_OK) {
WL_ERR(("memcpy failed for cmd buffer. len:%d\n", cmd_len));
err = -ENOMEM;
goto exit;
}
cmd_buf[WL_DRIVER_PRIV_CMD_LEN - 1] = '\0';
WL_DBG(("vendor_command: %s len: %u \n", cmd_buf, cmd_buf_len));
bytes_written = wl_handle_private_cmd(net, cmd_buf, cmd_buf_len);
WL_DBG(("bytes_written: %d \n", bytes_written));
if (bytes_written == 0) {
snprintf(cmd_buf, cmd_buf_len, "%s", "OK");
data_len = sizeof("OK");
} else if (bytes_written > 0) {
if (bytes_written >= (cmd_buf_len - 1)) {
/* Not expected */
ASSERT(0);
err = -EINVAL;
goto exit;
}
data_len = bytes_written;
} else {
/* -ve return value. Propagate the error back */
err = bytes_written;
goto exit;
}
if ((data_len > 0) && (data_len < (cmd_buf_len - 1)) && cmd_buf) {
err = wl_cfgvendor_send_cmd_reply(wiphy, cmd_buf, data_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
} else {
WL_DBG(("Vendor Command reply sent successfully!\n"));
}
} else {
/* No data to be sent back as reply */
WL_ERR(("Vendor_cmd: No reply expected. data_len:%u cmd_buf %p \n",
data_len, cmd_buf));
}
break;
}
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
}
exit:
#if defined(WL_ANDROID_PRIV_CMD_OVER_NL80211)
if (cmd_buf) {
MFREE(cfg->osh, cmd_buf, cmd_buf_len);
}
#endif /* WL_ANDROID_PRIV_CMD_OVER_NL80211 && OEM_ANDROID */
net_os_wake_unlock(ndev);
return err;
}
#endif /* BCM_PRIV_CMD_SUPPORT */
#ifdef WL_NAN
static const char *
nan_attr_to_str(u16 cmd)
{
const char *id2str;
switch (cmd) {
C2S(NAN_ATTRIBUTE_HEADER);
break;
C2S(NAN_ATTRIBUTE_HANDLE);
break;
C2S(NAN_ATTRIBUTE_TRANSAC_ID);
break;
C2S(NAN_ATTRIBUTE_2G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SDF_2G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SDF_5G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_5G_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_SYNC_DISC_2G_BEACON);
break;
C2S(NAN_ATTRIBUTE_SYNC_DISC_5G_BEACON);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_LOW);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_HIGH);
break;
C2S(NAN_ATTRIBUTE_SID_BEACON);
break;
C2S(NAN_ATTRIBUTE_RSSI_CLOSE);
break;
C2S(NAN_ATTRIBUTE_RSSI_MIDDLE);
break;
C2S(NAN_ATTRIBUTE_RSSI_PROXIMITY);
break;
C2S(NAN_ATTRIBUTE_RSSI_CLOSE_5G);
break;
C2S(NAN_ATTRIBUTE_RSSI_MIDDLE_5G);
break;
C2S(NAN_ATTRIBUTE_RSSI_PROXIMITY_5G);
break;
C2S(NAN_ATTRIBUTE_HOP_COUNT_LIMIT);
break;
C2S(NAN_ATTRIBUTE_RANDOM_TIME);
break;
C2S(NAN_ATTRIBUTE_MASTER_PREF);
break;
C2S(NAN_ATTRIBUTE_PERIODIC_SCAN_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_ID);
break;
C2S(NAN_ATTRIBUTE_TTL);
break;
C2S(NAN_ATTRIBUTE_PERIOD);
break;
C2S(NAN_ATTRIBUTE_REPLIED_EVENT_FLAG);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_TYPE);
break;
C2S(NAN_ATTRIBUTE_TX_TYPE);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_COUNT);
break;
C2S(NAN_ATTRIBUTE_SERVICE_NAME_LEN);
break;
C2S(NAN_ATTRIBUTE_SERVICE_NAME);
break;
C2S(NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN);
break;
C2S(NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO);
break;
C2S(NAN_ATTRIBUTE_RX_MATCH_FILTER_LEN);
break;
C2S(NAN_ATTRIBUTE_RX_MATCH_FILTER);
break;
C2S(NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN);
break;
C2S(NAN_ATTRIBUTE_TX_MATCH_FILTER);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_ID);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_TYPE);
break;
C2S(NAN_ATTRIBUTE_SERVICERESPONSEFILTER);
break;
C2S(NAN_ATTRIBUTE_SERVICERESPONSEINCLUDE);
break;
C2S(NAN_ATTRIBUTE_USESERVICERESPONSEFILTER);
break;
C2S(NAN_ATTRIBUTE_SSIREQUIREDFORMATCHINDICATION);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_MATCH);
break;
C2S(NAN_ATTRIBUTE_SUBSCRIBE_COUNT);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR_LIST);
break;
C2S(NAN_ATTRIBUTE_MAC_ADDR_LIST_NUM_ENTRIES);
break;
C2S(NAN_ATTRIBUTE_PUBLISH_MATCH);
break;
C2S(NAN_ATTRIBUTE_ENABLE_STATUS);
break;
C2S(NAN_ATTRIBUTE_JOIN_STATUS);
break;
C2S(NAN_ATTRIBUTE_ROLE);
break;
C2S(NAN_ATTRIBUTE_MASTER_RANK);
break;
C2S(NAN_ATTRIBUTE_ANCHOR_MASTER_RANK);
break;
C2S(NAN_ATTRIBUTE_CNT_PEND_TXFRM);
break;
C2S(NAN_ATTRIBUTE_CNT_BCN_TX);
break;
C2S(NAN_ATTRIBUTE_CNT_BCN_RX);
break;
C2S(NAN_ATTRIBUTE_CNT_SVC_DISC_TX);
break;
C2S(NAN_ATTRIBUTE_CNT_SVC_DISC_RX);
break;
C2S(NAN_ATTRIBUTE_AMBTT);
break;
C2S(NAN_ATTRIBUTE_CLUSTER_ID);
break;
C2S(NAN_ATTRIBUTE_INST_ID);
break;
C2S(NAN_ATTRIBUTE_OUI);
break;
C2S(NAN_ATTRIBUTE_STATUS);
break;
C2S(NAN_ATTRIBUTE_DE_EVENT_TYPE);
break;
C2S(NAN_ATTRIBUTE_MERGE);
break;
C2S(NAN_ATTRIBUTE_IFACE);
break;
C2S(NAN_ATTRIBUTE_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_24G_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_5G_CHANNEL);
break;
C2S(NAN_ATTRIBUTE_PEER_ID);
break;
C2S(NAN_ATTRIBUTE_NDP_ID);
break;
C2S(NAN_ATTRIBUTE_SECURITY);
break;
C2S(NAN_ATTRIBUTE_QOS);
break;
C2S(NAN_ATTRIBUTE_RSP_CODE);
break;
C2S(NAN_ATTRIBUTE_INST_COUNT);
break;
C2S(NAN_ATTRIBUTE_PEER_DISC_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR);
break;
C2S(NAN_ATTRIBUTE_IF_ADDR);
break;
C2S(NAN_ATTRIBUTE_WARMUP_TIME);
break;
C2S(NAN_ATTRIBUTE_RECV_IND_CFG);
break;
C2S(NAN_ATTRIBUTE_CONNMAP);
break;
C2S(NAN_ATTRIBUTE_DWELL_TIME);
break;
C2S(NAN_ATTRIBUTE_SCAN_PERIOD);
break;
C2S(NAN_ATTRIBUTE_RSSI_WINDOW_SIZE);
break;
C2S(NAN_ATTRIBUTE_CONF_CLUSTER_VAL);
break;
C2S(NAN_ATTRIBUTE_CIPHER_SUITE_TYPE);
break;
C2S(NAN_ATTRIBUTE_KEY_TYPE);
break;
C2S(NAN_ATTRIBUTE_KEY_LEN);
break;
C2S(NAN_ATTRIBUTE_SCID);
break;
C2S(NAN_ATTRIBUTE_SCID_LEN);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_CONFIG_DP);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_SECURITY);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_DP_TYPE);
break;
C2S(NAN_ATTRIBUTE_SDE_CONTROL_RANGE_SUPPORT);
break;
C2S(NAN_ATTRIBUTE_NO_CONFIG_AVAIL);
break;
C2S(NAN_ATTRIBUTE_2G_AWAKE_DW);
break;
C2S(NAN_ATTRIBUTE_5G_AWAKE_DW);
break;
C2S(NAN_ATTRIBUTE_RSSI_THRESHOLD_FLAG);
break;
C2S(NAN_ATTRIBUTE_KEY_DATA);
break;
C2S(NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN);
break;
C2S(NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO);
break;
C2S(NAN_ATTRIBUTE_REASON);
break;
C2S(NAN_ATTRIBUTE_DISC_IND_CFG);
break;
C2S(NAN_ATTRIBUTE_DWELL_TIME_5G);
break;
C2S(NAN_ATTRIBUTE_SCAN_PERIOD_5G);
break;
C2S(NAN_ATTRIBUTE_SVC_RESPONDER_POLICY);
break;
C2S(NAN_ATTRIBUTE_EVENT_MASK);
break;
C2S(NAN_ATTRIBUTE_SUB_SID_BEACON);
break;
C2S(NAN_ATTRIBUTE_RANDOMIZATION_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_CMD_RESP_DATA);
break;
C2S(NAN_ATTRIBUTE_CMD_USE_NDPE);
break;
C2S(NAN_ATTRIBUTE_ENABLE_MERGE);
break;
C2S(NAN_ATTRIBUTE_DISCOVERY_BEACON_INTERVAL);
break;
C2S(NAN_ATTRIBUTE_NSS);
break;
C2S(NAN_ATTRIBUTE_ENABLE_RANGING);
break;
C2S(NAN_ATTRIBUTE_DW_EARLY_TERM);
break;
default:
id2str = "NAN_ATTRIBUTE_UNKNOWN";
}
return id2str;
}
nan_hal_status_t nan_status_reasonstr_map[] = {
{NAN_STATUS_SUCCESS, "NAN status success"},
{NAN_STATUS_INTERNAL_FAILURE, "NAN Discovery engine failure"},
{NAN_STATUS_PROTOCOL_FAILURE, "protocol failure"},
{NAN_STATUS_INVALID_PUBLISH_SUBSCRIBE_ID, "invalid pub_sub ID"},
{NAN_STATUS_NO_RESOURCE_AVAILABLE, "No space available"},
{NAN_STATUS_INVALID_PARAM, "invalid param"},
{NAN_STATUS_INVALID_REQUESTOR_INSTANCE_ID, "invalid req inst id"},
{NAN_STATUS_INVALID_NDP_ID, "invalid ndp id"},
{NAN_STATUS_NAN_NOT_ALLOWED, "Nan not allowed"},
{NAN_STATUS_NO_OTA_ACK, "No OTA ack"},
{NAN_STATUS_ALREADY_ENABLED, "NAN is Already enabled"},
{NAN_STATUS_FOLLOWUP_QUEUE_FULL, "Follow-up queue full"},
{NAN_STATUS_UNSUPPORTED_CONCURRENCY_NAN_DISABLED, "unsupported concurrency"},
};
void
wl_cfgvendor_add_nan_reason_str(nan_status_type_t status, nan_hal_resp_t *nan_req_resp)
{
int i = 0;
int num = (int)(sizeof(nan_status_reasonstr_map)/sizeof(nan_status_reasonstr_map[0]));
for (i = 0; i < num; i++) {
if (nan_status_reasonstr_map[i].status == status) {
strlcpy(nan_req_resp->nan_reason, nan_status_reasonstr_map[i].nan_reason,
sizeof(nan_status_reasonstr_map[i].nan_reason));
break;
}
}
}
nan_status_type_t
wl_cfgvendor_brcm_to_nanhal_status(int32 vendor_status)
{
nan_status_type_t hal_status;
switch (vendor_status) {
case BCME_OK:
hal_status = NAN_STATUS_SUCCESS;
break;
case BCME_BUSY:
case BCME_NOTREADY:
hal_status = NAN_STATUS_NAN_NOT_ALLOWED;
break;
case BCME_BADLEN:
case BCME_BADBAND:
case BCME_UNSUPPORTED:
case BCME_USAGE_ERROR:
case BCME_BADARG:
hal_status = NAN_STATUS_INVALID_PARAM;
break;
case BCME_NOMEM:
case BCME_NORESOURCE:
case WL_NAN_E_SVC_SUB_LIST_FULL:
hal_status = NAN_STATUS_NO_RESOURCE_AVAILABLE;
break;
case WL_NAN_E_SD_TX_LIST_FULL:
hal_status = NAN_STATUS_FOLLOWUP_QUEUE_FULL;
break;
case WL_NAN_E_BAD_INSTANCE:
hal_status = NAN_STATUS_INVALID_PUBLISH_SUBSCRIBE_ID;
break;
default:
WL_ERR(("%s Unknown vendor status, status = %d\n",
__func__, vendor_status));
/* Generic error */
hal_status = NAN_STATUS_INTERNAL_FAILURE;
}
return hal_status;
}
static int
wl_cfgvendor_nan_cmd_reply(struct wiphy *wiphy, int nan_cmd,
nan_hal_resp_t *nan_req_resp, int ret, int nan_cmd_status)
{
int err;
int nan_reply;
nan_req_resp->subcmd = nan_cmd;
if (ret == BCME_OK) {
nan_reply = nan_cmd_status;
} else {
nan_reply = ret;
}
nan_req_resp->status = wl_cfgvendor_brcm_to_nanhal_status(nan_reply);
nan_req_resp->value = ret;
err = wl_cfgvendor_send_cmd_reply(wiphy, nan_req_resp,
sizeof(*nan_req_resp));
/* giving more prio to ret than err */
return (ret == 0) ? err : ret;
}
static void
wl_cfgvendor_free_disc_cmd_data(struct bcm_cfg80211 *cfg,
nan_discover_cmd_data_t *cmd_data)
{
if (!cmd_data) {
WL_ERR(("Cmd_data is null\n"));
return;
}
if (cmd_data->svc_info.data) {
MFREE(cfg->osh, cmd_data->svc_info.data, cmd_data->svc_info.dlen);
}
if (cmd_data->svc_hash.data) {
MFREE(cfg->osh, cmd_data->svc_hash.data, cmd_data->svc_hash.dlen);
}
if (cmd_data->rx_match.data) {
MFREE(cfg->osh, cmd_data->rx_match.data, cmd_data->rx_match.dlen);
}
if (cmd_data->tx_match.data) {
MFREE(cfg->osh, cmd_data->tx_match.data, cmd_data->tx_match.dlen);
}
if (cmd_data->mac_list.list) {
MFREE(cfg->osh, cmd_data->mac_list.list,
cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN);
}
if (cmd_data->key.data) {
MFREE(cfg->osh, cmd_data->key.data, NAN_MAX_PMK_LEN);
}
if (cmd_data->sde_svc_info.data) {
MFREE(cfg->osh, cmd_data->sde_svc_info.data, cmd_data->sde_svc_info.dlen);
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
static void
wl_cfgvendor_free_dp_cmd_data(struct bcm_cfg80211 *cfg,
nan_datapath_cmd_data_t *cmd_data)
{
if (!cmd_data) {
WL_ERR(("Cmd_data is null\n"));
return;
}
if (cmd_data->svc_hash.data) {
MFREE(cfg->osh, cmd_data->svc_hash.data, cmd_data->svc_hash.dlen);
}
if (cmd_data->svc_info.data) {
MFREE(cfg->osh, cmd_data->svc_info.data, cmd_data->svc_info.dlen);
}
if (cmd_data->key.data) {
MFREE(cfg->osh, cmd_data->key.data, NAN_MAX_PMK_LEN);
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
#define WL_NAN_EVENT_MAX_BUF 256
#ifdef WL_NAN_DISC_CACHE
static int
wl_cfgvendor_nan_parse_dp_sec_info_args(struct wiphy *wiphy,
const void *buf, int len, nan_datapath_sec_info_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_MAC_ADDR:
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_PUBLISH_ID:
cmd_data->pub_id = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_NDP_ID:
cmd_data->ndp_instance_id = nla_get_u32(iter);
break;
default:
WL_ERR(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
ret = BCME_BADARG;
break;
}
}
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN_DISC_CACHE */
int8 chanbuf[CHANSPEC_STR_LEN];
static int
wl_cfgvendor_nan_parse_datapath_args(struct wiphy *wiphy,
const void *buf, int len, nan_datapath_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int chan;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_NDP_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_instance_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_IFACE:
if (nla_len(iter) >= sizeof(cmd_data->ndp_iface)) {
WL_ERR(("iface_name len wrong:%d\n", nla_len(iter)));
ret = -EINVAL;
goto exit;
}
strlcpy((char *)cmd_data->ndp_iface, (char *)nla_data(iter),
nla_len(iter));
break;
case NAN_ATTRIBUTE_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.security_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_QOS:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.qos_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RSP_CODE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rsp_code = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_INST_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->num_ndp_instances = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_PEER_DISC_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->peer_disc_mac_addr,
ETHER_ADDR_LEN, (char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_disc_mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->peer_ndi_mac_addr,
ETHER_ADDR_LEN, (char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_ndi_mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_IF_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->if_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy if_addr\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_ENTRY_CONTROL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.duration = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_AVAIL_BIT_MAP:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.bmap = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
if (chan <= CH_MAX_2G_CHANNEL) {
cmd_data->avail_params.chanspec[0] =
wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
} else {
cmd_data->avail_params.chanspec[0] =
wf_channel2chspec(chan, WL_CHANSPEC_BW_80);
}
if (cmd_data->avail_params.chanspec[0] == 0) {
WL_ERR(("Channel is not valid \n"));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid chanspec, chanspec = 0x%04x \n",
cmd_data->avail_params.chanspec[0]));
break;
}
case NAN_ATTRIBUTE_NO_CONFIG_AVAIL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.no_config_avail = (bool)nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SERVICE_NAME_LEN: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.dlen = nla_get_u16(iter);
if (cmd_data->svc_hash.dlen != WL_NAN_SVC_HASH_LEN) {
WL_ERR(("invalid svc_hash length = %u\n", cmd_data->svc_hash.dlen));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICE_NAME:
if ((!cmd_data->svc_hash.dlen) ||
(nla_len(iter) != cmd_data->svc_hash.dlen)) {
WL_ERR(("invalid svc_hash length = %d,%d\n",
cmd_data->svc_hash.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.data =
MALLOCZ(cfg->osh, cmd_data->svc_hash.dlen);
if (!cmd_data->svc_hash.data) {
WL_ERR(("failed to allocate svc_hash data, len=%d\n",
cmd_data->svc_hash.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_hash.data, cmd_data->svc_hash.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc hash data\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.dlen = nla_get_u16(iter);
if (cmd_data->svc_info.dlen > MAX_APP_INFO_LEN) {
WL_ERR_RLMT(("Not allowed beyond :%d\n", MAX_APP_INFO_LEN));
ret = -EINVAL;
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->svc_info.dlen) ||
(nla_len(iter) != cmd_data->svc_info.dlen)) {
WL_ERR(("failed to allocate svc info by invalid len=%d,%d\n",
cmd_data->svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.data = MALLOCZ(cfg->osh, cmd_data->svc_info.dlen);
if (cmd_data->svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_info.data, cmd_data->svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc info\n"));
goto exit;
}
break;
case NAN_ATTRIBUTE_PUBLISH_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->pub_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_KEY_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->key_type = nla_get_u8(iter);
WL_TRACE(("Key Type = %u\n", cmd_data->key_type));
break;
case NAN_ATTRIBUTE_KEY_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.dlen = nla_get_u32(iter);
if ((!cmd_data->key.dlen) || (cmd_data->key.dlen > WL_NAN_NCS_SK_PMK_LEN)) {
WL_ERR(("invalid key length = %u\n", cmd_data->key.dlen));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid key length = %u\n", cmd_data->key.dlen));
break;
case NAN_ATTRIBUTE_KEY_DATA:
if ((!cmd_data->key.dlen) ||
(nla_len(iter) != cmd_data->key.dlen)) {
WL_ERR(("failed to allocate key data by invalid len=%d,%d\n",
cmd_data->key.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.data) {
WL_ERR(("trying to overwrite key data.\n"));
ret = -EINVAL;
goto exit;
}
cmd_data->key.data = MALLOCZ(cfg->osh, NAN_MAX_PMK_LEN);
if (cmd_data->key.data == NULL) {
WL_ERR(("failed to allocate key data, len=%d\n",
cmd_data->key.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->key.data, NAN_MAX_PMK_LEN,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to key data\n"));
goto exit;
}
break;
default:
WL_ERR(("Unknown type, %d\n", attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_parse_discover_args(struct wiphy *wiphy,
const void *buf, int len, nan_discover_cmd_data_t *cmd_data)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
u8 val_u8;
u32 bit_flag;
u8 flag_match;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
