blob: 4a3ee9ed8ab5f6a34c33fff5272445b073d1ba09 [file] [log] [blame]
/*
* Misc utility routines used by kernel or app-level.
* Contents are wifi-specific, used by any kernel or app-level
* software that might want wifi things as it grows.
*
* Copyright (C) 2020, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Dual:>>
*/
#include <typedefs.h>
#include <bcmutils.h>
#ifdef BCMDRIVER
#include <osl.h>
#define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base))
#define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c))
#else
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#ifndef ASSERT
#define ASSERT(exp)
#endif
#endif /* BCMDRIVER */
#include <bcmwifi_channels.h>
#if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL))
#include <bcmstdlib.h> /* For wlexe/Makefile.wlm_dll */
#endif
#include <802.11.h>
/* Definitions for D11AC capable (80MHz+) Chanspec type */
/* Chanspec ASCII representation:
*
* [<band>'g']<channel>['/'<bandwidth>[<primary-sideband>]
* ['/'<1st-channel-segment>'-'<2nd-channel-segment>]]
*
* <band>:
* (optional) 2, 4, 5, 6 for 2.4GHz, 4GHz, 5GHz, and 6GHz respectively.
* Default value is 2g if channel <= 14, otherwise 5g.
* <channel>:
* channel number of the 20MHz channel,
* or primary 20 MHz channel of 40MHz, 80MHz, 160MHz, 80+80MHz,
* 320MHz, or 160+160MHz channels.
* <bandwidth>:
* (optional) 20, 40, 80, 160, 80+80, 320, or 160+160. Default value is 20.
* <primary-sideband>:
* 'u' or 'l' (only for 2.4GHz band 40MHz)
*
* For 2.4GHz band 40MHz channels, the same primary channel may be the
* upper sideband for one 40MHz channel, and the lower sideband for an
* overlapping 40MHz channel. The {u: upper, l: lower} primary sideband
* indication disambiguates which 40MHz channel is being specified.
*
* For 40MHz in the 5GHz or 6GHz band and all channel bandwidths greater than
* 40MHz, the U/L specification is not necessary or allowed since the channels are
* non-overlapping and the primary 20MHz channel position is derived from its
* position in the wide bandwidth channel.
* <1st-channel-segment>
* <2nd-channel-segment>:
* Required for 80+80 or 160+160, otherwise not allowed.
* These fields specify the center channel of the first and the second 80MHz
* or 160MHz channels.
*
* In its simplest form, it is a 20MHz channel number, with the implied band
* of 2.4GHz if channel number <= 14, and 5GHz otherwise.
*
* To allow for backward compatibility with scripts, the old form for
* 40MHz channels is also allowed: <channel><primary-sideband>
*
* <channel>:
* primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz
* <primary-sideband>:
* "U" for upper, "L" for lower (or lower case "u" "l")
*
* 5 GHz Examples:
* Chanspec BW Center Ch Channel Range Primary Ch
* 5g8 20MHz 8 - -
* 52 20MHz 52 - -
* 52/40 40MHz 54 52-56 52
* 56/40 40MHz 54 52-56 56
* 52/80 80MHz 58 52-64 52
* 56/80 80MHz 58 52-64 56
* 60/80 80MHz 58 52-64 60
* 64/80 80MHz 58 52-64 64
* 52/160 160MHz 50 36-64 52
* 36/160 160MGz 50 36-64 36
* 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36
*
* 2 GHz Examples:
* Chanspec BW Center Ch Channel Range Primary Ch
* 2g8 20MHz 8 - -
* 8 20MHz 8 - -
* 6 20MHz 6 - -
* 6/40l 40MHz 8 6-10 6
* 6l 40MHz 8 6-10 6
* 6/40u 40MHz 4 2-6 6
* 6u 40MHz 4 2-6 6
*/
/* bandwidth ASCII string */
static const char *wf_chspec_bw_str[] =
{
"320",
"160+160",
"20",
"40",
"80",
"160",
"80+80",
"na"
};
static const uint16 wf_chspec_bw_mhz[] = {
320, 320, 20, 40, 80, 160, 160
};
#define WF_NUM_BW ARRAYSIZE(wf_chspec_bw_mhz)
/* 40MHz channels in 5GHz band */
static const uint8 wf_5g_40m_chans[] = {
38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159, 167, 175
};
#define WF_NUM_5G_40M_CHANS ARRAYSIZE(wf_5g_40m_chans)
/* 80MHz channels in 5GHz band */
static const uint8 wf_5g_80m_chans[] = {
42, 58, 106, 122, 138, 155, 171
};
#define WF_NUM_5G_80M_CHANS ARRAYSIZE(wf_5g_80m_chans)
/* 160MHz channels in 5GHz band */
static const uint8 wf_5g_160m_chans[] = {
50, 114, 163
};
#define WF_NUM_5G_160M_CHANS ARRAYSIZE(wf_5g_160m_chans)
/** 80MHz channels in 6GHz band */
#define WF_NUM_6G_80M_CHANS 14
/** 160MHz channels in 6GHz band */
#define WF_NUM_6G_160M_CHANS 7 /* TBD */
/** 320MHz channels in 6GHz band */
#define WF_NUM_6G_320M_CHANS 3 /* TBD */
/* Define the conditional macro to help with reducing the code size bloat
* in other branches and in trunk targets that don't need 11BE features...
*/
#define WFC_2VALS_EQ(var, val) ((var) == (val))
/* compare bandwidth unconditionally for 11be related stuff */
#ifdef WL11BE
#define WFC_BW_EQ(bw, val) WFC_2VALS_EQ(bw, val)
#else
#define WFC_BW_EQ(bw, val) (FALSE)
#endif
/* compare bandwidth based on WFC_NON_CONT_CHAN */
#ifdef WFC_NON_CONT_CHAN
#define WFC_NCBW_EQ(bw, val) WFC_2VALS_EQ(bw, val)
#else
#define WFC_NCBW_EQ(bw, val) (FALSE)
#endif
static void wf_chanspec_iter_firstchan(wf_chanspec_iter_t *iter);
static chanspec_bw_t wf_iter_next_bw(chanspec_bw_t bw);
static bool wf_chanspec_iter_next_2g(wf_chanspec_iter_t *iter);
static bool wf_chanspec_iter_next_5g(wf_chanspec_iter_t *iter);
static int wf_chanspec_iter_next_5g_range(wf_chanspec_iter_t *iter, chanspec_bw_t bw);
static void wf_chanspec_iter_6g_range_init(wf_chanspec_iter_t *iter, chanspec_bw_t bw);
static bool wf_chanspec_iter_next_6g(wf_chanspec_iter_t *iter);
/**
* Return the chanspec bandwidth in MHz
* Bandwidth of 160 MHz will be returned for 80+80MHz chanspecs.
*
* @param chspec chanspec_t
*
* @return bandwidth of chspec in MHz units
*/
uint
wf_bw_chspec_to_mhz(chanspec_t chspec)
{
uint bw;
bw = (chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT;
return (bw >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bw]);
}
/* bw in MHz, return the channel count from the center channel to the
* the channel at the edge of the band
*/
static uint
center_chan_to_edge(chanspec_bw_t bw)
{
uint delta = 0;
/* edge channels separated by BW - 10MHz on each side
* delta from cf to edge is half of that,
*/
if (bw == WL_CHANSPEC_BW_40) {
/* 10 MHz */
delta = 2;
} else if (bw == WL_CHANSPEC_BW_80) {
/* 30 MHz */
delta = 6;
} else if (bw == WL_CHANSPEC_BW_160) {
/* 70 MHz */
delta = 14;
} else if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) {
/* 150 MHz */
delta = 30;
}
return delta;
}
/* return channel number of the low edge of the band
* given the center channel and BW
*/
static uint
channel_low_edge(uint center_ch, chanspec_bw_t bw)
{
return (center_ch - center_chan_to_edge(bw));
}
/* return side band number given center channel and primary20 channel
* return -1 on error
*/
static int
channel_to_sb(uint center_ch, uint primary_ch, chanspec_bw_t bw)
{
uint lowest = channel_low_edge(center_ch, bw);
uint sb;
if (primary_ch < lowest ||
(primary_ch - lowest) % 4) {
/* bad primary channel lower than the low edge of the channel,
* or not mult 4.
*/
return -1;
}
sb = ((primary_ch - lowest) / 4);
/* sb must be a index to a 20MHz channel in range */
if ((bw == WL_CHANSPEC_BW_20 && sb >= 1) ||
(bw == WL_CHANSPEC_BW_40 && sb >= 2) ||
(bw == WL_CHANSPEC_BW_80 && sb >= 4) ||
(bw == WL_CHANSPEC_BW_160 && sb >= 8) ||
(WFC_BW_EQ(bw, WL_CHANSPEC_BW_320) && sb >= 16)) {
/* primary_ch must have been too high for the center_ch */
return -1;
}
return sb;
}
/* return primary20 channel given center channel and side band */
static uint
channel_to_primary20_chan(uint center_ch, chanspec_bw_t bw, uint sb)
{
return (channel_low_edge(center_ch, bw) + sb * 4);
}
/* return index of 80MHz channel from channel number
* return -1 on error
*/
static int
channel_80mhz_to_id(uint ch)
{
uint i;
for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) {
if (ch == wf_5g_80m_chans[i])
return i;
}
return -1;
}
/* return index of the 6G 80MHz channel from channel number
* return -1 on error
*/
static int
channel_6g_80mhz_to_id(uint ch)
{
/* The 6GHz center channels start at 7, and have a spacing of 16 */
if (ch >= CH_MIN_6G_80M_CHANNEL &&
ch <= CH_MAX_6G_80M_CHANNEL &&
((ch - CH_MIN_6G_80M_CHANNEL) % 16) == 0) { // even multiple of 16
return (ch - CH_MIN_6G_80M_CHANNEL) / 16;
}
return -1;
}
/* return index of the 5G 160MHz channel from channel number
* return -1 on error
*/
static int
channel_5g_160mhz_to_id(uint ch)
{
uint i;
for (i = 0; i < WF_NUM_5G_160M_CHANS; i ++) {
if (ch == wf_5g_160m_chans[i]) {
return i;
}
}
return -1;
}
/* return index of the 6G 160MHz channel from channel number
* return -1 on error
*/
static int
channel_6g_160mhz_to_id(uint ch)
{
/* The 6GHz center channels start at 15, and have a spacing of 32 */
if (ch >= CH_MIN_6G_160M_CHANNEL &&
ch <= CH_MAX_6G_160M_CHANNEL &&
((ch - CH_MIN_6G_160M_CHANNEL) % 32) == 0) {
return (ch - CH_MIN_6G_160M_CHANNEL) / 32;
}
return -1;
}
/* return index of the 6G 320MHz channel from channel number
* return -1 on error
*/
static int
channel_6g_320mhz_to_id(uint ch)
{
/* The 6GHz center channels start at 31, and have a spacing of 64 */
if (ch >= CH_MIN_6G_320M_CHANNEL &&
ch <= CH_MAX_6G_320M_CHANNEL &&
((ch - CH_MIN_6G_320M_CHANNEL) % 64) == 0) {
return (ch - CH_MIN_6G_320M_CHANNEL) / 64;
}
return -1;
}
/**
* This function returns the the 5GHz 80MHz center channel for the given chanspec 80MHz ID
*
* @param chan_80MHz_id 80MHz chanspec ID
*
* @return Return the center channel number, or 0 on error.
*
*/
static uint8
wf_chspec_5G_id80_to_ch(uint8 chan_80MHz_id)
{
if (chan_80MHz_id < WF_NUM_5G_80M_CHANS) {
return wf_5g_80m_chans[chan_80MHz_id];
}
return 0;
}
/**
* This function returns the the 6GHz 80MHz center channel for the given chanspec 80MHz ID
*
* @param chan_80MHz_id 80MHz chanspec ID
*
* @return Return the center channel number, or 0 on error.
*
*/
static uint8
wf_chspec_6G_id80_to_ch(uint8 chan_80MHz_id)
{
uint8 ch = 0;
if (chan_80MHz_id < WF_NUM_6G_80M_CHANS) {
/* The 6GHz center channels have a spacing of 16
* starting from the first 80MHz center
*/
ch = CH_MIN_6G_80M_CHANNEL + (chan_80MHz_id * 16);
}
return ch;
}
/**
* This function returns the the 5GHz 160MHz center channel for the given chanspec 160MHz ID
*
* @param chan_160MHz_id 160MHz chanspec ID
*
* @return Return the center channel number, or 0 on error.
*
*/
static uint8
wf_chspec_5G_id160_to_ch(uint8 chan_160MHz_id)
{
if (chan_160MHz_id < WF_NUM_5G_160M_CHANS) {
return wf_5g_160m_chans[chan_160MHz_id];
}
return 0;
}
/**
* This function returns the the 6GHz 160MHz center channel for the given chanspec 160MHz ID
*
* @param chan_160MHz_id 160MHz chanspec ID
*
* @return Return the center channel number, or 0 on error.
*
*/
static uint8
wf_chspec_6G_id160_to_ch(uint8 chan_160MHz_id)
{
uint8 ch = 0;
if (chan_160MHz_id < WF_NUM_6G_160M_CHANS) {
/* The 6GHz center channels have a spacing of 32
* starting from the first 160MHz center
*/
ch = CH_MIN_6G_160M_CHANNEL + (chan_160MHz_id * 32);
}
return ch;
}
/**
* This function returns the the 6GHz 320MHz center channel for the given chanspec 320MHz ID
*
* @param chan_320MHz_id 320MHz chanspec ID
*
* @return Return the center channel number, or 0 on error.