case NAN_ATTRIBUTE_TRANSAC_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->token = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_PERIODIC_SCAN_INTERVAL:
break;
/* Nan Publish/Subscribe request Attributes */
case NAN_ATTRIBUTE_PUBLISH_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->pub_id = nla_get_u16(iter);
cmd_data->local_id = cmd_data->pub_id;
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.dlen = nla_get_u16(iter);
if (cmd_data->svc_info.dlen > NAN_MAX_SERVICE_SPECIFIC_INFO_LEN) {
WL_ERR_RLMT(("Not allowed beyond :%d\n",
NAN_MAX_SERVICE_SPECIFIC_INFO_LEN));
ret = -EINVAL;
goto exit;
}
break;
case NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->svc_info.dlen) ||
(nla_len(iter) != cmd_data->svc_info.dlen)) {
WL_ERR(("failed to allocate svc info by invalid len=%d,%d\n",
cmd_data->svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_info.data = MALLOCZ(cfg->osh, cmd_data->svc_info.dlen);
if (cmd_data->svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_info.data, cmd_data->svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc info\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SUBSCRIBE_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sub_id = nla_get_u16(iter);
cmd_data->local_id = cmd_data->sub_id;
break;
case NAN_ATTRIBUTE_SUBSCRIBE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->flags |= nla_get_u8(iter) ? WL_NAN_SUB_ACTIVE : 0;
break;
case NAN_ATTRIBUTE_PUBLISH_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->life_count = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_PUBLISH_TYPE: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
val_u8 = nla_get_u8(iter);
if (val_u8 == 0) {
cmd_data->flags |= WL_NAN_PUB_UNSOLICIT;
} else if (val_u8 == 1) {
cmd_data->flags |= WL_NAN_PUB_SOLICIT;
} else {
cmd_data->flags |= WL_NAN_PUB_BOTH;
}
break;
}
case NAN_ATTRIBUTE_PERIOD: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u16(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("Invalid/Out of bound value = %u\n", nla_get_u16(iter)));
ret = BCME_BADARG;
break;
}
if (nla_get_u16(iter)) {
cmd_data->period = 1 << (nla_get_u16(iter)-1);
}
break;
}
case NAN_ATTRIBUTE_REPLIED_EVENT_FLAG:
break;
case NAN_ATTRIBUTE_TTL:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ttl = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_SERVICE_NAME_LEN: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.dlen = nla_get_u16(iter);
if (cmd_data->svc_hash.dlen != WL_NAN_SVC_HASH_LEN) {
WL_ERR(("invalid svc_hash length = %u\n", cmd_data->svc_hash.dlen));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICE_NAME:
if ((!cmd_data->svc_hash.dlen) ||
(nla_len(iter) != cmd_data->svc_hash.dlen)) {
WL_ERR(("invalid svc_hash length = %d,%d\n",
cmd_data->svc_hash.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->svc_hash.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->svc_hash.data =
MALLOCZ(cfg->osh, cmd_data->svc_hash.dlen);
if (!cmd_data->svc_hash.data) {
WL_ERR(("failed to allocate svc_hash data, len=%d\n",
cmd_data->svc_hash.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->svc_hash.data, cmd_data->svc_hash.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy svc hash data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_PEER_ID:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->remote_id = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_INST_ID:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->local_id = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_SUBSCRIBE_COUNT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->life_count = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SSIREQUIREDFORMATCHINDICATION: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
bit_flag = (u32)nla_get_u8(iter);
cmd_data->flags |=
bit_flag ? WL_NAN_SUB_MATCH_IF_SVC_INFO : 0;
break;
}
case NAN_ATTRIBUTE_SUBSCRIBE_MATCH:
case NAN_ATTRIBUTE_PUBLISH_MATCH: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
flag_match = nla_get_u8(iter);
switch (flag_match) {
case NAN_MATCH_ALG_MATCH_CONTINUOUS:
/* Default fw behaviour, no need to set explicitly */
break;
case NAN_MATCH_ALG_MATCH_ONCE:
cmd_data->flags |= WL_NAN_MATCH_ONCE;
break;
case NAN_MATCH_ALG_MATCH_NEVER:
cmd_data->flags |= WL_NAN_MATCH_NEVER;
break;
default:
WL_ERR(("invalid nan match alg = %u\n", flag_match));
ret = -EINVAL;
goto exit;
}
break;
}
case NAN_ATTRIBUTE_SERVICERESPONSEFILTER:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->srf_type = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SERVICERESPONSEINCLUDE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->srf_include = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_USESERVICERESPONSEFILTER:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->use_srf = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RX_MATCH_FILTER_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->rx_match.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->rx_match.dlen = nla_get_u16(iter);
if (cmd_data->rx_match.dlen > MAX_MATCH_FILTER_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_MATCH_FILTER_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_RX_MATCH_FILTER:
if ((!cmd_data->rx_match.dlen) ||
(nla_len(iter) != cmd_data->rx_match.dlen)) {
WL_ERR(("RX match filter len wrong:%d,%d\n",
cmd_data->rx_match.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->rx_match.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->rx_match.data =
MALLOCZ(cfg->osh, cmd_data->rx_match.dlen);
if (cmd_data->rx_match.data == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
cmd_data->rx_match.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->rx_match.data, cmd_data->rx_match.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy rx match data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->tx_match.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->tx_match.dlen = nla_get_u16(iter);
if (cmd_data->tx_match.dlen > MAX_MATCH_FILTER_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_MATCH_FILTER_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_TX_MATCH_FILTER:
if ((!cmd_data->tx_match.dlen) ||
(nla_len(iter) != cmd_data->tx_match.dlen)) {
WL_ERR(("TX match filter len wrong:%d,%d\n",
cmd_data->tx_match.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->tx_match.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->tx_match.data =
MALLOCZ(cfg->osh, cmd_data->tx_match.dlen);
if (cmd_data->tx_match.data == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
cmd_data->tx_match.dlen));
ret = -EINVAL;
goto exit;
}
ret = memcpy_s(cmd_data->tx_match.data, cmd_data->tx_match.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy tx match data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_MAC_ADDR_LIST_NUM_ENTRIES:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->mac_list.num_mac_addr) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->mac_list.num_mac_addr = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_MAC_ADDR_LIST:
if ((!cmd_data->mac_list.num_mac_addr) ||
(nla_len(iter) != (cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN))) {
WL_ERR(("wrong mac list len:%d,%d\n",
cmd_data->mac_list.num_mac_addr, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->mac_list.list) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->mac_list.list =
MALLOCZ(cfg->osh, (cmd_data->mac_list.num_mac_addr
* ETHER_ADDR_LEN));
if (cmd_data->mac_list.list == NULL) {
WL_ERR(("failed to allocate LEN=[%u]\n",
(cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN)));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->mac_list.list,
(cmd_data->mac_list.num_mac_addr * ETHER_ADDR_LEN),
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy list of mac addresses\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_TX_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
val_u8 = nla_get_u8(iter);
if (val_u8 == 0) {
cmd_data->flags |= WL_NAN_PUB_BCAST;
WL_TRACE(("NAN_ATTRIBUTE_TX_TYPE: flags=NAN_PUB_BCAST\n"));
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_CONFIG_DP:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_DP_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_RANGE_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sde_control_config = TRUE;
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_RANGING_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_DP_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_MULTICAST_TYPE;
break;
}
break;
case NAN_ATTRIBUTE_SDE_CONTROL_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->sde_control_flag
|= NAN_SDE_CF_SECURITY_REQUIRED;
break;
}
break;
case NAN_ATTRIBUTE_RECV_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->recv_ind_flag = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_KEY_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->key_type = nla_get_u8(iter);
WL_TRACE(("Key Type = %u\n", cmd_data->key_type));
break;
case NAN_ATTRIBUTE_KEY_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.dlen = nla_get_u32(iter);
if ((!cmd_data->key.dlen) || (cmd_data->key.dlen > WL_NAN_NCS_SK_PMK_LEN)) {
WL_ERR(("invalid key length = %u\n",
cmd_data->key.dlen));
break;
}
WL_TRACE(("valid key length = %u\n", cmd_data->key.dlen));
break;
case NAN_ATTRIBUTE_KEY_DATA:
if (!cmd_data->key.dlen ||
(nla_len(iter) != cmd_data->key.dlen)) {
WL_ERR(("failed to allocate key data by invalid len=%d,%d\n",
cmd_data->key.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->key.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->key.data = MALLOCZ(cfg->osh, NAN_MAX_PMK_LEN);
if (cmd_data->key.data == NULL) {
WL_ERR(("failed to allocate key data, len=%d\n",
cmd_data->key.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->key.data, NAN_MAX_PMK_LEN,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to key data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_RSSI_THRESHOLD_FLAG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u8(iter) == 1) {
cmd_data->flags |=
WL_NAN_RANGE_LIMITED;
break;
}
break;
case NAN_ATTRIBUTE_DISC_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_ind_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->sde_svc_info.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->sde_svc_info.dlen = nla_get_u16(iter);
if (cmd_data->sde_svc_info.dlen > MAX_SDEA_SVC_INFO_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_SDEA_SVC_INFO_LEN));
goto exit;
}
break;
case NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO:
if ((!cmd_data->sde_svc_info.dlen) ||
(nla_len(iter) != cmd_data->sde_svc_info.dlen)) {
WL_ERR(("wrong sdea info len:%d,%d\n",
cmd_data->sde_svc_info.dlen, nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->sde_svc_info.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->sde_svc_info.data = MALLOCZ(cfg->osh,
cmd_data->sde_svc_info.dlen);
if (cmd_data->sde_svc_info.data == NULL) {
WL_ERR(("failed to allocate svc info data, len=%d\n",
cmd_data->sde_svc_info.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->sde_svc_info.data,
cmd_data->sde_svc_info.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to sdea info data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_SECURITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ndp_cfg.security_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RANGING_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ranging_intvl_msec = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_INGRESS_LIMIT:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ingress_limit = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_EGRESS_LIMIT:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->egress_limit = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_RANGING_INDICATION:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->ranging_indication = nla_get_u32(iter);
break;
/* Nan accept policy: Per service basis policy
* Based on this policy(ALL/NONE), responder side
* will send ACCEPT/REJECT
*/
case NAN_ATTRIBUTE_SVC_RESPONDER_POLICY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->service_responder_policy = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type, %d\n", attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_parse_args(struct wiphy *wiphy, const void *buf,
int len, nan_config_cmd_data_t *cmd_data, uint32 *nan_attr_mask)
{
int ret = BCME_OK;
int attr_type;
int rem = len;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int chan;
u8 sid_beacon = 0, sub_sid_beacon = 0;
NAN_DBG_ENTER();
nla_for_each_attr(iter, buf, len, rem) {
attr_type = nla_type(iter);
WL_TRACE(("attr: %s (%u)\n", nan_attr_to_str(attr_type), attr_type));
switch (attr_type) {
/* NAN Enable request attributes */
case NAN_ATTRIBUTE_2G_SUPPORT:{
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->support_2g = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SUPPORT_2G_CONFIG;
break;
}
case NAN_ATTRIBUTE_5G_SUPPORT:{
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->support_5g = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SUPPORT_5G_CONFIG;
break;
}
case NAN_ATTRIBUTE_CLUSTER_LOW: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->cluster_low = nla_get_u16(iter);
break;
}
case NAN_ATTRIBUTE_CLUSTER_HIGH: {
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->cluster_high = nla_get_u16(iter);
break;
}
case NAN_ATTRIBUTE_SID_BEACON: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
sid_beacon = nla_get_u8(iter);
cmd_data->sid_beacon.sid_enable = (sid_beacon & 0x01);
if (cmd_data->sid_beacon.sid_enable) {
cmd_data->sid_beacon.sid_count = (sid_beacon >> 1);
*nan_attr_mask |= NAN_ATTR_SID_BEACON_CONFIG;
}
break;
}
case NAN_ATTRIBUTE_SUB_SID_BEACON: {
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
sub_sid_beacon = nla_get_u8(iter);
cmd_data->sid_beacon.sub_sid_enable = (sub_sid_beacon & 0x01);
if (cmd_data->sid_beacon.sub_sid_enable) {
cmd_data->sid_beacon.sub_sid_count = (sub_sid_beacon >> 1);
*nan_attr_mask |= NAN_ATTR_SUB_SID_BEACON_CONFIG;
}
break;
}
case NAN_ATTRIBUTE_SYNC_DISC_2G_BEACON:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->beacon_2g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SYNC_DISC_2G_BEACON_CONFIG;
break;
case NAN_ATTRIBUTE_SYNC_DISC_5G_BEACON:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->beacon_5g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SYNC_DISC_5G_BEACON_CONFIG;
break;
case NAN_ATTRIBUTE_SDF_2G_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sdf_2g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SDF_2G_SUPPORT_CONFIG;
break;
case NAN_ATTRIBUTE_SDF_5G_SUPPORT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->sdf_5g_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_SDF_5G_SUPPORT_CONFIG;
break;
case NAN_ATTRIBUTE_HOP_COUNT_LIMIT:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->hop_count_limit = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_HOP_COUNT_LIMIT_CONFIG;
break;
case NAN_ATTRIBUTE_RANDOM_TIME:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->metrics.random_factor = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_RAND_FACTOR_CONFIG;
break;
case NAN_ATTRIBUTE_MASTER_PREF:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->metrics.master_pref = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_OUI:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->nan_oui = nla_get_u32(iter);
*nan_attr_mask |= NAN_ATTR_OUI_CONFIG;
WL_TRACE(("nan_oui=%d\n", cmd_data->nan_oui));
break;
case NAN_ATTRIBUTE_WARMUP_TIME:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->warmup_time = nla_get_u16(iter);
break;
case NAN_ATTRIBUTE_AMBTT:
case NAN_ATTRIBUTE_MASTER_RANK:
WL_DBG(("Unhandled attribute, %d\n", attr_type));
break;
case NAN_ATTRIBUTE_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
if (chan <= CH_MAX_2G_CHANNEL) {
cmd_data->chanspec[0] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
} else {
cmd_data->chanspec[0] = wf_channel2chspec(chan, WL_CHANSPEC_BW_80);
}
if (cmd_data->chanspec[0] == 0) {
WL_ERR(("Channel is not valid \n"));
ret = -EINVAL;
goto exit;
}
WL_TRACE(("valid chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[0]));
break;
}
case NAN_ATTRIBUTE_24G_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
/* 20MHz as BW */
cmd_data->chanspec[1] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
if (cmd_data->chanspec[1] == 0) {
WL_ERR((" 2.4GHz Channel is not valid \n"));
ret = -EINVAL;
break;
}
*nan_attr_mask |= NAN_ATTR_2G_CHAN_CONFIG;
WL_TRACE(("valid 2.4GHz chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[1]));
break;
}
case NAN_ATTRIBUTE_5G_CHANNEL: {
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* take the default channel start_factor frequency */
chan = wf_mhz2channel((uint)nla_get_u32(iter), 0);
/* 20MHz as BW */
cmd_data->chanspec[2] = wf_channel2chspec(chan, WL_CHANSPEC_BW_20);
if (cmd_data->chanspec[2] == 0) {
WL_ERR((" 5GHz Channel is not valid \n"));
ret = -EINVAL;
break;
}
*nan_attr_mask |= NAN_ATTR_5G_CHAN_CONFIG;
WL_TRACE(("valid 5GHz chanspec, chanspec = 0x%04x \n",
cmd_data->chanspec[2]));
break;
}