*
*/
static uint8
wf_chspec_6G_id320_to_ch(uint8 chan_320MHz_id)
{
uint8 ch = 0;
if (chan_320MHz_id < WF_NUM_6G_320M_CHANS) {
/* The 6GHz center channels have a spacing of 64
* starting from the first 320MHz center
*/
ch = CH_MIN_6G_320M_CHANNEL + (chan_320MHz_id * 64);
}
return ch;
}
/* Retrive the chan_id and convert it to center channel */
uint8
wf_chspec_320_id2cch(chanspec_t chanspec)
{
if (CHSPEC_BAND(chanspec) == WL_CHANSPEC_BAND_6G &&
CHSPEC_BW(chanspec) == WL_CHANSPEC_BW_320) {
uint8 ch_id = CHSPEC_320_CHAN(chanspec);
return wf_chspec_6G_id320_to_ch(ch_id);
}
return 0;
}
/**
* Convert chanspec to ascii string, or formats hex of an invalid chanspec.
*
* @param chspec chanspec to format
* @param buf pointer to buf with room for at least CHANSPEC_STR_LEN bytes
*
* @return Returns pointer to passed in buf. The buffer will have the ascii
* representation of the given chspec, or "invalid 0xHHHH" where
* 0xHHHH is the hex representation of the invalid chanspec.
*
* @see CHANSPEC_STR_LEN
*
* Wrapper function for wf_chspec_ntoa. In case of an error it puts
* the original chanspec in the output buffer, prepended with "invalid".
* Can be directly used in print routines as it takes care of null
*/
char *
wf_chspec_ntoa_ex(chanspec_t chspec, char *buf)
{
if (wf_chspec_ntoa(chspec, buf) == NULL)
snprintf(buf, CHANSPEC_STR_LEN, "invalid 0x%04x", chspec);
return buf;
}
/**
* Convert chanspec to ascii string, or return NULL on error.
*
* @param chspec chanspec to format
* @param buf pointer to buf with room for at least CHANSPEC_STR_LEN bytes
*
* @return Returns pointer to passed in buf or NULL on error. On sucess, the buffer
* will have the ascii representation of the given chspec.
*
* @see CHANSPEC_STR_LEN
*
* Given a chanspec and a string buffer, format the chanspec as a
* string, and return the original pointer buf.
* Min buffer length must be CHANSPEC_STR_LEN.
* On error return NULL.
*/
char *
wf_chspec_ntoa(chanspec_t chspec, char *buf)
{
const char *band;
uint pri_chan;
if (wf_chspec_malformed(chspec))
return NULL;
band = "";
/* check for non-default band spec */
if (CHSPEC_IS2G(chspec) && CHSPEC_CHANNEL(chspec) > CH_MAX_2G_CHANNEL) {
band = "2g";
} else if (CHSPEC_IS5G(chspec) && CHSPEC_CHANNEL(chspec) <= CH_MAX_2G_CHANNEL) {
band = "5g";
} else if (CHSPEC_IS6G(chspec)) {
band = "6g";
}
/* primary20 channel */
pri_chan = wf_chspec_primary20_chan(chspec);
/* bandwidth and primary20 sideband */
if (CHSPEC_IS20(chspec)) {
snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, pri_chan);
} else if (CHSPEC_IS8080(chspec)) {
/* 80+80 */
uint ch0;
uint ch1;
/* get the center channels for each frequency segment */
if (CHSPEC_IS5G(chspec)) {
ch0 = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN0(chspec));
ch1 = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN1(chspec));
} else if (CHSPEC_IS6G(chspec)) {
ch0 = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN0(chspec));
ch1 = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN1(chspec));
} else {
return NULL;
}
/* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/80+80/%d-%d", band, pri_chan, ch0, ch1);
} else if (CHSPEC_IS320(chspec)) {
/* 320 */
uint ch;
const char *bw;
/* get the center channels for each frequency segment */
if (CHSPEC_IS6G(chspec)) {
ch = wf_chspec_6G_id320_to_ch(CHSPEC_320_CHAN(chspec));
} else {
return NULL;
}
bw = wf_chspec_to_bw_str(chspec);
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, ch, bw);
} else if (CHSPEC_IS160160(chspec)) {
/* 160+160 */
uint ch0;
uint ch1;
/* get the center channels for each frequency segment */
if (CHSPEC_IS5G(chspec)) {
ch0 = wf_chspec_5G_id160_to_ch(CHSPEC_CHAN0(chspec));
ch1 = wf_chspec_5G_id160_to_ch(CHSPEC_CHAN1(chspec));
} else if (CHSPEC_IS6G(chspec)) {
ch0 = wf_chspec_6G_id160_to_ch(CHSPEC_CHAN0(chspec));
ch1 = wf_chspec_6G_id160_to_ch(CHSPEC_CHAN1(chspec));
} else {
return NULL;
}
/* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/160+160/%d-%d", band, pri_chan, ch0, ch1);
} else {
const char *bw;
const char *sb = "";
bw = wf_chspec_to_bw_str(chspec);
#ifdef CHANSPEC_NEW_40MHZ_FORMAT
/* primary20 sideband string if needed for 2g 40MHz */
if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) {
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
}
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, pri_chan, bw, sb);
#else
/* primary20 sideband string instead of BW for 40MHz */
if (CHSPEC_IS40(chspec) && !CHSPEC_IS6G(chspec)) {
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, pri_chan, sb);
} else {
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, pri_chan, bw);
}
#endif /* CHANSPEC_NEW_40MHZ_FORMAT */
}
return (buf);
}
static int
read_uint(const char **p, unsigned int *num)
{
unsigned long val;
char *endp = NULL;
val = strtoul(*p, &endp, 10);
/* if endp is the initial pointer value, then a number was not read */
if (endp == *p)
return 0;
/* advance the buffer pointer to the end of the integer string */
*p = endp;
/* return the parsed integer */
*num = (unsigned int)val;
return 1;
}
/**
* Convert ascii string to chanspec
*
* @param a pointer to input string
*
* @return Return > 0 if successful or 0 otherwise
*/
chanspec_t
wf_chspec_aton(const char *a)
{
chanspec_t chspec;
chanspec_band_t chspec_band;
chanspec_subband_t chspec_sb;
chanspec_bw_t chspec_bw;
uint bw;
uint num, pri_ch;
char c, sb_ul = '\0';
bw = 20;
chspec_sb = 0;
/* parse channel num or band */
if (!read_uint(&a, &num))
return 0;
/* if we are looking at a 'g', then the first number was a band */
c = tolower((int)a[0]);
if (c == 'g') {
a++; /* consume the char */
/* band must be "2", "5", or "6" */
if (num == 2)
chspec_band = WL_CHANSPEC_BAND_2G;
else if (num == 5)
chspec_band = WL_CHANSPEC_BAND_5G;
else if (num == 6)
chspec_band = WL_CHANSPEC_BAND_6G;
else
return 0;
/* read the channel number */
if (!read_uint(&a, &pri_ch))
return 0;
c = tolower((int)a[0]);
} else {
/* first number is channel, use default for band */
pri_ch = num;
chspec_band = ((pri_ch <= CH_MAX_2G_CHANNEL) ?
WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
}
if (c == '\0') {
/* default BW of 20MHz */
chspec_bw = WL_CHANSPEC_BW_20;
goto done_read;
}
a ++; /* consume the 'u','l', or '/' */
/* check 'u'/'l' */
if (c == 'u' || c == 'l') {
sb_ul = c;
chspec_bw = WL_CHANSPEC_BW_40;
goto done_read;
}
/* next letter must be '/' */
if (c != '/')
return 0;
/* read bandwidth */
if (!read_uint(&a, &bw))
return 0;
/* convert to chspec value */
if (bw == 20) {
chspec_bw = WL_CHANSPEC_BW_20;
} else if (bw == 40) {
chspec_bw = WL_CHANSPEC_BW_40;
} else if (bw == 80) {
chspec_bw = WL_CHANSPEC_BW_80;
} else if (bw == 160) {
chspec_bw = WL_CHANSPEC_BW_160;
} else if (WFC_BW_EQ(bw, 320)) {
chspec_bw = WL_CHANSPEC_BW_320;
} else {
return 0;
}
/* So far we have <band>g<chan>/<bw>
* Can now be followed by u/l if bw = 40,
*/
c = tolower((int)a[0]);
/* if we have a 2g/40 channel, we should have a l/u spec now */
if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) {
if (c == 'u' || c == 'l') {
a ++; /* consume the u/l char */
sb_ul = c;
goto done_read;
}
}
/* check for 80+80 or 160+160 */
if (c == '+') {
return 0;
}
done_read:
/* skip trailing white space */
while (a[0] == ' ') {
a ++;
}
/* must be end of string */
if (a[0] != '\0')
return 0;
/* Now have all the chanspec string parts read;
* chspec_band, pri_ch, chspec_bw, sb_ul.
* chspec_band and chspec_bw are chanspec values.
* Need to convert pri_ch, and sb_ul into
* a center channel (or two) and sideband.
*/
/* if a sb u/l string was given, just use that,
* guaranteed to be bw = 40 by string parse.
*/
if (sb_ul != '\0') {
if (sb_ul == 'l') {
chspec_sb = WL_CHANSPEC_CTL_SB_LLL;
} else if (sb_ul == 'u') {
chspec_sb = WL_CHANSPEC_CTL_SB_LLU;
}
chspec = wf_create_40MHz_chspec_primary_sb(pri_ch, chspec_sb, chspec_band);
} else if (chspec_bw == WL_CHANSPEC_BW_20) {
/* if the bw is 20, only need the primary channel and band */
chspec = wf_create_20MHz_chspec(pri_ch, chspec_band);
} else {
/* If the bw is 40/80/160/320 (and not 40MHz 2G), the channels are
* non-overlapping in 5G or 6G bands. Each primary channel is contained
* in only one higher bandwidth channel. The wf_create_chspec_from_primary()
* will create the chanspec. 2G 40MHz is handled just above, assuming a {u,l}
* sub-band spec was given.
*/
chspec = wf_create_chspec_from_primary(pri_ch, chspec_bw, chspec_band);
}
if (wf_chspec_malformed(chspec))
return 0;
return chspec;
}
/**
* Verify the chanspec is using a legal set of parameters, i.e. that the
* chanspec specified a band, bw, pri_sb and channel and that the
* combination could be legal given any set of circumstances.
*
* @param chanspec the chanspec to check
*
* @return Returns TRUE if the chanspec is malformed, FALSE if it looks good.
*/
bool
wf_chspec_malformed(chanspec_t chanspec)
{
uint chspec_bw = CHSPEC_BW(chanspec);
uint chspec_sb;
if (CHSPEC_IS2G(chanspec)) {
/* must be valid bandwidth for 2G */
if (!BW_LE40(chspec_bw)) {
return TRUE;
}
/* check for invalid channel number */
if (CHSPEC_CHANNEL(chanspec) == INVCHANNEL) {
return TRUE;
}
} else if (CHSPEC_IS5G(chanspec) || CHSPEC_IS6G(chanspec)) {
if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) {
uint ch_id;
ch_id = CHSPEC_320_CHAN(chanspec);
/* channel IDs in 320 must be in range */
if (CHSPEC_IS6G(chanspec)) {
if (ch_id >= WF_NUM_6G_320M_CHANS) {
/* bad 320MHz channel ID for the band */
return TRUE;
}
} else {
return TRUE;
}
} else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_160160)) {
uint ch0_id, ch1_id;
ch0_id = CHSPEC_CHAN0(chanspec);
ch1_id = CHSPEC_CHAN1(chanspec);
/* channel IDs in 160+160 must be in range */
if (CHSPEC_IS5G(chanspec) &&
(ch0_id >= WF_NUM_5G_160M_CHANS || ch1_id >= WF_NUM_5G_160M_CHANS)) {
/* bad 160MHz channel ID for the band */
return TRUE;
}
if (CHSPEC_IS6G(chanspec) &&
(ch0_id >= WF_NUM_6G_160M_CHANS || ch1_id >= WF_NUM_6G_160M_CHANS)) {
/* bad 160MHz channel ID for the band */
return TRUE;
}
} else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) {
uint ch0_id, ch1_id;
ch0_id = CHSPEC_CHAN0(chanspec);
ch1_id = CHSPEC_CHAN1(chanspec);
/* channel IDs in 80+80 must be in range */
if (CHSPEC_IS5G(chanspec) &&
(ch0_id >= WF_NUM_5G_80M_CHANS || ch1_id >= WF_NUM_5G_80M_CHANS)) {
/* bad 80MHz channel ID for the band */
return TRUE;
}
if (CHSPEC_IS6G(chanspec) &&
(ch0_id >= WF_NUM_6G_80M_CHANS || ch1_id >= WF_NUM_6G_80M_CHANS)) {
/* bad 80MHz channel ID for the band */
return TRUE;
}
} else if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40 ||
chspec_bw == WL_CHANSPEC_BW_80 || chspec_bw == WL_CHANSPEC_BW_160) {
/* check for invalid channel number */
if (CHSPEC_CHANNEL(chanspec) == INVCHANNEL) {
return TRUE;
}
} else {
/* invalid bandwidth */
return TRUE;
}
} else {
/* must be a valid band */
return TRUE;
}
/* retrive sideband */
if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) {
chspec_sb = CHSPEC_320_SB(chanspec);
} else {
chspec_sb = CHSPEC_CTL_SB(chanspec);
}
/* side band needs to be consistent with bandwidth */
if (chspec_bw == WL_CHANSPEC_BW_20) {
if (chspec_sb != WL_CHANSPEC_CTL_SB_LLL)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
if (chspec_sb > WL_CHANSPEC_CTL_SB_LLU)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_80 ||
WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) {
/* both 80MHz and 80+80MHz use 80MHz side bands.
* 80+80 SB info is relative to the primary 80MHz sub-band.
*/
if (chspec_sb > WL_CHANSPEC_CTL_SB_LUU)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_160 ||
WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_160160)) {
ASSERT(chspec_sb <= WL_CHANSPEC_CTL_SB_UUU);
} else if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) {
/* FIXME: define the max the sideband index */
ASSERT(chspec_sb <= 15);
}
return FALSE;
}
/**
* Verify the chanspec specifies a valid channel according to 802.11.
*
* @param chanspec the chanspec to check
*
* @return Returns TRUE if the chanspec is a valid 802.11 channel
*/
bool
wf_chspec_valid(chanspec_t chanspec)
{
chanspec_band_t chspec_band = CHSPEC_BAND(chanspec);
chanspec_bw_t chspec_bw = CHSPEC_BW(chanspec);
uint chspec_ch = -1;
if (wf_chspec_malformed(chanspec)) {
return FALSE;
}
if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) {
if (CHSPEC_IS6G(chanspec)) {
chspec_ch = wf_chspec_6G_id320_to_ch(CHSPEC_320_CHAN(chanspec));
} else {
return FALSE;
}
} else {
chspec_ch = CHSPEC_CHANNEL(chanspec);
}
/* After the malformed check, we know that we have
* a valid band field,
* a valid bandwidth for the band,
* and a valid sub-band value for the bandwidth.
*
* Since all sub-band specs are valid for any channel, the only thing remaining to
* check is that
* the 20MHz channel,
* or the center channel for higher BW,
* or both center channels for an 80+80MHz channel,
* are valid for the specified band.
* Also, 80+80MHz channels need to be non-contiguous.
*/
if (chspec_bw == WL_CHANSPEC_BW_20) {
return wf_valid_20MHz_chan(chspec_ch, chspec_band);
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
return wf_valid_40MHz_center_chan(chspec_ch, chspec_band);
} else if (chspec_bw == WL_CHANSPEC_BW_80) {
return wf_valid_80MHz_center_chan(chspec_ch, chspec_band);
} else if (chspec_bw == WL_CHANSPEC_BW_160) {
return wf_valid_160MHz_center_chan(chspec_ch, chspec_band);
} else if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) {
return wf_valid_320MHz_center_chan(chspec_ch, chspec_band);
} else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) {
uint16 ch0 = 0;
uint16 ch1 = 0;
/* get the center channels for each frequency segment */
if (CHSPEC_IS5G(chanspec)) {
ch0 = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN0(chanspec));
ch1 = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN1(chanspec));
} else if (CHSPEC_IS6G(chanspec)) {
ch0 = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN0(chanspec));
ch1 = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN1(chanspec));
} else {
return FALSE;
}
/* the two channels must be separated by more than 80MHz by VHT req */
if ((ch1 > ch0 + CH_80MHZ_APART) ||
(ch0 > ch1 + CH_80MHZ_APART))
return TRUE;
} else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_160160)) {
uint16 ch0 = 0;
uint16 ch1 = 0;
/* get the center channels for each frequency segment */
if (CHSPEC_IS5G(chanspec)) {
ch0 = wf_chspec_5G_id160_to_ch(CHSPEC_CHAN0(chanspec));
ch1 = wf_chspec_5G_id160_to_ch(CHSPEC_CHAN1(chanspec));
} else if (CHSPEC_IS6G(chanspec)) {
ch0 = wf_chspec_6G_id160_to_ch(CHSPEC_CHAN0(chanspec));
ch1 = wf_chspec_6G_id160_to_ch(CHSPEC_CHAN1(chanspec));
} else {
return FALSE;
}
/* the two channels must be separated by more than 160MHz by EHT req */
if ((ch1 > ch0 + CH_160MHZ_APART) ||
(ch0 > ch1 + CH_160MHZ_APART)) {
return TRUE;
}
}
return FALSE;
}
/* 5G band 20MHz channel ranges with even (+4) channel spacing */
static const struct wf_iter_range wf_5g_iter_ranges[] = {
{36, 64},
{100, 144},
{149, 165}
};
#define RANGE_ID_INVAL 0xFFu
enum wf_iter_state {
WF_ITER_INIT = 0,
WF_ITER_RUN = 1,
WF_ITER_DONE = 2
};
/**
* @brief Initialize a chanspec iteration structure.
*/
bool
wf_chanspec_iter_init(wf_chanspec_iter_t *iter, chanspec_band_t band, chanspec_bw_t bw)
{
if (iter == NULL) {
return FALSE;
}
/* Initialize the iter structure to the "DONE" state
* in case the parameter validation fails.
* If the validation fails then the iterator will return INVCHANSPEC as the current
* chanspec, and wf_chanspec_iter_next() will return FALSE.
*/
memset(iter, 0, sizeof(*iter));
iter->state = WF_ITER_DONE;
iter->chanspec = INVCHANSPEC;
if (band != WL_CHANSPEC_BAND_2G &&
band != WL_CHANSPEC_BAND_5G &&
band != WL_CHANSPEC_BAND_6G) {
ASSERT(0);
return FALSE;
}
/* make sure the BW is unspecified (INVCHANSPEC), 20/40,
* or (not 2g and 80/160)
*/
if (!(bw == INVCHANSPEC ||
bw == WL_CHANSPEC_BW_20 ||
bw == WL_CHANSPEC_BW_40 ||
(band != WL_CHANSPEC_BAND_2G &&
(bw == WL_CHANSPEC_BW_80 ||
bw == WL_CHANSPEC_BW_160 ||
WFC_BW_EQ(bw, WL_CHANSPEC_BW_320))))) {
ASSERT(0);
return FALSE;
}
/* Validation of the params is successful so move to the "INIT" state to
* allow the first wf_chanspec_iter_next() move the iteration to the first
* chanspec in the set.
*/
iter->state = WF_ITER_INIT;
iter->band = band;
iter->bw = bw;
iter->range_id = RANGE_ID_INVAL;
return TRUE;
}
/**
* Start the iterator off from the 'init' state.
* The internal state is set up and advanced to the first chanspec.