case NAN_ATTRIBUTE_CONF_CLUSTER_VAL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->config_cluster_val = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_CLUSTER_VAL_CONFIG;
break;
case NAN_ATTRIBUTE_DWELL_TIME:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dwell_time[0] = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_2G_DWELL_TIME_CONFIG;
break;
case NAN_ATTRIBUTE_SCAN_PERIOD:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->scan_period[0] = nla_get_u16(iter);
*nan_attr_mask |= NAN_ATTR_2G_SCAN_PERIOD_CONFIG;
break;
case NAN_ATTRIBUTE_DWELL_TIME_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dwell_time[1] = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_5G_DWELL_TIME_CONFIG;
break;
case NAN_ATTRIBUTE_SCAN_PERIOD_5G:
if (nla_len(iter) != sizeof(uint16)) {
ret = -EINVAL;
goto exit;
}
cmd_data->scan_period[1] = nla_get_u16(iter);
*nan_attr_mask |= NAN_ATTR_5G_SCAN_PERIOD_CONFIG;
break;
case NAN_ATTRIBUTE_AVAIL_BIT_MAP:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->bmap = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_ENTRY_CONTROL:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->avail_params.duration = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_RSSI_CLOSE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_close_2dot4g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_CLOSE_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_MIDDLE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_middle_2dot4g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_MIDDLE_2G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_PROXIMITY:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_proximity_2dot4g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_PROXIMITY_2G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_CLOSE_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_close_5g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_CLOSE_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_MIDDLE_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_middle_5g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_MIDDLE_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_PROXIMITY_5G:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_proximity_5g_val = nla_get_s8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_PROXIMITY_5G_CONFIG;
break;
case NAN_ATTRIBUTE_RSSI_WINDOW_SIZE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->rssi_attr.rssi_window_size = nla_get_u8(iter);
*nan_attr_mask |= NAN_ATTR_RSSI_WINDOW_SIZE_CONFIG;
break;
case NAN_ATTRIBUTE_CIPHER_SUITE_TYPE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->csid = nla_get_u8(iter);
WL_TRACE(("CSID = %u\n", cmd_data->csid));
break;
case NAN_ATTRIBUTE_SCID_LEN:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (cmd_data->scid.dlen) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->scid.dlen = nla_get_u32(iter);
if (cmd_data->scid.dlen > MAX_SCID_LEN) {
ret = -EINVAL;
WL_ERR_RLMT(("Not allowed beyond %d\n", MAX_SCID_LEN));
goto exit;
}
WL_TRACE(("valid scid length = %u\n", cmd_data->scid.dlen));
break;
case NAN_ATTRIBUTE_SCID:
if (!cmd_data->scid.dlen || (nla_len(iter) != cmd_data->scid.dlen)) {
WL_ERR(("wrong scid len:%d,%d\n", cmd_data->scid.dlen,
nla_len(iter)));
ret = -EINVAL;
goto exit;
}
if (cmd_data->scid.data) {
WL_ERR(("trying to overwrite:%d\n", attr_type));
ret = -EINVAL;
goto exit;
}
cmd_data->scid.data = MALLOCZ(cfg->osh, cmd_data->scid.dlen);
if (cmd_data->scid.data == NULL) {
WL_ERR(("failed to allocate scid, len=%d\n",
cmd_data->scid.dlen));
ret = -ENOMEM;
goto exit;
}
ret = memcpy_s(cmd_data->scid.data, cmd_data->scid.dlen,
nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to scid data\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_2G_AWAKE_DW:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("%s: Invalid/Out of bound value = %u\n",
__FUNCTION__, nla_get_u32(iter)));
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter)) {
cmd_data->awake_dws.dw_interval_2g =
1 << (nla_get_u32(iter)-1);
}
*nan_attr_mask |= NAN_ATTR_2G_DW_CONFIG;
break;
case NAN_ATTRIBUTE_5G_AWAKE_DW:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
if (nla_get_u32(iter) > NAN_MAX_AWAKE_DW_INTERVAL) {
WL_ERR(("%s: Invalid/Out of bound value = %u\n",
__FUNCTION__, nla_get_u32(iter)));
ret = BCME_BADARG;
break;
}
if (nla_get_u32(iter)) {
cmd_data->awake_dws.dw_interval_5g =
1 << (nla_get_u32(iter)-1);
}
*nan_attr_mask |= NAN_ATTR_5G_DW_CONFIG;
break;
case NAN_ATTRIBUTE_DISC_IND_CFG:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_ind_cfg = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_MAC_ADDR:
if (nla_len(iter) != ETHER_ADDR_LEN) {
ret = -EINVAL;
goto exit;
}
ret = memcpy_s((char*)&cmd_data->mac_addr, ETHER_ADDR_LEN,
(char*)nla_data(iter), nla_len(iter));
if (ret != BCME_OK) {
WL_ERR(("Failed to copy mac addr\n"));
return ret;
}
break;
case NAN_ATTRIBUTE_RANDOMIZATION_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* run time nmi rand not supported as of now.
* Only during nan enable/iface-create rand mac is used
*/
cmd_data->nmi_rand_intvl = nla_get_u32(iter);
if (cmd_data->nmi_rand_intvl > 0) {
cfg->nancfg->mac_rand = true;
} else {
cfg->nancfg->mac_rand = false;
}
break;
case NAN_ATTRIBUTE_CMD_USE_NDPE:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->use_ndpe_attr = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_ENABLE_MERGE:
if (nla_len(iter) != sizeof(uint8)) {
ret = -EINVAL;
goto exit;
}
cmd_data->enable_merge = nla_get_u8(iter);
break;
case NAN_ATTRIBUTE_DISCOVERY_BEACON_INTERVAL:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->disc_bcn_interval = nla_get_u32(iter);
*nan_attr_mask |= NAN_ATTR_DISC_BEACON_INTERVAL;
break;
case NAN_ATTRIBUTE_NSS:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
/* FW handles it internally,
* nothing to do as per the value rxed from framework, ignore.
*/
break;
case NAN_ATTRIBUTE_ENABLE_RANGING:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cfg->nancfg->ranging_enable = nla_get_u32(iter);
break;
case NAN_ATTRIBUTE_DW_EARLY_TERM:
if (nla_len(iter) != sizeof(uint32)) {
ret = -EINVAL;
goto exit;
}
cmd_data->dw_early_termination = nla_get_u32(iter);
break;
default:
WL_ERR(("%s: Unknown type, %d\n", __FUNCTION__, attr_type));
ret = -EINVAL;
goto exit;
}
}
exit:
/* We need to call set_config_handler b/f calling start enable TBD */
NAN_DBG_EXIT();
if (ret) {
WL_ERR(("%s: Failed to parse attribute %d ret %d",
__FUNCTION__, attr_type, ret));
}
return ret;
}
static int
wl_cfgvendor_nan_dp_estb_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put NDP ID, ret=%d\n", ret));
goto fail;
}
/*
* NDI mac address of the peer
* (required to derive target ipv6 address)
*/
ret = nla_put(msg, NAN_ATTRIBUTE_PEER_NDI_MAC_ADDR, ETH_ALEN,
event_data->responder_ndi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put resp ndi, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_RSP_CODE, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put response code, ret=%d\n", ret));
goto fail;
}
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_dp_ind_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u16(msg, NAN_ATTRIBUTE_PUBLISH_ID,
event_data->pub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put pub ID, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put NDP ID, ret=%d\n", ret));
goto fail;
}
/* Discovery MAC addr of the peer/initiator */
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETH_ALEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote NMI, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_SECURITY, event_data->security);
if (unlikely(ret)) {
WL_ERR(("Failed to put security, ret=%d\n", ret));
goto fail;
}
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_tx_followup_ind_event_data_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u16(msg, NAN_ATTRIBUTE_TRANSAC_ID, event_data->token);
if (unlikely(ret)) {
WL_ERR(("Failed to put transaction id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan status, ret=%d\n", ret));
goto fail;
}
if (event_data->status == NAN_STATUS_SUCCESS) {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_NO_OTA_ACK"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_svc_terminate_event_filler(struct sk_buff *msg,
struct bcm_cfg80211 *cfg, int event_id, nan_event_data_t *event_data) {
int ret = BCME_OK;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
if (event_id == GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SUBSCRIBE_ID,
event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_PUBLISH_ID,
event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put status, ret=%d\n", ret));
goto fail;
}
if (event_data->status == NAN_STATUS_SUCCESS) {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
} else {
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_INTERNAL_FAILURE"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan reason, ret=%d\n", ret));
goto fail;
}
}
ret = wl_cfgnan_remove_inst_id(cfg, event_data->local_inst_id);
if (ret) {
WL_ERR(("failed to free svc instance-id[%d], ret=%d, event_id = %d\n",
event_data->local_inst_id, ret, event_id));
goto fail;
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_opt_params_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
/* service specific info data */
if (event_data->svc_info.dlen && event_data->svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO_LEN,
event_data->svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SERVICE_SPECIFIC_INFO,
event_data->svc_info.dlen, event_data->svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put svc info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("svc info len = %d\n", event_data->svc_info.dlen));
}
/* sdea service specific info data */
if (event_data->sde_svc_info.dlen && event_data->sde_svc_info.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO_LEN,
event_data->sde_svc_info.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put sdea svc info len, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_SDEA_SERVICE_SPECIFIC_INFO,
event_data->sde_svc_info.dlen,
event_data->sde_svc_info.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put sdea svc info, ret=%d\n", ret));
goto fail;
}
WL_TRACE(("sdea svc info len = %d\n", event_data->sde_svc_info.dlen));
}
/* service control discovery range limit */
/* TODO: */
/* service control binding bitmap */
/* TODO: */
fail:
return ret;
}
static int
wl_cfgvendor_nan_tx_followup_event_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
/* In followup pkt, instance id and requestor instance id are configured
* from the transmitter perspective. As the event is processed with the
* role of receiver, the local handle should use requestor instance
* id (peer_inst_id)
*/
WL_TRACE(("handle=%d\n", event_data->requestor_id));
WL_TRACE(("inst id (local id)=%d\n", event_data->local_inst_id));
WL_TRACE(("peer id (remote id)=%d\n", event_data->requestor_id));
WL_TRACE(("peer mac addr=" MACDBG "\n",
MAC2STRDBG(event_data->remote_nmi.octet)));
WL_TRACE(("peer rssi: %d\n", event_data->fup_rssi));
WL_TRACE(("attribute no: %d\n", event_data->attr_num));
WL_TRACE(("attribute len: %d\n", event_data->attr_list_len));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->requestor_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_INST_ID, event_data->local_inst_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put local inst id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_PEER_ID, event_data->requestor_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put requestor inst id, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETHER_ADDR_LEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote nmi, ret=%d\n", ret));
goto fail;
}
ret = nla_put_s8(msg, NAN_ATTRIBUTE_RSSI_PROXIMITY,
event_data->fup_rssi);
if (unlikely(ret)) {
WL_ERR(("Failed to put fup rssi, ret=%d\n", ret));
goto fail;
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_sub_match_event_filler(struct sk_buff *msg,
nan_event_data_t *event_data) {
int ret = BCME_OK;
WL_TRACE(("handle (sub_id)=%d\n", event_data->sub_id));
WL_TRACE(("pub id=%d\n", event_data->pub_id));
WL_TRACE(("sub id=%d\n", event_data->sub_id));
WL_TRACE(("pub mac addr=" MACDBG "\n",
MAC2STRDBG(event_data->remote_nmi.octet)));
WL_TRACE(("attr no: %d\n", event_data->attr_num));
WL_TRACE(("attr len: %d\n", event_data->attr_list_len));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, event_data->sub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_PUBLISH_ID, event_data->pub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put pub id, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_SUBSCRIBE_ID, event_data->sub_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put Sub Id, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETHER_ADDR_LEN,
event_data->remote_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put remote NMI, ret=%d\n", ret));
goto fail;
}
if (event_data->publish_rssi) {
event_data->publish_rssi = -event_data->publish_rssi;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_RSSI_PROXIMITY,
event_data->publish_rssi);
if (unlikely(ret)) {
WL_ERR(("Failed to put publish rssi, ret=%d\n", ret));
goto fail;
}
}
if (event_data->ranging_result_present) {
ret = nla_put_u32(msg, NAN_ATTRIBUTE_RANGING_INDICATION,
event_data->ranging_ind);
if (unlikely(ret)) {
WL_ERR(("Failed to put ranging ind, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_RANGING_RESULT,
event_data->range_measurement_cm);
if (unlikely(ret)) {
WL_ERR(("Failed to put range measurement cm, ret=%d\n",
ret));
goto fail;
}
}
/*
* handling optional service control, service response filter
*/
if (event_data->tx_match_filter.dlen && event_data->tx_match_filter.data) {
ret = nla_put_u16(msg, NAN_ATTRIBUTE_TX_MATCH_FILTER_LEN,
event_data->tx_match_filter.dlen);
if (unlikely(ret)) {
WL_ERR(("Failed to put tx match filter len, ret=%d\n",
ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_TX_MATCH_FILTER,
event_data->tx_match_filter.dlen,
event_data->tx_match_filter.data);
if (unlikely(ret)) {
WL_ERR(("Failed to put tx match filter data, ret=%d\n",
ret));
goto fail;
}
WL_TRACE(("tx matching filter (%d):\n",
event_data->tx_match_filter.dlen));
}
fail:
return ret;
}
static int
wl_cfgvendor_nan_de_event_filler(struct sk_buff *msg, nan_event_data_t *event_data)
{
int ret = BCME_OK;
ret = nla_put_u8(msg, NAN_ATTRIBUTE_ENABLE_STATUS, event_data->enabled);
if (unlikely(ret)) {
WL_ERR(("Failed to put event_data->enabled, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u8(msg, NAN_ATTRIBUTE_DE_EVENT_TYPE,
event_data->nan_de_evt_type);
if (unlikely(ret)) {
WL_ERR(("Failed to put nan_de_evt_type, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_CLUSTER_ID, ETH_ALEN,
event_data->clus_id.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put clust id, ret=%d\n", ret));
goto fail;
}
/* OOB tests requires local nmi */
ret = nla_put(msg, NAN_ATTRIBUTE_MAC_ADDR, ETH_ALEN,
event_data->local_nmi.octet);
if (unlikely(ret)) {
WL_ERR(("Failed to put NMI, ret=%d\n", ret));
goto fail;
}
fail:
return ret;
}
#ifdef RTT_SUPPORT
s32
wl_cfgvendor_send_as_rtt_legacy_event(struct wiphy *wiphy, struct net_device *dev,
wl_nan_ev_rng_rpt_ind_t *range_res, uint32 status)
{
s32 ret = BCME_OK;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
rtt_report_t *report = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *msg = NULL;
struct nlattr *rtt_nl_hdr;
NAN_DBG_ENTER();
report = MALLOCZ(cfg->osh, sizeof(*report));
if (!report) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
if (range_res) {
report->distance = range_res->dist_mm/10;
ret = memcpy_s(&report->addr, ETHER_ADDR_LEN,
&range_res->peer_m_addr, ETHER_ADDR_LEN);
if (ret != BCME_OK) {
WL_ERR(("Failed to copy peer_m_addr\n"));
goto exit;
}
}
report->status = (rtt_reason_t)status;
report->type = RTT_TWO_WAY;
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
msg = cfg80211_vendor_event_alloc(wiphy, NULL, 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
msg = cfg80211_vendor_event_alloc(wiphy, 100, GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put_u32(msg, RTT_ATTRIBUTE_RESULTS_COMPLETE, 1);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS_COMPLETE\n"));
goto exit;
}
rtt_nl_hdr = nla_nest_start(msg, RTT_ATTRIBUTE_RESULTS_PER_TARGET);
if (!rtt_nl_hdr) {
WL_ERR(("rtt_nl_hdr is NULL\n"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put(msg, RTT_ATTRIBUTE_TARGET_MAC, ETHER_ADDR_LEN, &report->addr);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_TARGET_MAC\n"));
goto exit;
}
ret = nla_put_u32(msg, RTT_ATTRIBUTE_RESULT_CNT, 1);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULT_CNT\n"));
goto exit;
}
ret = nla_put(msg, RTT_ATTRIBUTE_RESULT,
sizeof(*report), report);
if (ret < 0) {
WL_ERR(("Failed to put RTT_ATTRIBUTE_RESULTS\n"));
goto exit;
}
nla_nest_end(msg, rtt_nl_hdr);
cfg80211_vendor_event(msg, kflags);
if (report) {
MFREE(cfg->osh, report, sizeof(*report));
}
return ret;
exit:
if (msg)
dev_kfree_skb_any(msg);
WL_ERR(("Failed to send event GOOGLE_RTT_COMPLETE_EVENT,"