*/
static void
wf_chanspec_iter_firstchan(wf_chanspec_iter_t *iter)
{
chanspec_band_t band = iter->band;
chanspec_bw_t bw = iter->bw;
chanspec_t chspec;
/* if BW unspecified (INVCHANSPEC), start with 20 MHz */
if (bw == INVCHANSPEC) {
bw = WL_CHANSPEC_BW_20;
}
/* calc the initial channel based on band */
if (band == WL_CHANSPEC_BAND_2G) {
/* 2g has overlapping 40MHz channels, so cannot just use the
* wf_create_chspec_from_primary() fn.
*/
if (bw == WL_CHANSPEC_BW_20) {
chspec = wf_create_20MHz_chspec(CH_MIN_2G_CHANNEL, band);
} else {
chspec = (WL_CHANSPEC_BAND_2G | bw | WL_CHANSPEC_CTL_SB_L |
CH_MIN_2G_40M_CHANNEL);
}
} else {
if (band == WL_CHANSPEC_BAND_5G) {
wf_chanspec_iter_next_5g_range(iter, bw);
} else {
wf_chanspec_iter_6g_range_init(iter, bw);
}
chspec = wf_create_chspec_from_primary(iter->range.start, bw, band);
}
iter->chanspec = chspec;
}
/**
* @brief Return the current chanspec of the iteration.
*/
chanspec_t
wf_chanspec_iter_current(wf_chanspec_iter_t *iter)
{
return iter->chanspec;
}
/**
* @brief Advance the iteration to the next chanspec in the set.
*/
bool
wf_chanspec_iter_next(wf_chanspec_iter_t *iter, chanspec_t *chspec)
{
bool ok = FALSE;
chanspec_band_t band = iter->band;
/* Handle the INIT and DONE states. Otherwise, we are in the RUN state
* and will dispatch to the 'next' function for the appropriate band.
*/
if (iter->state == WF_ITER_INIT) {
iter->state = WF_ITER_RUN;
wf_chanspec_iter_firstchan(iter);
ok = TRUE;
} else if (iter->state == WF_ITER_DONE) {
ok = FALSE;
} else if (band == WL_CHANSPEC_BAND_2G) {
ok = wf_chanspec_iter_next_2g(iter);
} else if (band == WL_CHANSPEC_BAND_5G) {
ok = wf_chanspec_iter_next_5g(iter);
} else if (band == WL_CHANSPEC_BAND_6G) {
ok = wf_chanspec_iter_next_6g(iter);
}
/* Return the new chanspec if a pointer was provided.
* In case the iteration is done, the return will be INVCHANSPEC.
*/
if (chspec != NULL) {
*chspec = iter->chanspec;
}
return ok;
}
/**
* When the iterator completes a particular bandwidth, this function
* returns the next BW, or INVCHANSPEC when done.
*
* Internal iterator helper.
*/
static chanspec_bw_t
wf_iter_next_bw(chanspec_bw_t bw)
{
switch (bw) {
case WL_CHANSPEC_BW_20:
bw = WL_CHANSPEC_BW_40;
break;
case WL_CHANSPEC_BW_40:
bw = WL_CHANSPEC_BW_80;
break;
case WL_CHANSPEC_BW_80:
bw = WL_CHANSPEC_BW_160;
break;
#ifdef WL11BE
case WL_CHANSPEC_BW_160:
bw = WL_CHANSPEC_BW_320;
break;
#endif
default:
bw = INVCHANSPEC;
break;
}
return bw;
}
/**
* This is the _iter_next() helper for 2g band chanspec iteration.
*/
static bool
wf_chanspec_iter_next_2g(wf_chanspec_iter_t *iter)
{
chanspec_t chspec = iter->chanspec;
uint8 ch = CHSPEC_CHANNEL(chspec);
if (CHSPEC_IS20(chspec)) {
if (ch < CH_MAX_2G_CHANNEL) {
ch++;
chspec = wf_create_20MHz_chspec(ch, WL_CHANSPEC_BAND_2G);
} else if (iter->bw == INVCHANSPEC) {
/* hit the end of 20M channels, go to 40M if bw was unspecified */
ch = CH_MIN_2G_40M_CHANNEL;
chspec = wf_create_40MHz_chspec(LOWER_20_SB(ch), ch, WL_CHANSPEC_BAND_2G);
} else {
/* done */
iter->state = WF_ITER_DONE;
chspec = INVCHANSPEC;
}
} else {
/* step through low then high primary sideband, then next 40 center channel */
if (CHSPEC_SB_LOWER(iter->chanspec)) {
/* move from lower primary 20 to upper */
chspec = wf_create_40MHz_chspec(UPPER_20_SB(ch),
ch, WL_CHANSPEC_BAND_2G);
} else if (ch < CH_MAX_2G_40M_CHANNEL) {
/* move to next 40M center and lower primary 20 */
ch++;
chspec = wf_create_40MHz_chspec(LOWER_20_SB(ch),
ch, WL_CHANSPEC_BAND_2G);
} else {
/* done */
iter->state = WF_ITER_DONE;
chspec = INVCHANSPEC;
}
}
iter->chanspec = chspec;
return (chspec != INVCHANSPEC);
}
/**
* This is the _iter_next() helper for 5g band chanspec iteration.
* The 5g iterator uses ranges of primary 20MHz channels, and the current BW, to create
* each chanspec in the set.
* When a 5g range is exhausted, wf_chanspec_iter_next_5g_range() is called to get the next
* range appropriate to the current BW.
*/
static bool
wf_chanspec_iter_next_5g(wf_chanspec_iter_t *iter)
{
chanspec_t chspec = iter->chanspec;
chanspec_bw_t bw = CHSPEC_BW(chspec);
uint8 ch = wf_chspec_primary20_chan(chspec);
uint8 end = iter->range.end;
if (ch < end) {
/* not at the end of the current range, so
* step to the next 20MHz channel and create the current BW
* channel with that new primary 20MHz.
*/
ch += CH_20MHZ_APART;
} else if (wf_chanspec_iter_next_5g_range(iter, bw)) {
/* there was a new range in the current BW, so start at the beginning */
ch = iter->range.start;
} else if (iter->bw == INVCHANSPEC) {
/* hit the end of current bw, so move to the next bw */
bw = wf_iter_next_bw(bw);
if (bw != INVCHANSPEC) {
/* initialize the first range */
iter->range_id = RANGE_ID_INVAL;
wf_chanspec_iter_next_5g_range(iter, bw);
ch = iter->range.start;
} else {
/* no more BWs */
chspec = INVCHANSPEC;
}
} else {
/* no more channels, ranges, or BWs */
chspec = INVCHANSPEC;
}
/* if we are not at the end of the iteration, calc the next chanspec from components */
if (chspec != INVCHANSPEC) {
chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_5G);
}
iter->chanspec = chspec;
if (chspec != INVCHANSPEC) {
return TRUE;
} else {
iter->state = WF_ITER_DONE;
return FALSE;
}
}
/**
* Helper function to set up the next range of primary 20MHz channels to
* iterate over for the current BW. This will advance
* iter->range_id
* and set up
* iter->range.start
* iter->range.end
* for the new range.