" -- Free skb, ret = %d\n", ret));
if (report)
MFREE(cfg->osh, report, sizeof(*report));
NAN_DBG_EXIT();
return ret;
}
#endif /* RTT_SUPPORT */
static int
wl_cfgvendor_send_nan_async_resp(struct wiphy *wiphy, struct wireless_dev *wdev,
int event_id, u8* nan_req_resp, u16 len)
{
int ret = BCME_OK;
int buf_len = NAN_EVENT_BUFFER_SIZE_LARGE;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
struct sk_buff *msg;
NAN_DBG_ENTER();
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, wdev, buf_len,
event_id, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return -ENOMEM;
}
ret = nla_put(msg, NAN_ATTRIBUTE_CMD_RESP_DATA,
len, (u8*)nan_req_resp);
if (unlikely(ret)) {
WL_ERR(("Failed to put resp data, ret=%d\n",
ret));
goto fail;
}
WL_DBG(("Event sent up to hal, event_id = %d, ret = %d\n",
event_id, ret));
cfg80211_vendor_event(msg, kflags);
NAN_DBG_EXIT();
return ret;
fail:
dev_kfree_skb_any(msg);
WL_ERR(("Event not implemented or unknown -- Free skb, event_id = %d, ret = %d\n",
event_id, ret));
NAN_DBG_EXIT();
return ret;
}
int
wl_cfgvendor_nan_send_async_disable_resp(struct wireless_dev *wdev)
{
int ret = BCME_OK;
struct wiphy *wiphy = wdev->wiphy;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
bzero(&nan_req_resp, sizeof(nan_req_resp));
nan_req_resp.status = NAN_STATUS_SUCCESS;
nan_req_resp.value = BCME_OK;
nan_req_resp.subcmd = NAN_WIFI_SUBCMD_DISABLE;
WL_INFORM_MEM(("Send NAN_ASYNC_RESPONSE_DISABLED\n"));
ret = wl_cfgvendor_send_nan_async_resp(wiphy, wdev,
NAN_ASYNC_RESPONSE_DISABLED, (u8*)&nan_req_resp, sizeof(nan_req_resp));
cfg->nancfg->notify_user = false;
return ret;
}
int
wl_cfgvendor_send_nan_event(struct wiphy *wiphy, struct net_device *dev,
int event_id, nan_event_data_t *event_data)
{
int ret = BCME_OK;
int buf_len = NAN_EVENT_BUFFER_SIZE_LARGE;
gfp_t kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *msg;
NAN_DBG_ENTER();
/* Allocate the skb for vendor event */
msg = CFG80211_VENDOR_EVENT_ALLOC(wiphy, ndev_to_wdev(dev), buf_len,
event_id, kflags);
if (!msg) {
WL_ERR(("%s: fail to allocate skb for vendor event\n", __FUNCTION__));
return -ENOMEM;
}
switch (event_id) {
case GOOGLE_NAN_EVENT_DE_EVENT: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_DE_EVENT cluster id=" MACDBG "nmi= " MACDBG "\n",
MAC2STRDBG(event_data->clus_id.octet),
MAC2STRDBG(event_data->local_nmi.octet)));
ret = wl_cfgvendor_nan_de_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill de event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH:
case GOOGLE_NAN_EVENT_FOLLOWUP: {
if (event_id == GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH) {
WL_DBG(("GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH\n"));
ret = wl_cfgvendor_nan_sub_match_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill sub match event data, ret=%d\n", ret));
goto fail;
}
} else if (event_id == GOOGLE_NAN_EVENT_FOLLOWUP) {
WL_DBG(("GOOGLE_NAN_EVENT_FOLLOWUP\n"));
ret = wl_cfgvendor_nan_tx_followup_event_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill sub match event data, ret=%d\n", ret));
goto fail;
}
}
ret = wl_cfgvendor_nan_opt_params_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill sub match event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DISABLED: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DISABLED\n"));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_HANDLE, 0);
if (unlikely(ret)) {
WL_ERR(("Failed to put handle, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u16(msg, NAN_ATTRIBUTE_STATUS, event_data->status);
if (unlikely(ret)) {
WL_ERR(("Failed to put status, ret=%d\n", ret));
goto fail;
}
ret = nla_put(msg, NAN_ATTRIBUTE_REASON,
strlen("NAN_STATUS_SUCCESS"), event_data->nan_reason);
if (unlikely(ret)) {
WL_ERR(("Failed to put reason code, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED:
case GOOGLE_NAN_EVENT_PUBLISH_TERMINATED: {
WL_DBG(("GOOGLE_NAN_SVC_TERMINATED, %d\n", event_id));
ret = wl_cfgvendor_nan_svc_terminate_event_filler(msg, cfg, event_id, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill svc terminate event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND: {
WL_DBG(("GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND %d\n",
GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND));
ret = wl_cfgvendor_nan_tx_followup_ind_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill tx follow up ind event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_REQUEST: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_REQUEST\n"));
ret = wl_cfgvendor_nan_dp_ind_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill dp ind event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_CONFIRMATION: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_CONFIRMATION\n"));
ret = wl_cfgvendor_nan_dp_estb_event_data_filler(msg, event_data);
if (unlikely(ret)) {
WL_ERR(("Failed to fill dp estb event data, ret=%d\n", ret));
goto fail;
}
break;
}
case GOOGLE_NAN_EVENT_DATA_END: {
WL_INFORM_MEM(("[NAN] GOOGLE_NAN_EVENT_DATA_END\n"));
ret = nla_put_u8(msg, NAN_ATTRIBUTE_INST_COUNT, 1);
if (unlikely(ret)) {
WL_ERR(("Failed to put inst count, ret=%d\n", ret));
goto fail;
}
ret = nla_put_u32(msg, NAN_ATTRIBUTE_NDP_ID, event_data->ndp_id);
if (unlikely(ret)) {
WL_ERR(("Failed to put ndp id, ret=%d\n", ret));
goto fail;
}
break;
}
default:
goto fail;
}
cfg80211_vendor_event(msg, kflags);
NAN_DBG_EXIT();
return ret;
fail:
dev_kfree_skb_any(msg);
WL_ERR(("Event not implemented or unknown -- Free skb, event_id = %d, ret = %d\n",
event_id, ret));
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_req_subscribe(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
/* Blocking Subscribe if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, subscribe blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret = %d\n", ret));
goto exit;
}
if (cmd_data->sub_id == 0) {
ret = wl_cfgnan_generate_inst_id(cfg, &cmd_data->sub_id);
if (ret) {
WL_ERR(("failed to generate instance-id for subscribe\n"));
goto exit;
}
} else {
cmd_data->svc_update = true;
}
ret = wl_cfgnan_subscribe_handler(wdev->netdev, cfg, cmd_data);
if (unlikely(ret) || unlikely(cmd_data->status)) {
WL_ERR(("failed to subscribe error[%d], status = [%d]\n",
ret, cmd_data->status));
wl_cfgnan_remove_inst_id(cfg, cmd_data->sub_id);
goto exit;
}
WL_DBG(("subscriber instance id=%d\n", cmd_data->sub_id));
if (cmd_data->status == WL_NAN_E_OK) {
nan_req_resp.instance_id = cmd_data->sub_id;
} else {
nan_req_resp.instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_REQUEST_SUBSCRIBE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_req_publish(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
/* Blocking Publish if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled publish blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret = %d\n", ret));
goto exit;
}
if (cmd_data->pub_id == 0) {
ret = wl_cfgnan_generate_inst_id(cfg, &cmd_data->pub_id);
if (ret) {
WL_ERR(("failed to generate instance-id for publisher\n"));
goto exit;
}
} else {
cmd_data->svc_update = true;
}
ret = wl_cfgnan_publish_handler(wdev->netdev, cfg, cmd_data);
if (unlikely(ret) || unlikely(cmd_data->status)) {
WL_ERR(("failed to publish error[%d], status[%d]\n",
ret, cmd_data->status));
wl_cfgnan_remove_inst_id(cfg, cmd_data->pub_id);
goto exit;
}
WL_DBG(("publisher instance id=%d\n", cmd_data->pub_id));
if (cmd_data->status == WL_NAN_E_OK) {
nan_req_resp.instance_id = cmd_data->pub_id;
} else {
nan_req_resp.instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_REQUEST_PUBLISH,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_start_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint32 nan_attr_mask = 0;
cmd_data = (nan_config_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
ret = wl_cfgnan_check_nan_disable_pending(cfg, false, true);
if (ret != BCME_OK) {
WL_ERR(("failed to disable nan, error[%d]\n", ret));
goto exit;
}
if (cfg->nancfg->nan_enable) {
WL_ERR(("nan is already enabled\n"));
ret = BCME_OK;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
cmd_data->sid_beacon.sid_enable = NAN_SID_ENABLE_FLAG_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_count = NAN_SID_BEACON_COUNT_INVALID; /* Setting to some default */
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR(("failed to parse nan vendor args, ret %d\n", ret));
goto exit;
}
ret = wl_cfgnan_start_handler(wdev->netdev, cfg, cmd_data, nan_attr_mask);
if (ret) {
WL_ERR(("failed to start nan error[%d]\n", ret));
goto exit;
}
/* Initializing Instance Id List */
bzero(cfg->nancfg->nan_inst_ctrl, NAN_ID_CTRL_SIZE * sizeof(nan_svc_inst_t));
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_ENABLE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_terminate_dp_rng_sessions(struct bcm_cfg80211 *cfg,
struct wireless_dev *wdev, bool *ssn_exists)
{
int ret = 0;
uint8 i = 0;
int status = BCME_ERROR;
wl_nancfg_t *nancfg = cfg->nancfg;
dhd_pub_t *dhdp;
#ifdef RTT_SUPPORT
nan_ranging_inst_t *ranging_inst = NULL;
#endif /* RTT_SUPPORT */
*ssn_exists = false;
dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
/* Cleanup active Data Paths If any */
for (i = 0; i < NAN_MAX_NDP_PEER; i++) {
if (nancfg->ndp_id[i]) {
WL_DBG(("Found entry of ndp id = [%d], end dp associated to it\n",
nancfg->ndp_id[i]));
ret = wl_cfgnan_data_path_end_handler(wdev->netdev, cfg,
nancfg->ndp_id[i], &status);
if ((ret == BCME_OK) && cfg->nancfg->nan_enable &&
dhdp->up) {
*ssn_exists = true;
}
}
}
#ifdef RTT_SUPPORT
/* Cancel ranging sessiosns */
for (i = 0; i < NAN_MAX_RANGING_INST; i++) {
ranging_inst = &nancfg->nan_ranging_info[i];
if (ranging_inst->in_use &&
(NAN_RANGING_IS_IN_PROG(ranging_inst->range_status))) {
ret = wl_cfgnan_cancel_ranging(bcmcfg_to_prmry_ndev(cfg), cfg,
&ranging_inst->range_id,
NAN_RNG_TERM_FLAG_NONE, &status);
if (unlikely(ret) || unlikely(status)) {
WL_ERR(("nan range cancel failed ret = %d status = %d\n",
ret, status));
} else {
*ssn_exists = true;
}
}
}
#endif /* RTT_SUPPORT */
return ret;
}
static int
wl_cfgvendor_nan_stop_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
bool ssn_exists = false;
uint32 delay_ms = 0;
wl_nancfg_t *nancfg = cfg->nancfg;
NAN_DBG_ENTER();
mutex_lock(&cfg->if_sync);
if (nancfg->nan_init_state == false) {
WL_INFORM_MEM(("nan is not initialized/nmi doesnt exists\n"));
goto exit;
}
if (nancfg->nan_enable == false) {
WL_INFORM_MEM(("nan is in disabled state\n"));
} else {
nancfg->notify_user = true;
wl_cfgvendor_terminate_dp_rng_sessions(cfg, wdev, &ssn_exists);
if (ssn_exists == true) {
/*
* Schedule nan disable with NAN_DISABLE_CMD_DELAY
* delay to make sure
* fw cleans any active Data paths and
* notifies the peer about the dp session terminations
*/
WL_INFORM_MEM(("Schedule Nan Disable Req with NAN_DISABLE_CMD_DELAY\n"));
delay_ms = NAN_DISABLE_CMD_DELAY;
DHD_NAN_WAKE_LOCK_TIMEOUT(cfg->pub, NAN_WAKELOCK_TIMEOUT);
} else {
delay_ms = 0;
}
schedule_delayed_work(&nancfg->nan_disable,
msecs_to_jiffies(delay_ms));
}
exit:
mutex_unlock(&cfg->if_sync);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_config_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint32 nan_attr_mask = 0;
cmd_data = MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
cmd_data->avail_params.duration = NAN_BAND_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_enable = NAN_SID_ENABLE_FLAG_INVALID; /* Setting to some default */
cmd_data->sid_beacon.sid_count = NAN_SID_BEACON_COUNT_INVALID; /* Setting to some default */
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR(("failed to parse nan vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_config_handler(wdev->netdev, cfg, cmd_data, nan_attr_mask);
if (ret) {
WL_ERR(("failed in config request, nan error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CONFIG,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_cancel_publish(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
/* Blocking Cancel_Publish if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, cancel publish blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->pub_id;
WL_INFORM_MEM(("[NAN] cancel publish instance_id=%d\n", cmd_data->pub_id));
ret = wl_cfgnan_cancel_pub_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to cancel publish nan instance-id[%d] error[%d]\n",
cmd_data->pub_id, ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CANCEL_PUBLISH,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_cancel_subscribe(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
/* Blocking Cancel_Subscribe if NAN is not enableb */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, cancel subscribe blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->sub_id;
WL_INFORM_MEM(("[NAN] cancel subscribe instance_id=%d\n", cmd_data->sub_id));
ret = wl_cfgnan_cancel_sub_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to cancel subscribe nan instance-id[%d] error[%d]\n",
cmd_data->sub_id, ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_CANCEL_SUBSCRIBE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_transmit(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_discover_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
/* Blocking Transmit if NAN is not enable */
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, transmit blocked\n"));
ret = BCME_ERROR;
goto exit;
}
cmd_data = (nan_discover_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_discover_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan disc vendor args, ret= %d\n", ret));
goto exit;
}
nan_req_resp.instance_id = cmd_data->local_id;
ret = wl_cfgnan_transmit_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to transmit-followup nan error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_TRANSMIT,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_disc_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_get_capablities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgnan_get_capablities_handler(wdev->netdev, cfg, &nan_req_resp.capabilities);
if (ret) {
WL_ERR(("Could not get capabilities\n"));
ret = -EINVAL;
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_GET_CAPABILITIES,
&nan_req_resp, ret, BCME_OK);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_iface_create(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
if (!cfg->nancfg->nan_init_state) {
WL_ERR(("%s: NAN is not inited or Device doesn't support NAN \n", __func__));
ret = -ENODEV;
goto exit;
}
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
NAN_DBG_ENTER();
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
if (cfg->nancfg->nan_enable) { /* new framework Impl, iface create called after nan enab */
ret = wl_cfgnan_data_path_iface_create_delete_handler(wdev->netdev,
cfg, cmd_data->ndp_iface,
NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE, dhdp->up);
if (ret != BCME_OK) {
WL_ERR(("failed to create iface, ret = %d\n", ret));
goto exit;
}
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_iface_delete(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
if (cfg->nancfg->nan_init_state == false) {
WL_ERR(("%s: NAN is not inited or Device doesn't support NAN \n", __func__));
/* Deinit has taken care of cleaing the virtual iface */
ret = BCME_OK;
goto exit;
}
NAN_DBG_ENTER();
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_iface_create_delete_handler(wdev->netdev, cfg,
(char*)cmd_data->ndp_iface,
NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE, dhdp->up);
if (ret) {
WL_ERR(("failed to delete ndp iface [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_request(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
uint8 ndp_instance_id = 0;
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path request blocked\n"));
ret = BCME_ERROR;
goto exit;
}
NAN_DBG_ENTER();
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_request_handler(wdev->netdev, cfg,
cmd_data, &ndp_instance_id);
if (ret) {
WL_ERR(("failed to request nan data path [%d]\n", ret));
goto exit;
}
if (cmd_data->status == BCME_OK) {
nan_req_resp.ndp_instance_id = cmd_data->ndp_instance_id;
} else {
nan_req_resp.ndp_instance_id = 0;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_REQUEST,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_response(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path response blocked\n"));
ret = BCME_ERROR;
goto exit;
}
NAN_DBG_ENTER();
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_response_handler(wdev->netdev, cfg, cmd_data);
if (ret) {
WL_ERR(("failed to response nan data path [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_RESPONSE,
&nan_req_resp, ret, cmd_data ? cmd_data->status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
static int
wl_cfgvendor_nan_data_path_end(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_datapath_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
int status = BCME_ERROR;
NAN_DBG_ENTER();
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled, nan data path end blocked\n"));
ret = BCME_OK;
goto exit;
}
cmd_data = (nan_datapath_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgvendor_nan_parse_datapath_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse nan datapath vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_data_path_end_handler(wdev->netdev, cfg,
cmd_data->ndp_instance_id, &status);
if (ret) {
WL_ERR(("failed to end nan data path [%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_END,
&nan_req_resp, ret, cmd_data ? status : BCME_OK);
wl_cfgvendor_free_dp_cmd_data(cfg, cmd_data);
NAN_DBG_EXIT();
return ret;
}
#ifdef WL_NAN_DISC_CACHE
static int
wl_cfgvendor_nan_data_path_sec_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nan_hal_resp_t nan_req_resp;
nan_datapath_sec_info_cmd_data_t *cmd_data = NULL;
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(wdev->netdev);
NAN_DBG_ENTER();
if (!cfg->nancfg->nan_enable) {
WL_ERR(("nan is not enabled\n"));
ret = BCME_UNSUPPORTED;
goto exit;
}
cmd_data = MALLOCZ(dhdp->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
ret = wl_cfgvendor_nan_parse_dp_sec_info_args(wiphy, data, len, cmd_data);
if (ret) {
WL_ERR(("failed to parse sec info args\n"));
goto exit;
}
bzero(&nan_req_resp, sizeof(nan_req_resp));
ret = wl_cfgnan_sec_info_handler(cfg, cmd_data, &nan_req_resp);
if (ret) {
WL_ERR(("failed to retrieve svc hash/pub nmi error[%d]\n", ret));
goto exit;
}
exit:
ret = wl_cfgvendor_nan_cmd_reply(wiphy, NAN_WIFI_SUBCMD_DATA_PATH_SEC_INFO,
&nan_req_resp, ret, BCME_OK);
if (cmd_data) {
MFREE(dhdp->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN_DISC_CACHE */
static int
wl_cfgvendor_nan_version_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint32 version = NAN_HAL_VERSION_1;
BCM_REFERENCE(cfg);
WL_DBG(("Enter %s version %d\n", __FUNCTION__, version));
ret = wl_cfgvendor_send_cmd_reply(wiphy, &version, sizeof(version));
return ret;
}
static int
wl_cfgvendor_nan_enable_merge(struct wiphy *wiphy,
struct wireless_dev *wdev, const void * data, int len)
{
int ret = 0;
nan_config_cmd_data_t *cmd_data = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int status = BCME_OK;
uint32 nan_attr_mask = 0;
BCM_REFERENCE(nan_attr_mask);
NAN_DBG_ENTER();
cmd_data = (nan_config_cmd_data_t *)MALLOCZ(cfg->osh, sizeof(*cmd_data));
if (!cmd_data) {
WL_ERR(("%s: memory allocation failed\n", __func__));
ret = BCME_NOMEM;
goto exit;
}
ret = wl_cfgvendor_nan_parse_args(wiphy, data, len, cmd_data, &nan_attr_mask);
if (ret) {
WL_ERR((" Enable merge: failed to parse nan config vendor args, ret = %d\n", ret));
goto exit;
}
ret = wl_cfgnan_set_enable_merge(wdev->netdev, cfg, cmd_data->enable_merge, &status);
if (unlikely(ret) || unlikely(status)) {
WL_ERR(("Enable merge: failed to set config request [%d]\n", ret));
/* As there is no cmd_reply, return status if error is in status else return ret */
if (status) {
ret = status;
}
goto exit;
}
exit:
if (cmd_data) {
if (cmd_data->scid.data) {
MFREE(cfg->osh, cmd_data->scid.data, cmd_data->scid.dlen);
cmd_data->scid.dlen = 0;
}
MFREE(cfg->osh, cmd_data, sizeof(*cmd_data));
}
NAN_DBG_EXIT();
return ret;
}
#endif /* WL_NAN */
#ifdef LINKSTAT_SUPPORT
#define NUM_RATE 32
#define NUM_PEER 1
#define NUM_CHAN 11
#define HEADER_SIZE sizeof(ver_len)
static int wl_cfgvendor_lstats_get_bcn_mbss(char *buf, uint32 *rxbeaconmbss)
{
wl_cnt_info_t *cbuf = (wl_cnt_info_t *)buf;
const void *cnt;
if ((cnt = (const void *)bcm_get_data_from_xtlv_buf(cbuf->data, cbuf->datalen,
WL_CNT_XTLV_CNTV_LE10_UCODE, NULL, BCM_XTLV_OPTION_ALIGN32)) != NULL) {
*rxbeaconmbss = ((const wl_cnt_v_le10_mcst_t *)cnt)->rxbeaconmbss;
} else if ((cnt = (const void *)bcm_get_data_from_xtlv_buf(cbuf->data, cbuf->datalen,
WL_CNT_XTLV_LT40_UCODE_V1, NULL, BCM_XTLV_OPTION_ALIGN32)) != NULL) {
*rxbeaconmbss = ((const wl_cnt_lt40mcst_v1_t *)cnt)->rxbeaconmbss;
} else if ((cnt = (const void *)bcm_get_data_from_xtlv_buf(cbuf->data, cbuf->datalen,
WL_CNT_XTLV_GE40_UCODE_V1, NULL, BCM_XTLV_OPTION_ALIGN32)) != NULL) {
*rxbeaconmbss = ((const wl_cnt_ge40mcst_v1_t *)cnt)->rxbeaconmbss;
} else if ((cnt = (const void *)bcm_get_data_from_xtlv_buf(cbuf->data, cbuf->datalen,
WL_CNT_XTLV_GE80_UCODE_V1, NULL, BCM_XTLV_OPTION_ALIGN32)) != NULL) {
*rxbeaconmbss = ((const wl_cnt_ge80mcst_v1_t *)cnt)->rxbeaconmbss;
} else {
*rxbeaconmbss = 0;
return BCME_NOTFOUND;
}
return BCME_OK;
}
static int wl_cfgvendor_lstats_get_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
static char iovar_buf[WLC_IOCTL_MAXLEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int err = 0, i;
wifi_radio_stat *radio;
wifi_radio_stat_h radio_h;
wifi_channel_stat channel_stat;
const wl_cnt_wlc_t *wlc_cnt;
scb_val_t scbval;
char *output = NULL;
char *outdata = NULL;
wifi_rate_stat_v1 *p_wifi_rate_stat_v1 = NULL;
wifi_rate_stat *p_wifi_rate_stat = NULL;
uint total_len = 0;
uint32 rxbeaconmbss;
wlc_rev_info_t revinfo;
wl_if_stats_t *if_stats = NULL;
dhd_pub_t *dhdp = (dhd_pub_t *)(cfg->pub);
COMPAT_STRUCT_IFACE(wifi_iface_stat, iface);
WL_TRACE(("%s: Enter \n", __func__));
RETURN_EIO_IF_NOT_UP(cfg);
BCM_REFERENCE(if_stats);
BCM_REFERENCE(dhdp);
/* Get the device rev info */
bzero(&revinfo, sizeof(revinfo));
err = wldev_ioctl_get(bcmcfg_to_prmry_ndev(cfg), WLC_GET_REVINFO, &revinfo,
sizeof(revinfo));
if (err != BCME_OK) {
goto exit;
}
outdata = (void *)MALLOCZ(cfg->osh, WLC_IOCTL_MAXLEN);
if (outdata == NULL) {
WL_ERR(("outdata alloc failed\n"));
return BCME_NOMEM;
}
bzero(&scbval, sizeof(scb_val_t));
bzero(outdata, WLC_IOCTL_MAXLEN);
output = outdata;
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "radiostat", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wifi_radio_stat)));
goto exit;
}
radio = (wifi_radio_stat *)iovar_buf;
bzero(&radio_h, sizeof(wifi_radio_stat_h));
radio_h.on_time = radio->on_time;
radio_h.tx_time = radio->tx_time;
radio_h.rx_time = radio->rx_time;
radio_h.on_time_scan = 3737;
radio_h.on_time_nbd = 1010;
radio_h.on_time_gscan = 243;
radio_h.on_time_roam_scan = 1425;
radio_h.on_time_pno_scan = 143;
radio_h.on_time_hs20 = 156;
radio_h.num_channels = 1;
memcpy(output, &radio_h, sizeof(wifi_radio_stat_h));
output += sizeof(wifi_radio_stat_h);
bzero(&channel_stat, sizeof(wifi_channel_stat));
dhd_dev_rtt_avail_channel(bcmcfg_to_prmry_ndev(cfg), &(channel_stat.channel));
channel_stat.on_time = 0x2222;
channel_stat.cca_busy_time = 0x66;
memcpy(output, &channel_stat, sizeof(wifi_channel_stat));
output += sizeof(wifi_channel_stat);
COMPAT_BZERO_IFACE(wifi_iface_stat, iface);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_VO].ac, WIFI_AC_VO);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_VI].ac, WIFI_AC_VI);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].ac, WIFI_AC_BE);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BK].ac, WIFI_AC_BK);
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "counters", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wl_cnt_wlc_t)));
goto exit;
}
CHK_CNTBUF_DATALEN(iovar_buf, WLC_IOCTL_MAXLEN);
/* Translate traditional (ver <= 10) counters struct to new xtlv type struct */
/* traditional(ver<=10)counters will use WL_CNT_XTLV_CNTV_LE10_UCODE.
* Other cases will use its xtlv type accroding to corerev
*/
err = wl_cntbuf_to_xtlv_format(NULL, iovar_buf, WLC_IOCTL_MAXLEN, revinfo.corerev);
if (err != BCME_OK) {
WL_ERR(("wl_cntbuf_to_xtlv_format ERR %d\n", err));
goto exit;
}
if (!(wlc_cnt = GET_WLCCNT_FROM_CNTBUF(iovar_buf))) {
WL_ERR(("wlc_cnt NULL!\n"));
err = BCME_ERROR;
goto exit;
}
#ifndef DISABLE_IF_COUNTERS
if_stats = (wl_if_stats_t *)MALLOCZ(cfg->osh, sizeof(wl_if_stats_t));
if (!if_stats) {
WL_ERR(("MALLOCZ failed\n"));
err = BCME_NOMEM;
goto exit;
}
if (FW_SUPPORTED(dhdp, ifst)) {
err = wl_cfg80211_ifstats_counters(bcmcfg_to_prmry_ndev(cfg), if_stats);
} else {
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "if_counters",
NULL, 0, (char *)if_stats, sizeof(*if_stats), NULL);
}
if (!err) {
/* Populate from if_stats */
if (dtoh16(if_stats->version) > WL_IF_STATS_T_VERSION) {
WL_ERR(("incorrect version of wl_if_stats_t,"
" expected=%u got=%u\n", WL_IF_STATS_T_VERSION,
if_stats->version));
goto exit;
}
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].tx_mpdu,
(uint32)(if_stats->txfrmsnt - if_stats->txmulti));
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].rx_mpdu, (uint32)if_stats->rxframe);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].mpdu_lost, (uint32)if_stats->txfail);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].retries, (uint32)if_stats->txretrans);
} else
#endif /* !DISABLE_IF_COUNTERS */
{
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].tx_mpdu,
(wlc_cnt->txfrmsnt - wlc_cnt->txmulti));
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].rx_mpdu, wlc_cnt->rxframe);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].mpdu_lost, wlc_cnt->txfail);
COMPAT_ASSIGN_VALUE(iface, ac[WIFI_AC_BE].retries, wlc_cnt->txretrans);
}
err = wl_cfgvendor_lstats_get_bcn_mbss(iovar_buf, &rxbeaconmbss);
if (unlikely(err)) {
WL_ERR(("get_bcn_mbss error (%d)\n", err));
goto exit;
}
err = wldev_get_rssi(bcmcfg_to_prmry_ndev(cfg), &scbval);
if (unlikely(err)) {
WL_ERR(("get_rssi error (%d)\n", err));
goto exit;
}
COMPAT_ASSIGN_VALUE(iface, beacon_rx, rxbeaconmbss);
COMPAT_ASSIGN_VALUE(iface, rssi_mgmt, scbval.val);
COMPAT_ASSIGN_VALUE(iface, num_peers, NUM_PEER);
COMPAT_ASSIGN_VALUE(iface, peer_info->num_rate, NUM_RATE);
COMPAT_MEMCOPY_IFACE(output, total_len, wifi_iface_stat, iface, wifi_rate_stat);
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "ratestat", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n", err, NUM_RATE*sizeof(wifi_rate_stat)));
goto exit;
}
for (i = 0; i < NUM_RATE; i++) {
p_wifi_rate_stat =
(wifi_rate_stat *)(iovar_buf + i*sizeof(wifi_rate_stat));
p_wifi_rate_stat_v1 = (wifi_rate_stat_v1 *)output;
p_wifi_rate_stat_v1->rate.preamble = p_wifi_rate_stat->rate.preamble;
p_wifi_rate_stat_v1->rate.nss = p_wifi_rate_stat->rate.nss;
p_wifi_rate_stat_v1->rate.bw = p_wifi_rate_stat->rate.bw;
p_wifi_rate_stat_v1->rate.rateMcsIdx = p_wifi_rate_stat->rate.rateMcsIdx;
p_wifi_rate_stat_v1->rate.reserved = p_wifi_rate_stat->rate.reserved;
p_wifi_rate_stat_v1->rate.bitrate = p_wifi_rate_stat->rate.bitrate;
p_wifi_rate_stat_v1->tx_mpdu = p_wifi_rate_stat->tx_mpdu;
p_wifi_rate_stat_v1->rx_mpdu = p_wifi_rate_stat->rx_mpdu;
p_wifi_rate_stat_v1->mpdu_lost = p_wifi_rate_stat->mpdu_lost;
p_wifi_rate_stat_v1->retries = p_wifi_rate_stat->retries;
p_wifi_rate_stat_v1->retries_short = p_wifi_rate_stat->retries_short;
p_wifi_rate_stat_v1->retries_long = p_wifi_rate_stat->retries_long;
output = (char *) &(p_wifi_rate_stat_v1->retries_long);
output += sizeof(p_wifi_rate_stat_v1->retries_long);
}
total_len = sizeof(wifi_radio_stat_h) +
NUM_CHAN * sizeof(wifi_channel_stat);
total_len = total_len - sizeof(wifi_peer_info) +
NUM_PEER * (sizeof(wifi_peer_info) - sizeof(wifi_rate_stat_v1) +
NUM_RATE * sizeof(wifi_rate_stat_v1));
if (total_len > WLC_IOCTL_MAXLEN) {
WL_ERR(("Error! total_len:%d is unexpected value\n", total_len));
err = BCME_BADLEN;
goto exit;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, outdata, total_len);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
exit:
if (outdata) {
MFREE(cfg->osh, outdata, WLC_IOCTL_MAXLEN);
}
if (if_stats) {
MFREE(cfg->osh, if_stats, sizeof(wl_if_stats_t));
}
return err;
}
#endif /* LINKSTAT_SUPPORT */
#ifdef DHD_LOG_DUMP
static int
wl_cfgvendor_get_buf_data(const struct nlattr *iter, struct buf_data **buf)
{
int ret = BCME_OK;
if (nla_len(iter) != sizeof(struct buf_data)) {
WL_ERR(("Invalid len : %d\n", nla_len(iter)));
ret = BCME_BADLEN;
}
(*buf) = (struct buf_data *)nla_data(iter);
if (!(*buf) || (((*buf)->len) <= 0) || !((*buf)->data_buf[0])) {
WL_ERR(("Invalid buffer\n"));
ret = BCME_ERROR;
}
return ret;
}
static int
wl_cfgvendor_dbg_file_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type = 0;
const struct nlattr *iter;
char *mem_buf = NULL;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct buf_data *buf;
int pos = 0;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
WL_ERR(("%s\n", __FUNCTION__));
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
ret = wl_cfgvendor_get_buf_data(iter, &buf);
if (ret)
goto exit;
switch (type) {
case DUMP_BUF_ATTR_MEMDUMP:
ret = dhd_os_get_socram_dump(bcmcfg_to_prmry_ndev(cfg), &mem_buf,
(uint32 *)(&(buf->len)));
if (ret) {
WL_ERR(("failed to get_socram_dump : %d\n", ret));
goto exit;
}
ret = dhd_export_debug_data(mem_buf, NULL, buf->data_buf[0],
(int)buf->len, &pos);
break;
case DUMP_BUF_ATTR_TIMESTAMP :
ret = dhd_print_time_str(buf->data_buf[0], NULL,
(uint32)buf->len, &pos);
break;
#ifdef EWP_ECNTRS_LOGGING
case DUMP_BUF_ATTR_ECNTRS :
ret = dhd_print_ecntrs_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* EWP_ECNTRS_LOGGING */
#ifdef DHD_STATUS_LOGGING
case DUMP_BUF_ATTR_STATUS_LOG :
ret = dhd_print_status_log_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* DHD_STATUS_LOGGING */
#ifdef EWP_RTT_LOGGING
case DUMP_BUF_ATTR_RTT_LOG :
ret = dhd_print_rtt_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* EWP_RTT_LOGGING */
case DUMP_BUF_ATTR_DHD_DUMP :
ret = dhd_print_dump_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#if defined(BCMPCIE)
case DUMP_BUF_ATTR_EXT_TRAP :
ret = dhd_print_ext_trap_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif /* BCMPCIE */
#if defined(DHD_FW_COREDUMP) && defined(DNGL_EVENT_SUPPORT)
case DUMP_BUF_ATTR_HEALTH_CHK :
ret = dhd_print_health_chk_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif
case DUMP_BUF_ATTR_COOKIE :
ret = dhd_print_cookie_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#ifdef DHD_DUMP_PCIE_RINGS
case DUMP_BUF_ATTR_FLOWRING_DUMP :
ret = dhd_print_flowring_data(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len, &pos);
break;
#endif
case DUMP_BUF_ATTR_GENERAL_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_GENERAL, &pos);
break;
case DUMP_BUF_ATTR_PRESERVE_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_PRESERVE, &pos);
break;
case DUMP_BUF_ATTR_SPECIAL_LOG :
ret = dhd_get_dld_log_dump(bcmcfg_to_prmry_ndev(cfg), NULL,
buf->data_buf[0], NULL, (uint32)buf->len,
DLD_BUF_TYPE_SPECIAL, &pos);
break;
#ifdef DHD_SSSR_DUMP
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C0_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 0);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C0_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 0);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C1_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 1);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C1_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 1);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_C2_D11_BEFORE :
ret = dhd_sssr_dump_d11_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 2);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_C2_D11_AFTER :
ret = dhd_sssr_dump_d11_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len, 2);
break;
#ifdef DHD_SSSR_DUMP_BEFORE_SR
case DUMP_BUF_ATTR_SSSR_DIG_BEFORE :
ret = dhd_sssr_dump_dig_buf_before(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
case DUMP_BUF_ATTR_SSSR_DIG_AFTER :
ret = dhd_sssr_dump_dig_buf_after(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_SSSR_DUMP */
#ifdef DHD_PKT_LOGGING
case DUMP_BUF_ATTR_PKTLOG:
ret = dhd_os_get_pktlog_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
case DUMP_BUF_ATTR_PKTLOG_DEBUG:
ret = dhd_os_get_pktlog_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DHD_PKT_LOGGING */
#ifdef DNGL_AXI_ERROR_LOGGING
case DUMP_BUF_ATTR_AXI_ERROR:
ret = dhd_os_get_axi_error_dump(bcmcfg_to_prmry_ndev(cfg),
buf->data_buf[0], (uint32)buf->len);
break;
#endif /* DNGL_AXI_ERROR_LOGGING */
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
if (ret)
goto exit;
ret = nla_put_u32(skb, type, (uint32)(ret));
if (ret < 0) {
WL_ERR(("Failed to put type, ret:%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
return ret;
exit:
if (skb) {
/* Free skb memory */
kfree_skb(skb);
}
return ret;
}
#endif /* DHD_LOG_DUMP */
#ifdef DEBUGABILITY
static int
wl_cfgvendor_dbg_trigger_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
uint32 alloc_len;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhdp = (dhd_pub_t *)(cfg->pub);
WL_ERR(("wl_cfgvendor_dbg_trigger_mem_dump %d\n", __LINE__));
dhdp->memdump_type = DUMP_TYPE_CFG_VENDOR_TRIGGERED;
ret = dhd_os_socram_dump(bcmcfg_to_prmry_ndev(cfg), &alloc_len);
if (ret) {
WL_ERR(("failed to call dhd_os_socram_dump : %d\n", ret));
goto exit;
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put_u32(skb, DEBUG_ATTRIBUTE_FW_DUMP_LEN, alloc_len);
if (unlikely(ret)) {
WL_ERR(("Failed to put fw dump length, ret=%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
goto exit;
}
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int
wl_cfgvendor_dbg_get_mem_dump(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
int buf_len = 0;
uintptr_t user_buf = (uintptr_t)NULL;
const struct nlattr *iter;
char *mem_buf = NULL;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_FW_DUMP_LEN:
/* Check if the iter is valid and
* buffer length is not already initialized.