* Returns FALSE if there are no more ranges in the current BW.
*/
static int
wf_chanspec_iter_next_5g_range(wf_chanspec_iter_t *iter, chanspec_bw_t bw)
{
uint8 range_id = iter->range_id;
const uint8 *channels;
uint count;
if (bw == WL_CHANSPEC_BW_20) {
if (range_id == RANGE_ID_INVAL) {
range_id = 0;
} else {
range_id++;
}
if (range_id < ARRAYSIZE(wf_5g_iter_ranges)) {
iter->range_id = range_id;
iter->range = wf_5g_iter_ranges[range_id];
return TRUE;
}
return FALSE;
}
if (bw == WL_CHANSPEC_BW_40) {
channels = wf_5g_40m_chans;
count = WF_NUM_5G_40M_CHANS;
} else if (bw == WL_CHANSPEC_BW_80) {
channels = wf_5g_80m_chans;
count = WF_NUM_5G_80M_CHANS;
} else if (bw == WL_CHANSPEC_BW_160) {
channels = wf_5g_160m_chans;
count = WF_NUM_5G_160M_CHANS;
} else {
return FALSE;
}
if (range_id == RANGE_ID_INVAL) {
range_id = 0;
} else {
range_id++;
}
if (range_id < count) {
uint8 ch = channels[range_id];
uint offset = center_chan_to_edge(bw);
iter->range_id = range_id;
iter->range.start = ch - offset;
iter->range.end = ch + offset;
return TRUE;
}
return FALSE;
}
/**
* This is the _iter_next() helper for 6g band chanspec iteration.
* The 6g iterator uses ranges of primary 20MHz channels, and the current BW, to create
* each chanspec in the set.
* Each BW in 6g has one contiguous range of primary 20MHz channels. When a range is
* exhausted, the iterator moves to the next BW.
*/
static bool
wf_chanspec_iter_next_6g(wf_chanspec_iter_t *iter)
{
chanspec_t chspec = iter->chanspec;
chanspec_bw_t bw = CHSPEC_BW(chspec);
uint8 ch = wf_chspec_primary20_chan(chspec);
uint8 end = iter->range.end;
if (ch < end) {
/* not at the end of the current range, so
* step to the next 20MHz channel and create the current BW
* channel with that new primary 20MHz.
*/
ch += CH_20MHZ_APART;
/* try to create a valid channel of the current BW
* with a primary20 'ch'
*/
chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_6G);
/* if chspec is INVCHANSPEC, then we hit the end
* of the valid channels in the range.
*/
} else {
/* hit the end of the current range */
chspec = INVCHANSPEC;
}
/* if we are at the end of the current channel range
* check if there is another BW to iterate
* Note: (iter->bw == INVCHANSPEC) indicates an unspecified BW for the interation,
* so it will iterate over all BWs.
*/
if (chspec == INVCHANSPEC &&
iter->bw == INVCHANSPEC &&
(bw = wf_iter_next_bw(bw)) != INVCHANSPEC) {
/* start the new bw with the first primary20 */
ch = iter->range.start;
chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_6G);
}
iter->chanspec = chspec;
if (chspec != INVCHANSPEC) {
return TRUE;
} else {
iter->state = WF_ITER_DONE;
return FALSE;
}
}
/**
* Helper used by wf_chanspec_iter_firstchan() to set up the first range of
* primary channels for the 6g band and for the BW being iterated.
*/
static void
wf_chanspec_iter_6g_range_init(wf_chanspec_iter_t *iter, chanspec_bw_t bw)
{
switch (bw) {
case WL_CHANSPEC_BW_20:
case WL_CHANSPEC_BW_40:
case WL_CHANSPEC_BW_80:
case WL_CHANSPEC_BW_160:
#ifdef WL11BE
case WL_CHANSPEC_BW_320:
#endif
iter->range.start = CH_MIN_6G_CHANNEL;
iter->range.end = CH_MAX_6G_CHANNEL;
break;
default:
ASSERT(0);
break;
}
}
/**
* Verify that the channel is a valid 20MHz channel according to 802.11.
*
* @param channel 20MHz channel number to validate
* @param band chanspec band
*
* @return Return TRUE if valid
*/
bool
wf_valid_20MHz_chan(uint channel, chanspec_band_t band)
{
if (band == WL_CHANSPEC_BAND_2G) {
/* simple range check for 2GHz */
return (channel >= CH_MIN_2G_CHANNEL &&
channel <= CH_MAX_2G_CHANNEL);
} else if (band == WL_CHANSPEC_BAND_5G) {
const uint8 *center_ch = wf_5g_40m_chans;
uint num_ch = WF_NUM_5G_40M_CHANS;
uint i;
/* We don't have an array of legal 20MHz 5G channels, but they are
* each side of the legal 40MHz channels. Check the chanspec
* channel against either side of the 40MHz channels.
*/
for (i = 0; i < num_ch; i ++) {
if (channel == (uint)LOWER_20_SB(center_ch[i]) ||
channel == (uint)UPPER_20_SB(center_ch[i])) {
break; /* match found */
}
}
if (i == num_ch) {
/* check for channel 165 which is not the side band
* of 40MHz 5G channel
*/
if (channel == 165) {
i = 0;
}
/* check for legacy JP channels on failure */
if (channel == 34 || channel == 38 ||
channel == 42 || channel == 46) {
i = 0;
}
}
if (i < num_ch) {
/* match found */
return TRUE;
}
}
else if (band == WL_CHANSPEC_BAND_6G) {
/* Use the simple pattern of 6GHz 20MHz channels */
if ((channel >= CH_MIN_6G_CHANNEL &&
channel <= CH_MAX_6G_CHANNEL) &&
((channel - CH_MIN_6G_CHANNEL) % 4) == 0) { // even multiple of 4
return TRUE;
}
}
return FALSE;
}
/**
* Verify that the center channel is a valid 40MHz center channel according to 802.11.