*/
if ((nla_len(iter) == sizeof(uint32)) &&
!buf_len) {
buf_len = nla_get_u32(iter);
if (buf_len <= 0) {
ret = BCME_ERROR;
goto exit;
}
} else {
ret = BCME_ERROR;
goto exit;
}
break;
case DEBUG_ATTRIBUTE_FW_DUMP_DATA:
if (nla_len(iter) != sizeof(uint64)) {
WL_ERR(("Invalid len\n"));
ret = BCME_ERROR;
goto exit;
}
user_buf = (uintptr_t)nla_get_u64(iter);
if (!user_buf) {
ret = BCME_ERROR;
goto exit;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
if (buf_len > 0 && user_buf) {
#if 0
mem_buf = vmalloc(buf_len);
if (!mem_buf) {
WL_ERR(("failed to allocate mem_buf with size : %d\n", buf_len));
ret = BCME_NOMEM;
goto exit;
}
#endif
ret = dhd_os_get_socram_dump(bcmcfg_to_prmry_ndev(cfg), &mem_buf, &buf_len);
if (ret) {
WL_ERR(("failed to get_socram_dump : %d\n", ret));
goto free_mem;
}
#ifdef CONFIG_COMPAT
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0))
if (in_compat_syscall())
#else
if (is_compat_task())
#endif /* LINUX_VER >= 4.6 */
{
void * usr_ptr = compat_ptr((uintptr_t) user_buf);
ret = copy_to_user(usr_ptr, mem_buf, buf_len);
if (ret) {
WL_ERR(("failed to copy memdump into user buffer : %d\n", ret));
goto free_mem;
}
}
else
#endif /* CONFIG_COMPAT */
{
ret = copy_to_user((void*)user_buf, mem_buf, buf_len);
if (ret) {
WL_ERR(("failed to copy memdump into user buffer : %d\n", ret));
goto free_mem;
}
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, CFG80211_VENDOR_CMD_REPLY_SKB_SZ);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto free_mem;
}
/* Indicate the memdump is succesfully copied */
ret = nla_put(skb, DEBUG_ATTRIBUTE_FW_DUMP_DATA, sizeof(ret), &ret);
if (ret < 0) {
WL_ERR(("Failed to put DEBUG_ATTRIBUTE_FW_DUMP_DATA, ret:%d\n", ret));
goto free_mem;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
skb = NULL;
}
free_mem:
// vfree(mem_buf);
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_start_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
int log_level = 0, flags = 0, time_intval = 0, threshold = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
break;
case DEBUG_ATTRIBUTE_LOG_LEVEL:
log_level = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_RING_FLAGS:
flags = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_TIME_INTVAL:
time_intval = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_MIN_DATA_SIZE:
threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADADDR;
goto exit;
}
}
ret = dhd_os_start_logging(dhd_pub, ring_name, log_level, flags, time_intval, threshold);
if (ret < 0) {
WL_ERR(("start_logging is failed ret: %d\n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_reset_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_reset_logging(dhd_pub);
if (ret < 0) {
WL_ERR(("reset logging is failed ret: %d\n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_ring_status(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
int ring_id, i;
int ring_cnt;
struct sk_buff *skb;
dhd_dbg_ring_status_t dbg_ring_status[DEBUG_RING_ID_MAX];
dhd_dbg_ring_status_t ring_status;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
bzero(dbg_ring_status, DBG_RING_STATUS_SIZE * DEBUG_RING_ID_MAX);
ring_cnt = 0;
for (ring_id = DEBUG_RING_ID_INVALID + 1; ring_id < DEBUG_RING_ID_MAX; ring_id++) {
ret = dhd_os_get_ring_status(dhd_pub, ring_id, &ring_status);
if (ret == BCME_NOTFOUND) {
WL_DBG(("The ring (%d) is not found \n", ring_id));
} else if (ret == BCME_OK) {
dbg_ring_status[ring_cnt++] = ring_status;
}
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
nla_total_size(DBG_RING_STATUS_SIZE) * ring_cnt + nla_total_size(sizeof(ring_cnt)));
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
/* Ignore return of nla_put_u32 and nla_put since the skb allocated
* above has a requested size for all payload
*/
(void)nla_put_u32(skb, DEBUG_ATTRIBUTE_RING_NUM, ring_cnt);
for (i = 0; i < ring_cnt; i++) {
(void)nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, DBG_RING_STATUS_SIZE,
&dbg_ring_status[i]);
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_get_ring_data(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strlcpy(ring_name, nla_data(iter), sizeof(ring_name));
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return ret;
}
}
ret = dhd_os_trigger_get_ring_data(dhd_pub, ring_name);
if (ret < 0) {
WL_ERR(("trigger_get_data failed ret:%d\n", ret));
}
return ret;
}
#endif /* DEBUGABILITY */
static int wl_cfgvendor_dbg_get_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
u32 supported_features = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_dbg_get_feature(dhd_pub, &supported_features);
if (ret < 0) {
WL_ERR(("dbg_get_feature failed ret:%d\n", ret));
goto exit;
}
ret = wl_cfgvendor_send_cmd_reply(wiphy, &supported_features,
sizeof(supported_features));
exit:
return ret;
}
#ifdef DEBUGABILITY
static void wl_cfgvendor_dbg_ring_send_evt(void *ctx,
const int ring_id, const void *data, const uint32 len,
const dhd_dbg_ring_status_t ring_status)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb;
if (!ndev) {
WL_ERR(("ndev is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + 100,
GOOGLE_DEBUG_RING_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + 100,
GOOGLE_DEBUG_RING_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, sizeof(ring_status), &ring_status);
nla_put(skb, DEBUG_ATTRIBUTE_RING_DATA, len, data);
cfg80211_vendor_event(skb, kflags);
}
#endif /* DEBUGABILITY */
#ifdef DHD_LOG_DUMP
#ifdef DHD_SSSR_DUMP
#define DUMP_SSSR_DUMP_MAX_COUNT 8
static int wl_cfgvendor_nla_put_sssr_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = BCME_OK;
#ifdef DHD_SSSR_DUMP
uint32 arr_len[DUMP_SSSR_DUMP_MAX_COUNT];
#endif /* DHD_SSSR_DUMP */
char memdump_path[MEMDUMP_PATH_LEN];
dhd_pub_t *dhdp = wl_cfg80211_get_dhdp(ndev);
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_0_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_0_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 0 before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_0_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_0_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 after dump path, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_1_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_1_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_1_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_1_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 1 after dump path, ret=%d\n", ret));
goto exit;
}
if (dhdp->sssr_d11_outofreset[2]) {
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_2_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_2_BEFORE_DUMP,
memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 2 before dump path, ret=%d\n",
ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_core_2_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_CORE_2_AFTER_DUMP,
memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr core 2 after dump path, ret=%d\n",
ret));
goto exit;
}
}
#ifdef DHD_SSSR_DUMP_BEFORE_SR
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_dig_before_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_DIG_BEFORE_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dig before dump path, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN,
"sssr_dump_dig_after_SR");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_SSSR_DIG_AFTER_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dig after dump path, ret=%d\n", ret));
goto exit;
}
#ifdef DHD_SSSR_DUMP
memset(arr_len, 0, sizeof(arr_len));
dhd_nla_put_sssr_dump_len(ndev, arr_len);
#ifdef DHD_SSSR_DUMP_BEFORE_SR
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C0_D11_BEFORE, arr_len[0]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C1_D11_BEFORE, arr_len[2]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C2_D11_BEFORE, arr_len[4]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_DIG_BEFORE, arr_len[6]);
#endif /* DHD_SSSR_DUMP_BEFORE_SR */
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C0_D11_AFTER, arr_len[1]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C1_D11_AFTER, arr_len[3]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_C2_D11_AFTER, arr_len[5]);
ret |= nla_put_u32(skb, DUMP_LEN_ATTR_SSSR_DIG_AFTER, arr_len[7]);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put sssr dump len, ret=%d\n", ret));
goto exit;
}
#endif /* DHD_SSSR_DUMP */
exit:
return ret;
}
#else
static int wl_cfgvendor_nla_put_sssr_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
return BCME_OK;
}
#endif /* DHD_SSSR_DUMP */
static int wl_cfgvendor_nla_put_debug_dump_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = BCME_OK;
uint32 len = 0;
char dump_path[128];
ret = dhd_get_debug_dump_file_name(ndev, NULL, dump_path, sizeof(dump_path));
if (ret < 0) {
WL_ERR(("%s: Failed to get debug dump filename\n", __FUNCTION__));
goto exit;
}
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_DEBUG_DUMP, dump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put debug dump path, ret=%d\n", ret));
goto exit;
}
WL_ERR(("debug_dump path = %s%s\n", dump_path, FILE_NAME_HAL_TAG));
wl_print_verinfo(wl_get_cfg(ndev));
len = dhd_get_time_str_len();
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_TIMESTAMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put time stamp length, ret=%d\n", ret));
goto exit;
}
}
len = dhd_get_dld_len(DLD_BUF_TYPE_GENERAL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_GENERAL_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put general log length, ret=%d\n", ret));
goto exit;
}
}
#ifdef EWP_ECNTRS_LOGGING
len = dhd_get_ecntrs_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_ECNTRS, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put ecntrs length, ret=%d\n", ret));
goto exit;
}
}
#endif /* EWP_ECNTRS_LOGGING */
len = dhd_get_dld_len(DLD_BUF_TYPE_SPECIAL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_SPECIAL_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put special log length, ret=%d\n", ret));
goto exit;
}
}
len = dhd_get_dhd_dump_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_DHD_DUMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put dhd dump length, ret=%d\n", ret));
goto exit;
}
}
#if defined(BCMPCIE)
len = dhd_get_ext_trap_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_EXT_TRAP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put ext trap length, ret=%d\n", ret));
goto exit;
}
}
#endif /* BCMPCIE */
#if defined(DHD_FW_COREDUMP) && defined(DNGL_EVENT_SUPPORT)
len = dhd_get_health_chk_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_HEALTH_CHK, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put health check length, ret=%d\n", ret));
goto exit;
}
}
#endif
len = dhd_get_dld_len(DLD_BUF_TYPE_PRESERVE);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PRESERVE_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put preserve log length, ret=%d\n", ret));
goto exit;
}
}
len = dhd_get_cookie_log_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_COOKIE, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put cookie length, ret=%d\n", ret));
goto exit;
}
}
#ifdef DHD_DUMP_PCIE_RINGS
len = dhd_get_flowring_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_FLOWRING_DUMP, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put flowring dump length, ret=%d\n", ret));
goto exit;
}
}
#endif
#ifdef DHD_STATUS_LOGGING
len = dhd_get_status_log_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_STATUS_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put status log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* DHD_STATUS_LOGGING */
#ifdef EWP_RTT_LOGGING
len = dhd_get_rtt_len(ndev, NULL);
if (len) {
ret = nla_put_u32(skb, DUMP_LEN_ATTR_RTT_LOG, len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put rtt log length, ret=%d\n", ret));
goto exit;
}
}
#endif /* EWP_RTT_LOGGING */
exit:
return ret;
}
#ifdef DNGL_AXI_ERROR_LOGGING
static void wl_cfgvendor_nla_put_axi_error_data(struct sk_buff *skb,
struct net_device *ndev)
{
int ret = 0;
char axierrordump_path[MEMDUMP_PATH_LEN];
int dumpsize = dhd_os_get_axi_error_dump_size(ndev);
if (dumpsize <= 0) {
WL_ERR(("Failed to calcuate axi error dump len\n"));
return;
}
dhd_os_get_axi_error_filename(ndev, axierrordump_path, MEMDUMP_PATH_LEN);
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_AXI_ERROR_DUMP, axierrordump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_AXI_ERROR, dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return;
}
}
#endif /* DNGL_AXI_ERROR_LOGGING */
#ifdef DHD_PKT_LOGGING
static int wl_cfgvendor_nla_put_pktlogdump_data(struct sk_buff *skb,
struct net_device *ndev, bool pktlogdbg)
{
int ret = BCME_OK;
char pktlogdump_path[MEMDUMP_PATH_LEN];
uint32 pktlog_dumpsize = dhd_os_get_pktlog_dump_size(ndev);
if (pktlog_dumpsize == 0) {
WL_ERR(("Failed to calcuate pktlog len\n"));
return BCME_ERROR;
}
dhd_os_get_pktlogdump_filename(ndev, pktlogdump_path, MEMDUMP_PATH_LEN);
if (pktlogdbg) {
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_PKTLOG_DEBUG_DUMP, pktlogdump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return ret;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTLOG_DEBUG, pktlog_dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return ret;
}
} else {
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_PKTLOG_DUMP, pktlogdump_path);
if (ret) {
WL_ERR(("Failed to put filename\n"));
return ret;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_PKTLOG, pktlog_dumpsize);
if (ret) {
WL_ERR(("Failed to put filesize\n"));
return ret;
}
}
return ret;
}
#endif /* DHD_PKT_LOGGING */
static int wl_cfgvendor_nla_put_memdump_data(struct sk_buff *skb,
struct net_device *ndev, const uint32 fw_len)
{
char memdump_path[MEMDUMP_PATH_LEN];
int ret = BCME_OK;
dhd_get_memdump_filename(ndev, memdump_path, MEMDUMP_PATH_LEN, "mem_dump");
ret = nla_put_string(skb, DUMP_FILENAME_ATTR_MEM_DUMP, memdump_path);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put mem dump path, ret=%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, DUMP_LEN_ATTR_MEMDUMP, fw_len);
if (unlikely(ret)) {
WL_ERR(("Failed to nla put mem dump length, ret=%d\n", ret));
goto exit;
}
exit:
return ret;
}
static void wl_cfgvendor_dbg_send_file_dump_evt(void *ctx, const void *data,
const uint32 len, const uint32 fw_len)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb = NULL;
struct bcm_cfg80211 *cfg;
dhd_pub_t *dhd_pub;
int ret = BCME_OK;
if (!ndev) {
WL_ERR(("ndev is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_FILE_DUMP_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + CFG80211_VENDOR_EVT_SKB_SZ,
GOOGLE_FILE_DUMP_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
cfg = wiphy_priv(wiphy);
dhd_pub = cfg->pub;
#ifdef DHD_PKT_LOGGING
if (dhd_pub->pktlog_debug) {
if ((ret = wl_cfgvendor_nla_put_pktlogdump_data(skb, ndev, TRUE)) < 0) {
WL_ERR(("nla put failed\n"));
goto done;
}
dhd_pub->pktlog_debug = FALSE;
} else
#endif /* DHD_PKT_LOGGING */
{
#ifdef DNGL_AXI_ERROR_LOGGING
if (dhd_pub->smmu_fault_occurred) {
wl_cfgvendor_nla_put_axi_error_data(skb, ndev);
}
#endif /* DNGL_AXI_ERROR_LOGGING */
#ifdef DHD_FW_COREDUMP
if (dhd_pub->memdump_enabled || (dhd_pub->memdump_type == DUMP_TYPE_BY_SYSDUMP))
#else
if ((dhd_pub->memdump_type == DUMP_TYPE_BY_SYSDUMP))
#endif
{
if (((ret = wl_cfgvendor_nla_put_memdump_data(skb, ndev, fw_len)) < 0) ||
((ret = wl_cfgvendor_nla_put_debug_dump_data(skb, ndev)) < 0) ||
((ret = wl_cfgvendor_nla_put_sssr_dump_data(skb, ndev)) < 0)) {
WL_ERR(("nla put failed\n"));
goto done;
}
#ifdef DHD_PKT_LOGGING
if ((ret = wl_cfgvendor_nla_put_pktlogdump_data(skb, ndev, FALSE)) < 0) {
WL_ERR(("nla put failed\n"));
goto done;
}
#endif /* DHD_PKT_LOGGING */
}
}
/* TODO : Similar to above function add for debug_dump, sssr_dump, and pktlog also. */
cfg80211_vendor_event(skb, kflags);
return;
done:
if (skb) {
dev_kfree_skb_any(skb);
}
}
#endif /* DHD_LOG_DUMP */
static int wl_cfgvendor_dbg_get_version(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
int buf_len = 1024;
bool dhd_ver = FALSE;
char *buf_ptr;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
buf_ptr = (char *)MALLOCZ(cfg->osh, buf_len);
if (!buf_ptr) {
WL_ERR(("failed to allocate the buffer for version n"));
ret = BCME_NOMEM;
goto exit;
}
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_GET_DRIVER:
dhd_ver = TRUE;
break;
case DEBUG_ATTRIBUTE_GET_FW:
dhd_ver = FALSE;
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_ERROR;
goto exit;
}
}
ret = dhd_os_get_version(bcmcfg_to_prmry_ndev(cfg), dhd_ver, &buf_ptr, buf_len);
if (ret < 0) {
WL_ERR(("failed to get the version %d\n", ret));
goto exit;
}
ret = wl_cfgvendor_send_cmd_reply(wiphy, buf_ptr, strlen(buf_ptr));
exit:
MFREE(cfg->osh, buf_ptr, buf_len);
return ret;
}
#ifdef DBG_PKT_MON
static int wl_cfgvendor_dbg_start_pkt_fate_monitoring(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
int ret;
ret = dhd_os_dbg_attach_pkt_monitor(dhd_pub);
if (unlikely(ret)) {
WL_ERR(("failed to start pkt fate monitoring, ret=%d", ret));
}
return ret;
}
typedef int (*dbg_mon_get_pkts_t) (dhd_pub_t *dhdp, void __user *user_buf,
uint16 req_count, uint16 *resp_count);
static int __wl_cfgvendor_dbg_get_pkt_fates(struct wiphy *wiphy,
const void *data, int len, dbg_mon_get_pkts_t dbg_mon_get_pkts)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
struct sk_buff *skb = NULL;
const struct nlattr *iter;
void __user *user_buf = NULL;
uint16 req_count = 0, resp_count = 0;
int ret, tmp, type, mem_needed;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_PKT_FATE_NUM:
req_count = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_PKT_FATE_DATA:
user_buf = (void __user *)(unsigned long) nla_get_u64(iter);
break;
default:
WL_ERR(("%s: no such attribute %d\n", __FUNCTION__, type));
ret = -EINVAL;
goto exit;
}
}
if (!req_count || !user_buf) {
WL_ERR(("%s: invalid request, user_buf=%p, req_count=%u\n",
__FUNCTION__, user_buf, req_count));
ret = -EINVAL;
goto exit;
}
ret = dbg_mon_get_pkts(dhd_pub, user_buf, req_count, &resp_count);
if (unlikely(ret)) {
WL_ERR(("failed to get packets, ret:%d \n", ret));
goto exit;
}
mem_needed = VENDOR_REPLY_OVERHEAD + ATTRIBUTE_U32_LEN;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
ret = -ENOMEM;
goto exit;
}
ret = nla_put_u32(skb, DEBUG_ATTRIBUTE_PKT_FATE_NUM, resp_count);
if (ret < 0) {
WL_ERR(("Failed to put DEBUG_ATTRIBUTE_PKT_FATE_NUM, ret:%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor Command reply failed ret:%d \n", ret));
}
return ret;
exit:
/* Free skb memory */
if (skb) {
kfree_skb(skb);
}
return ret;
}
static int wl_cfgvendor_dbg_get_tx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret;
ret = __wl_cfgvendor_dbg_get_pkt_fates(wiphy, data, len,
dhd_os_dbg_monitor_get_tx_pkts);
if (unlikely(ret)) {
WL_ERR(("failed to get tx packets, ret:%d \n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_rx_pkt_fates(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret;
ret = __wl_cfgvendor_dbg_get_pkt_fates(wiphy, data, len,
dhd_os_dbg_monitor_get_rx_pkts);
if (unlikely(ret)) {
WL_ERR(("failed to get rx packets, ret:%d \n", ret));
}
return ret;
}
#endif /* DBG_PKT_MON */
#ifdef KEEP_ALIVE
static int wl_cfgvendor_start_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
/* max size of IP packet for keep alive */
const int MKEEP_ALIVE_IP_PKT_MAX = 256;
int ret = BCME_OK, rem, type;
uint8 mkeep_alive_id = 0;
uint8 *ip_pkt = NULL;
uint16 ip_pkt_len = 0;
uint16 ether_type = ETHERTYPE_IP;
uint8 src_mac[ETHER_ADDR_LEN];
uint8 dst_mac[ETHER_ADDR_LEN];
uint32 period_msec = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case MKEEP_ALIVE_ATTRIBUTE_ID:
mkeep_alive_id = nla_get_u8(iter);
break;
case MKEEP_ALIVE_ATTRIBUTE_IP_PKT_LEN:
ip_pkt_len = nla_get_u16(iter);
if (ip_pkt_len > MKEEP_ALIVE_IP_PKT_MAX) {
ret = BCME_BADARG;
goto exit;
}
break;
case MKEEP_ALIVE_ATTRIBUTE_IP_PKT:
if (ip_pkt) {
ret = BCME_BADARG;
WL_ERR(("ip_pkt already allocated\n"));
goto exit;
}
if (!ip_pkt_len) {
ret = BCME_BADARG;
WL_ERR(("ip packet length is 0\n"));
goto exit;
}
ip_pkt = (u8 *)MALLOCZ(cfg->osh, ip_pkt_len);
if (ip_pkt == NULL) {
ret = BCME_NOMEM;
WL_ERR(("Failed to allocate mem for ip packet\n"));
goto exit;
}
memcpy(ip_pkt, (u8*)nla_data(iter), ip_pkt_len);
break;
case MKEEP_ALIVE_ATTRIBUTE_SRC_MAC_ADDR:
memcpy(src_mac, nla_data(iter), ETHER_ADDR_LEN);
break;
case MKEEP_ALIVE_ATTRIBUTE_DST_MAC_ADDR:
memcpy(dst_mac, nla_data(iter), ETHER_ADDR_LEN);
break;
case MKEEP_ALIVE_ATTRIBUTE_PERIOD_MSEC:
period_msec = nla_get_u32(iter);
break;
case MKEEP_ALIVE_ATTRIBUTE_ETHER_TYPE:
ether_type = nla_get_u16(iter);
if (!((ether_type == ETHERTYPE_IP) ||
(ether_type == ETHERTYPE_IPV6))) {
WL_ERR(("Invalid ether type, %2x\n", ether_type));
ret = BCME_BADARG;
goto exit;
}
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
if (ip_pkt == NULL) {
ret = BCME_BADARG;
WL_ERR(("ip packet is NULL\n"));
goto exit;
}
ret = wl_cfg80211_start_mkeep_alive(cfg, mkeep_alive_id,
ether_type, ip_pkt, ip_pkt_len, src_mac, dst_mac, period_msec);
if (ret < 0) {
WL_ERR(("start_mkeep_alive is failed ret: %d\n", ret));
}
exit:
if (ip_pkt) {
MFREE(cfg->osh, ip_pkt, ip_pkt_len);
}
return ret;
}
static int wl_cfgvendor_stop_mkeep_alive(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int ret = BCME_OK, rem, type;
uint8 mkeep_alive_id = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case MKEEP_ALIVE_ATTRIBUTE_ID:
mkeep_alive_id = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
break;
}
}
ret = wl_cfg80211_stop_mkeep_alive(cfg, mkeep_alive_id);
if (ret < 0) {
WL_ERR(("stop_mkeep_alive is failed ret: %d\n", ret));
}
return ret;
}
#endif /* KEEP_ALIVE */
#if defined(PKT_FILTER_SUPPORT) && defined(APF)
static int
wl_cfgvendor_apf_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
struct sk_buff *skb = NULL;
int ret, ver, max_len, mem_needed;
/* APF version */
ver = 0;
ret = dhd_dev_apf_get_version(ndev, &ver);
if (unlikely(ret)) {
WL_ERR(("APF get version failed, ret=%d\n", ret));
return ret;
}
/* APF memory size limit */
max_len = 0;
ret = dhd_dev_apf_get_max_len(ndev, &max_len);
if (unlikely(ret)) {
WL_ERR(("APF get maximum length failed, ret=%d\n", ret));
return ret;
}
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("%s: can't allocate %d bytes\n", __FUNCTION__, mem_needed));
return -ENOMEM;
}
ret = nla_put_u32(skb, APF_ATTRIBUTE_VERSION, ver);
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_VERSION, ret:%d\n", ret));
goto exit;
}
ret = nla_put_u32(skb, APF_ATTRIBUTE_MAX_LEN, max_len);
if (ret < 0) {
WL_ERR(("Failed to put APF_ATTRIBUTE_MAX_LEN, ret:%d\n", ret));
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
if (unlikely(ret)) {
WL_ERR(("vendor command reply failed, ret=%d\n", ret));
}
return ret;
exit:
/* Free skb memory */
kfree_skb(skb);
return ret;
}
static int
wl_cfgvendor_apf_set_filter(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct net_device *ndev = wdev_to_ndev(wdev);
const struct nlattr *iter;
u8 *program = NULL;
u32 program_len = 0;
int ret, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
if (len <= 0) {
WL_ERR(("Invalid len: %d\n", len));
ret = -EINVAL;
goto exit;
}
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case APF_ATTRIBUTE_PROGRAM_LEN:
/* check if the iter value is valid and program_len
* is not already initialized.
*/
if (nla_len(iter) == sizeof(uint32) && !program_len) {
program_len = nla_get_u32(iter);
} else {
ret = -EINVAL;
goto exit;
}
if (program_len > WL_APF_PROGRAM_MAX_SIZE) {
WL_ERR(("program len is more than expected len\n"));
ret = -EINVAL;
goto exit;
}
if (unlikely(!program_len)) {
WL_ERR(("zero program length\n"));
ret = -EINVAL;
goto exit;
}
break;
case APF_ATTRIBUTE_PROGRAM:
if (unlikely(program)) {
WL_ERR(("program already allocated\n"));
ret = -EINVAL;
goto exit;
}
if (unlikely(!program_len)) {
WL_ERR(("program len is not set\n"));
ret = -EINVAL;
goto exit;
}
if (nla_len(iter) != program_len) {
WL_ERR(("program_len is not same\n"));
ret = -EINVAL;
goto exit;
}
program = MALLOCZ(cfg->osh, program_len);
if (unlikely(!program)) {
WL_ERR(("%s: can't allocate %d bytes\n",
__FUNCTION__, program_len));
ret = -ENOMEM;
goto exit;
}
memcpy(program, (u8*)nla_data(iter), program_len);
break;
default:
WL_ERR(("%s: no such attribute %d\n", __FUNCTION__, type));
ret = -EINVAL;
goto exit;
}
}
ret = dhd_dev_apf_add_filter(ndev, program, program_len);
exit:
if (program) {
MFREE(cfg->osh, program, program_len);
}
return ret;
}
#endif /* PKT_FILTER_SUPPORT && APF */
#ifdef NDO_CONFIG_SUPPORT
static int wl_cfgvendor_configure_nd_offload(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
const struct nlattr *iter;
int ret = BCME_OK, rem, type;
u8 enable = 0;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case ANDR_WIFI_ATTRIBUTE_ND_OFFLOAD_VALUE:
enable = nla_get_u8(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
ret = dhd_dev_ndo_cfg(bcmcfg_to_prmry_ndev(cfg), enable);
if (ret < 0) {
WL_ERR(("dhd_dev_ndo_cfg() failed: %d\n", ret));
}
exit:
return ret;
}
#endif /* NDO_CONFIG_SUPPORT */
/* for kernel >= 4.13 NL80211 wl_cfg80211_set_pmk have to be used. */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
static int wl_cfgvendor_set_pmk(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = 0;
wsec_pmk_t pmk;
const struct nlattr *iter;
int rem, type;
struct net_device *ndev = wdev_to_ndev(wdev);
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct wl_security *sec;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case BRCM_ATTR_DRIVER_KEY_PMK:
if (nla_len(iter) > sizeof(pmk.key)) {
ret = -EINVAL;
goto exit;
}
pmk.flags = 0;
pmk.key_len = htod16(nla_len(iter));
bcopy((uint8 *)nla_data(iter), pmk.key, len);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADARG;
goto exit;
}
}
sec = wl_read_prof(cfg, ndev, WL_PROF_SEC);
if ((sec->wpa_auth == WLAN_AKM_SUITE_8021X) ||
(sec->wpa_auth == WL_AKM_SUITE_SHA256_1X)) {
ret = wldev_iovar_setbuf(ndev, "okc_info_pmk", pmk.key, pmk.key_len, cfg->ioctl_buf,
WLC_IOCTL_SMLEN, &cfg->ioctl_buf_sync);
if (ret) {
/* could fail in case that 'okc' is not supported */
WL_INFORM_MEM(("okc_info_pmk failed, err=%d (ignore)\n", ret));
}
}
ret = wldev_ioctl_set(ndev, WLC_SET_WSEC_PMK, &pmk, sizeof(pmk));
WL_INFORM_MEM(("IOVAR set_pmk ret:%d", ret));
exit:
return ret;
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
static int wl_cfgvendor_get_driver_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
u8 supported[(BRCM_WLAN_VENDOR_FEATURES_MAX / 8) + 1] = {0};
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
struct sk_buff *skb;
int32 mem_needed;
mem_needed = VENDOR_REPLY_OVERHEAD + NLA_HDRLEN + sizeof(supported);
BCM_REFERENCE(dhd_pub);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
if (FW_SUPPORTED(dhd_pub, idsup)) {
ret = wl_features_set(supported, sizeof(supported),
BRCM_WLAN_VENDOR_FEATURE_KEY_MGMT_OFFLOAD);
}
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
ret = BCME_NOMEM;
goto exit;
}
ret = nla_put(skb, BRCM_ATTR_DRIVER_FEATURE_FLAGS, sizeof(supported), supported);
if (ret) {
kfree_skb(skb);
goto exit;
}
ret = cfg80211_vendor_cmd_reply(skb);
exit:
return ret;
}
#ifdef WL_P2P_RAND
static int
wl_cfgvendor_set_p2p_rand_mac(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
WL_DBG(("%s, wdev->iftype = %d\n", __FUNCTION__, wdev->iftype));
WL_INFORM_MEM(("randomized p2p_dev_addr - "MACDBG"\n", MAC2STRDBG(nla_data(data))));
BCM_REFERENCE(cfg);
type = nla_type(data);
if (type == BRCM_ATTR_DRIVER_RAND_MAC) {
if (nla_len(data) != ETHER_ADDR_LEN) {
WL_ERR(("nla_len not matched.\n"));
err = -EINVAL;
goto exit;
}
if (wdev->iftype != NL80211_IFTYPE_P2P_DEVICE) {
WL_ERR(("wrong interface type , wdev->iftype=%d\n", wdev->iftype));
err = -EINVAL;
goto exit;
}
(void)memcpy_s(wl_to_p2p_bss_macaddr(cfg, P2PAPI_BSSCFG_DEVICE), ETHER_ADDR_LEN,
nla_data(data), ETHER_ADDR_LEN);
(void)memcpy_s(wdev->address, ETHER_ADDR_LEN, nla_data(data), ETHER_ADDR_LEN);
err = wl_cfgp2p_disable_discovery(cfg);
if (unlikely(err < 0)) {
WL_ERR(("P2P disable discovery failed, ret=%d\n", err));
goto exit;
}
err = wl_cfgp2p_set_firm_p2p(cfg);
if (unlikely(err < 0)) {
WL_ERR(("Set P2P address in firmware failed, ret=%d\n", err));
goto exit;
}
err = wl_cfgp2p_enable_discovery(cfg, bcmcfg_to_prmry_ndev(cfg), NULL, 0);
if (unlikely(err < 0)) {
WL_ERR(("P2P enable discovery failed, ret=%d\n", err));
goto exit;
}
} else {
WL_ERR(("unexpected attrib type:%d\n", type));
err = -EINVAL;
}
exit:
return err;
}
#endif /* WL_P2P_RAND */
#ifdef WL_SAR_TX_POWER
static int
wl_cfgvendor_tx_power_scenario(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = BCME_ERROR, rem, type;
wifi_power_scenario wifi_tx_power_mode = WIFI_POWER_SCENARIO_INVALID;
struct bcm_cfg80211 *cfg = wl_get_cfg(wdev_to_ndev(wdev));
const struct nlattr *iter;
s8 sar_tx_power_val = WIFI_POWER_SCENARIO_INVALID;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
if (type == ANDR_WIFI_ATTRIBUTE_TX_POWER_SCENARIO) {
sar_tx_power_val = nla_get_s8(iter);
} else {
WL_ERR(("Unknown attr type: %d\n", type));
err = -EINVAL;
goto exit;
}
}
/* If sar tx power is already configured, no need to set it again */
if (cfg->wifi_tx_power_mode == sar_tx_power_val) {
WL_INFORM_MEM(("%s, tx_power_mode %d is already set\n",
__FUNCTION__, sar_tx_power_val));
err = BCME_OK;
goto exit;
}
/* Map Android TX power modes to Brcm power mode */
switch (sar_tx_power_val) {
case WIFI_POWER_SCENARIO_VOICE_CALL:
case WIFI_POWER_SCENARIO_DEFAULT:
wifi_tx_power_mode = HEAD_SAR_BACKOFF_ENABLE;
break;
case WIFI_POWER_SCENARIO_ON_HEAD_CELL_OFF:
wifi_tx_power_mode = GRIP_SAR_BACKOFF_DISABLE;
break;
case WIFI_POWER_SCENARIO_ON_BODY_CELL_OFF:
wifi_tx_power_mode = GRIP_SAR_BACKOFF_ENABLE;
break;
case WIFI_POWER_SCENARIO_ON_BODY_BT:
wifi_tx_power_mode = NR_mmWave_SAR_BACKOFF_ENABLE;
break;
case WIFI_POWER_SCENARIO_ON_HEAD_CELL_ON:
wifi_tx_power_mode = NR_Sub6_SAR_BACKOFF_DISABLE;
break;
case WIFI_POWER_SCENARIO_ON_BODY_CELL_ON:
wifi_tx_power_mode = NR_Sub6_SAR_BACKOFF_ENABLE;
break;
default:
WL_ERR(("invalid wifi tx power scenario = %d\n",
sar_tx_power_val));
err = -EINVAL;
goto exit;
}
WL_DBG(("%s, tx_power_mode %d\n", __FUNCTION__, wifi_tx_power_mode));
err = wldev_iovar_setint(wdev_to_ndev(wdev), "sar_enable", wifi_tx_power_mode);
if (unlikely(err)) {
WL_ERR(("%s: Failed to set sar_enable - error (%d)\n", __FUNCTION__, err));
goto exit;
}
/* Cache the tx power mode sent by the hal */
cfg->wifi_tx_power_mode = sar_tx_power_val;
exit:
return err;
}
#endif /* WL_SAR_TX_POWER */
static const struct wiphy_vendor_command wl_vendor_cmds [] = {
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_PRIV_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_priv_string_handler
},
#ifdef BCM_PRIV_CMD_SUPPORT
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_BCM_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_priv_bcm_handler
},
#endif /* BCM_PRIV_CMD_SUPPORT */
#ifdef WL_SAE
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_BCM_PSK
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_sae_password
},
#endif /* WL_SAE */
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_CONNECT_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_connect_params_handler
},
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_START_AP_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_start_ap_params_handler
},
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_gscan_get_capabilities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_batch_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_initiate_gscan
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_enable_full_scan_result
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_HOTLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_hotlist_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_gscan_get_batch_results
},
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(DHD_GET_VALID_CHANNELS)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_gscan_get_channel_list
},
#endif /* GSCAN_SUPPORT || DHD_GET_VALID_CHANNELS */
#ifdef RTT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_set_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_cancel_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETCAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_get_capability
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETAVAILCHANNEL
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_get_responder_info
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_RESPONDER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_set_responder
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_RESPONDER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_rtt_cancel_responder
},
#endif /* RTT_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_get_feature_set
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_get_feature_set_matrix
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_RANDOM_MAC_OUI
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_rand_mac_oui
},
#ifdef CUSTOM_FORCE_NODFS_FLAG
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_NODFS_CHANNELS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_nodfs_flag
},
#endif /* CUSTOM_FORCE_NODFS_FLAG */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SET_COUNTRY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_country
},
#ifdef LINKSTAT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_GET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_lstats_get_info
},
#endif /* LINKSTAT_SUPPORT */
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_EPNO_SSID
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_epno_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_LAZY_ROAM_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_lazy_roam_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_ENABLE_LAZY_ROAM
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_enable_lazy_roam
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_PREF
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_bssid_pref
},
#endif /* GSCAN_SUPPORT */
#if defined(GSCAN_SUPPORT) || defined(ROAMEXP_SUPPORT)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_SSID_WHITELIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_ssid_whitelist
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_BLACKLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_bssid_blacklist
},
#endif /* GSCAN_SUPPORT || ROAMEXP_SUPPORT */
#ifdef ROAMEXP_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_FW_ROAM_POLICY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_fw_roaming_state
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_ROAM_CAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_fw_roam_get_capability
},
#endif /* ROAMEXP_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_VER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_version
},
#ifdef DHD_LOG_DUMP
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_FILE_DUMP_BUF
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_file_dump
},
#endif /* DHD_LOG_DUMP */
#ifdef DEBUGABILITY
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_TRIGGER_MEM_DUMP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_trigger_mem_dump
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_MEM_DUMP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_mem_dump
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_START_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_start_logging
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_RESET_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_reset_logging
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_STATUS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_ring_status
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_DATA
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_ring_data
},
#endif /* DEBUGABILITY */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_FEATURE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_feature
},
#ifdef DBG_PKT_MON
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_START_PKT_FATE_MONITORING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_start_pkt_fate_monitoring
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_TX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_tx_pkt_fates
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RX_PKT_FATES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_dbg_get_rx_pkt_fates
},
#endif /* DBG_PKT_MON */
#ifdef KEEP_ALIVE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_START_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_start_mkeep_alive
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_OFFLOAD_SUBCMD_STOP_MKEEP_ALIVE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_stop_mkeep_alive
},
#endif /* KEEP_ALIVE */
#ifdef WL_NAN
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_ENABLE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_start_handler
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DISABLE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_stop_handler
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_config_handler
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_REQUEST_PUBLISH
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_req_publish
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_REQUEST_SUBSCRIBE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_req_subscribe
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CANCEL_PUBLISH
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_cancel_publish
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_CANCEL_SUBSCRIBE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_cancel_subscribe
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_TRANSMIT
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_transmit
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_get_capablities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_IFACE_CREATE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_iface_create
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_IFACE_DELETE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_iface_delete
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_REQUEST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_request
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_RESPONSE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_response
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_END
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_end
},
#ifdef WL_NAN_DISC_CACHE
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_DATA_PATH_SEC_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_data_path_sec_info
},
#endif /* WL_NAN_DISC_CACHE */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_VERSION_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_version_info
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = NAN_WIFI_SUBCMD_ENABLE_MERGE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_nan_enable_merge
},
#endif /* WL_NAN */
#if defined(PKT_FILTER_SUPPORT) && defined(APF)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = APF_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_apf_get_capabilities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = APF_SUBCMD_SET_FILTER
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_apf_set_filter
},
#endif /* PKT_FILTER_SUPPORT && APF */
#ifdef NDO_CONFIG_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_ND_OFFLOAD
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_configure_nd_offload
},
#endif /* NDO_CONFIG_SUPPORT */
#ifdef RSSI_MONITOR_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_RSSI_MONITOR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_rssi_monitor
},
#endif /* RSSI_MONITOR_SUPPORT */
#ifdef DHD_WAKE_STATUS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_WAKE_REASON_STATS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_get_wake_reason_stats
},
#endif /* DHD_WAKE_STATUS */
#ifdef DHDTCPACK_SUPPRESS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_CONFIG_TCPACK_SUP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_tcpack_sup_mode
},
#endif /* DHDTCPACK_SUPPRESS */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_PMK
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_pmk
},
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0) */
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_GET_FEATURES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_get_driver_feature
},
#if defined(WL_CFG80211) && defined(DHD_FILE_DUMP_EVENT)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_FILE_DUMP_DONE_IND
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_notify_dump_completion
},
#endif /* WL_CFG80211 && DHD_FILE_DUMP_EVENT */
#if defined(WL_CFG80211)
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_HAL_START
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_hal_started
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_SET_HAL_STOP
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_stop_hal
},
#endif /* WL_CFG80211 */
#ifdef WL_P2P_RAND
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_SET_MAC
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_set_p2p_rand_mac
},
#endif /* WL_P2P_RAND */
#ifdef WL_SAR_TX_POWER
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_TX_POWER_SCENARIO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
.policy = VENDOR_CMD_RAW_DATA,
#endif
.doit = wl_cfgvendor_tx_power_scenario
}
#endif /* WL_SAR_TX_POWER */
};
static const struct nl80211_vendor_cmd_info wl_vendor_events [] = {
{ OUI_BRCM, BRCM_VENDOR_EVENT_UNSPEC },
{ OUI_BRCM, BRCM_VENDOR_EVENT_PRIV_STR },
{ OUI_GOOGLE, GOOGLE_GSCAN_SIGNIFICANT_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_FOUND_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_BATCH_SCAN_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_FULL_RESULTS_EVENT },
{ OUI_GOOGLE, GOOGLE_RTT_COMPLETE_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_COMPLETE_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_LOST_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_EPNO_EVENT },
{ OUI_GOOGLE, GOOGLE_DEBUG_RING_EVENT },
{ OUI_GOOGLE, GOOGLE_FW_DUMP_EVENT },
{ OUI_GOOGLE, GOOGLE_PNO_HOTSPOT_FOUND_EVENT },
{ OUI_GOOGLE, GOOGLE_RSSI_MONITOR_EVENT },
{ OUI_GOOGLE, GOOGLE_MKEEP_ALIVE_EVENT },
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_ENABLED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DISABLED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_MATCH},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_REPLIED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_PUBLISH_TERMINATED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_TERMINATED},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DE_EVENT},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_FOLLOWUP},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_TRANSMIT_FOLLOWUP_IND},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_REQUEST},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_CONFIRMATION},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_DATA_END},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_BEACON},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SDF},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_TCA},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_SUBSCRIBE_UNMATCH},
{ OUI_GOOGLE, GOOGLE_NAN_EVENT_UNKNOWN},
{ OUI_GOOGLE, GOOGLE_ROAM_EVENT_START},
{ OUI_BRCM, BRCM_VENDOR_EVENT_HANGED},
{ OUI_BRCM, BRCM_VENDOR_EVENT_SAE_KEY},
{ OUI_BRCM, BRCM_VENDOR_EVENT_BEACON_RECV},
{ OUI_BRCM, BRCM_VENDOR_EVENT_PORT_AUTHORIZED},
{ OUI_GOOGLE, GOOGLE_FILE_DUMP_EVENT },
{ OUI_BRCM, BRCM_VENDOR_EVENT_CU},
{ OUI_BRCM, BRCM_VENDOR_EVENT_WIPS},
{ OUI_GOOGLE, NAN_ASYNC_RESPONSE_DISABLED},
{ OUI_BRCM, BRCM_VENDOR_EVENT_RCC_INFO}
};
int wl_cfgvendor_attach(struct wiphy *wiphy, dhd_pub_t *dhd)
{
WL_INFORM_MEM(("Vendor: Register BRCM cfg80211 vendor cmd(0x%x) interface \n",
NL80211_CMD_VENDOR));
wiphy->vendor_commands = wl_vendor_cmds;
wiphy->n_vendor_commands = ARRAY_SIZE(wl_vendor_cmds);
wiphy->vendor_events = wl_vendor_events;
wiphy->n_vendor_events = ARRAY_SIZE(wl_vendor_events);
#ifdef DEBUGABILITY
dhd_os_dbg_register_callback(FW_VERBOSE_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(DHD_EVENT_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
#endif /* DEBUGABILITY */
#ifdef DHD_LOG_DUMP
dhd_os_dbg_register_urgent_notifier(dhd, wl_cfgvendor_dbg_send_file_dump_evt);
#endif /* DHD_LOG_DUMP */
return 0;
}
int wl_cfgvendor_detach(struct wiphy *wiphy)
{
WL_INFORM_MEM(("Vendor: Unregister BRCM cfg80211 vendor interface \n"));
wiphy->vendor_commands = NULL;
wiphy->vendor_events = NULL;
wiphy->n_vendor_commands = 0;
wiphy->n_vendor_events = 0;
return 0;
}
#endif /* (LINUX_VERSION_CODE > KERNEL_VERSION(3, 13, 0)) || defined(WL_VENDOR_EXT_SUPPORT) */
#ifdef WL_CFGVENDOR_SEND_HANG_EVENT
void
wl_cfgvendor_send_hang_event(struct net_device *dev, u16 reason, char *string, int hang_info_cnt)
{
struct bcm_cfg80211 *cfg = wl_get_cfg(dev);
struct wiphy *wiphy;
char *hang_info;
int len = 0;
int bytes_written;
uint32 dummy_data = 0;
int reason_hang_info = 0;
int cnt = 0;
dhd_pub_t *dhd;
int hang_reason_mismatch = FALSE;
if (!cfg || !cfg->wdev) {
WL_ERR(("cfg=%p wdev=%p\n", cfg, (cfg ? cfg->wdev : NULL)));
return;
}
wiphy = cfg->wdev->wiphy;
if (!wiphy) {
WL_ERR(("wiphy is NULL\n"));
return;
}
hang_info = MALLOCZ(cfg->osh, VENDOR_SEND_HANG_EXT_INFO_LEN);
if (hang_info == NULL) {
WL_ERR(("alloc hang_info failed\n"));
return;
}
dhd = (dhd_pub_t *)(cfg->pub);
#ifdef WL_BCNRECV
/* check fakeapscan in progress then stop scan */
if (cfg->bcnrecv_info.bcnrecv_state == BEACON_RECV_STARTED) {
wl_android_bcnrecv_stop(dev, WL_BCNRECV_HANG);
}
#endif /* WL_BCNRECV */
sscanf(string, "%d", &reason_hang_info);
bytes_written = 0;
len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
if (strlen(string) == 0 || (reason_hang_info != reason)) {
WL_ERR(("hang reason mismatch: string len %d reason_hang_info %d\n",
(int)strlen(string), reason_hang_info));
hang_reason_mismatch = TRUE;
if (dhd) {
get_debug_dump_time(dhd->debug_dump_time_hang_str);
copy_debug_dump_time(dhd->debug_dump_time_str,
dhd->debug_dump_time_hang_str);
}
/* Fill bigdata key with */
bytes_written += scnprintf(&hang_info[bytes_written], len,
"%d %d %s %08x %08x %08x %08x %08x %08x %08x",
reason, VENDOR_SEND_HANG_EXT_INFO_VER,
dhd->debug_dump_time_hang_str,
0, 0, 0, 0, 0, 0, 0);
if (dhd) {
clear_debug_dump_time(dhd->debug_dump_time_hang_str);
}
} else {
bytes_written += scnprintf(&hang_info[bytes_written], len, "%s", string);
}
WL_ERR(("hang reason: %d info cnt: %d\n", reason, hang_info_cnt));
if (hang_reason_mismatch == FALSE) {
cnt = hang_info_cnt;
} else {
cnt = HANG_FIELD_MISMATCH_CNT;
}
while (cnt < HANG_FIELD_CNT_MAX) {
len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
if (len <= 0) {
break;
}
bytes_written += scnprintf(&hang_info[bytes_written], len,
"%c%08x", HANG_RAW_DEL, dummy_data);
cnt++;
}
WL_ERR(("hang info cnt: %d len: %d\n", cnt, (int)strlen(hang_info)));
WL_ERR(("hang info data: %s\n", hang_info));
wl_cfgvendor_send_async_event(wiphy,
bcmcfg_to_prmry_ndev(cfg), BRCM_VENDOR_EVENT_HANGED,
hang_info, (int)strlen(hang_info));
memset(string, 0, VENDOR_SEND_HANG_EXT_INFO_LEN);
if (hang_info) {
MFREE(cfg->osh, hang_info, VENDOR_SEND_HANG_EXT_INFO_LEN);
}
#ifdef DHD_LOG_DUMP
dhd_logdump_cookie_save(dhd, dhd->debug_dump_time_hang_str, "HANG");
#endif /* DHD_LOG_DUMP */
if (dhd) {
clear_debug_dump_time(dhd->debug_dump_time_str);
}
}
void
wl_copy_hang_info_if_falure(struct net_device *dev, u16 reason, s32 ret)
{
struct bcm_cfg80211 *cfg = NULL;
dhd_pub_t *dhd;
s32 err = 0;
char ioctl_buf[WLC_IOCTL_SMLEN];
memuse_info_t mu;
int bytes_written = 0;
int remain_len = 0;
if (!dev) {
WL_ERR(("dev is null"));
return;
}
cfg = wl_get_cfg(dev);
if (!cfg) {
WL_ERR(("dev=%p cfg=%p\n", dev, cfg));
return;
}
dhd = (dhd_pub_t *)(cfg->pub);
if (!dhd || !dhd->hang_info) {
WL_ERR(("%s dhd=%p hang_info=%p\n", __FUNCTION__,
dhd, (dhd ? dhd->hang_info : NULL)));
return;
}
err = wldev_iovar_getbuf_bsscfg(dev, "memuse",
NULL, 0, ioctl_buf, WLC_IOCTL_SMLEN, 0, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return;
}
memcpy(&mu, ioctl_buf, sizeof(memuse_info_t));
if (mu.len >= sizeof(memuse_info_t)) {
WL_ERR(("Heap Total: %d(%dK)\n", mu.arena_size, KB(mu.arena_size)));
WL_ERR(("Free: %d(%dK), LWM: %d(%dK)\n",
mu.arena_free, KB(mu.arena_free),
mu.free_lwm, KB(mu.free_lwm)));
WL_ERR(("In use: %d(%dK), HWM: %d(%dK)\n",
mu.inuse_size, KB(mu.inuse_size),
mu.inuse_hwm, KB(mu.inuse_hwm)));
WL_ERR(("Malloc failure count: %d\n", mu.mf_count));
}
memset(dhd->hang_info, 0, VENDOR_SEND_HANG_EXT_INFO_LEN);
remain_len = VENDOR_SEND_HANG_EXT_INFO_LEN - bytes_written;
get_debug_dump_time(dhd->debug_dump_time_hang_str);
copy_debug_dump_time(dhd->debug_dump_time_str, dhd->debug_dump_time_hang_str);
bytes_written += scnprintf(&dhd->hang_info[bytes_written], remain_len,
"%d %d %s %d %d %d %d %d %08x %08x",
reason, VENDOR_SEND_HANG_EXT_INFO_VER,
dhd->debug_dump_time_hang_str,
ret, mu.arena_size, mu.arena_free, mu.inuse_size, mu.mf_count, 0, 0);
dhd->hang_info_cnt = HANG_FIELD_IF_FAILURE_CNT;
clear_debug_dump_time(dhd->debug_dump_time_hang_str);
return;
}
#endif /* WL_CFGVENDOR_SEND_HANG_EVENT */