*
* @param center_channel 40MHz center channel to validate
* @param band chanspec band
*
* @return Return TRUE if valid
*/
bool
wf_valid_40MHz_center_chan(uint center_channel, chanspec_band_t band)
{
if (band == WL_CHANSPEC_BAND_2G) {
/* simple range check for 2GHz */
return (center_channel >= CH_MIN_2G_40M_CHANNEL &&
center_channel <= CH_MAX_2G_40M_CHANNEL);
} else if (band == WL_CHANSPEC_BAND_5G) {
uint i;
/* use the 5GHz lookup of 40MHz channels */
for (i = 0; i < WF_NUM_5G_40M_CHANS; i++) {
if (center_channel == wf_5g_40m_chans[i]) {
return TRUE;
}
}
}
else if (band == WL_CHANSPEC_BAND_6G) {
/* Use the simple pattern of 6GHz center channels */
if ((center_channel >= CH_MIN_6G_40M_CHANNEL &&
center_channel <= CH_MAX_6G_40M_CHANNEL) &&
((center_channel - CH_MIN_6G_40M_CHANNEL) % 8) == 0) { // even multiple of 8
return TRUE;
}
}
return FALSE;
}
/**
* Verify that the center channel is a valid 80MHz center channel according to 802.11.
*
* @param center_channel 80MHz center channel to validate
* @param band chanspec band
*
* @return Return TRUE if valid
*/
bool
wf_valid_80MHz_center_chan(uint center_channel, chanspec_band_t band)
{
if (band == WL_CHANSPEC_BAND_5G) {
/* use the 80MHz ID lookup to validate the center channel */
if (channel_80mhz_to_id(center_channel) >= 0) {
return TRUE;
}
} else if (band == WL_CHANSPEC_BAND_6G) {
/* use the 80MHz ID lookup to validate the center channel */
if (channel_6g_80mhz_to_id(center_channel) >= 0) {
return TRUE;
}
}
return FALSE;
}
/**
* Verify that the center channel is a valid 160MHz center channel according to 802.11.
*
* @param center_channel 160MHz center channel to validate
* @param band chanspec band
*
* @return Return TRUE if valid
*/
bool
wf_valid_160MHz_center_chan(uint center_channel, chanspec_band_t band)
{
if (band == WL_CHANSPEC_BAND_5G) {
uint i;
/* use the 5GHz lookup of 40MHz channels */
for (i = 0; i < WF_NUM_5G_160M_CHANS; i++) {
if (center_channel == wf_5g_160m_chans[i]) {
return TRUE;
}
}
} else if (band == WL_CHANSPEC_BAND_6G) {
/* Use the simple pattern of 6GHz center channels */
if ((center_channel >= CH_MIN_6G_160M_CHANNEL &&
center_channel <= CH_MAX_6G_160M_CHANNEL) &&
((center_channel - CH_MIN_6G_160M_CHANNEL) % 32) == 0) { // even multiple of 32
return TRUE;
}
}
return FALSE;
}
/**
* Verify that the center channel is a valid 320MHz center channel according to 802.11.
*
* @param center_channel 320MHz center channel to validate
* @param band chanspec band
*
* @return Return TRUE if valid
*/
bool
wf_valid_320MHz_center_chan(uint center_channel, chanspec_band_t band)
{
if (band == WL_CHANSPEC_BAND_6G) {
/* Use the simple pattern of 6GHz center channels */
if ((center_channel >= CH_MIN_6G_320M_CHANNEL &&
center_channel <= CH_MAX_6G_320M_CHANNEL) &&
((center_channel - CH_MIN_6G_320M_CHANNEL) % 64) == 0) { // even multiple of 64
return TRUE;
}
}
return FALSE;
}
/*
* This function returns TRUE if both the chanspec can co-exist in PHY.
* Addition to primary20 channel, the function checks for side band for 2g 40 channels
*/
bool
wf_chspec_coexist(chanspec_t chspec1, chanspec_t chspec2)
{
bool same_primary;
same_primary = (wf_chspec_primary20_chan(chspec1) == wf_chspec_primary20_chan(chspec2));
if (same_primary && CHSPEC_IS2G(chspec1)) {
if (CHSPEC_IS40(chspec1) && CHSPEC_IS40(chspec2)) {
return (CHSPEC_CTL_SB(chspec1) == CHSPEC_CTL_SB(chspec2));
}
}
return same_primary;
}
/**
* Create a 20MHz chanspec for the given band.
*
* This function returns a 20MHz chanspec in the given band.
*
* @param channel 20MHz channel number
* @param band a chanspec band (e.g. WL_CHANSPEC_BAND_2G)
*
* @return Returns a 20MHz chanspec, or IVNCHANSPEC in case of error.
*/
chanspec_t
wf_create_20MHz_chspec(uint channel, chanspec_band_t band)
{
chanspec_t chspec;
if (channel <= WL_CHANSPEC_CHAN_MASK &&
(band == WL_CHANSPEC_BAND_2G ||
band == WL_CHANSPEC_BAND_5G ||
band == WL_CHANSPEC_BAND_6G)) {
chspec = band | WL_CHANSPEC_BW_20 | WL_CHANSPEC_CTL_SB_NONE | channel;
if (!wf_chspec_valid(chspec)) {
chspec = INVCHANSPEC;
}
} else {
chspec = INVCHANSPEC;
}
return chspec;
}
/**
* Returns the chanspec for a 40MHz channel given the primary 20MHz channel number,
* the center channel number, and the band.
*
* @param primary_channel primary 20Mhz channel
* @param center_channel center channel of the 40MHz channel
* @param band band of the 40MHz channel (chanspec_band_t value)
*
* The center_channel can be one of the 802.11 spec valid 40MHz chenter channels
* in the given band.
*
* @return returns a 40MHz chanspec, or INVCHANSPEC in case of error
*/
chanspec_t
wf_create_40MHz_chspec(uint primary_channel, uint center_channel,
chanspec_band_t band)
{
int sb;
/* Calculate the sideband value for the center and primary channel.
* Will return -1 if not a valid pair for 40MHz
*/
sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_40);
/* return err if the sideband was bad or the center channel is not
* valid for the given band.
*/
if (sb < 0 || !wf_valid_40MHz_center_chan(center_channel, band)) {
return INVCHANSPEC;
}
/* othewise construct and return the valid 40MHz chanspec */
return (chanspec_t)(center_channel | WL_CHANSPEC_BW_40 | band |
((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT));
}
/**
* Returns the chanspec for a 40MHz channel given the primary 20MHz channel number,
* the sub-band for the primary 20MHz channel, and the band.
*
* @param primary_channel primary 20Mhz channel
* @param primary_subband sub-band of the 20MHz primary channel (chanspec_subband_t value)
* @param band band of the 40MHz channel (chanspec_band_t value)
*
* The primary channel and sub-band should describe one of the 802.11 spec valid
* 40MHz channels in the given band.
*
* @return returns a 40MHz chanspec, or INVCHANSPEC in case of error
*/
chanspec_t
wf_create_40MHz_chspec_primary_sb(uint primary_channel, chanspec_subband_t primary_subband,
chanspec_band_t band)
{
uint center_channel;
/* find the center channel */
if (primary_subband == WL_CHANSPEC_CTL_SB_L) {
center_channel = primary_channel + CH_10MHZ_APART;
} else if (primary_subband == WL_CHANSPEC_CTL_SB_U) {
center_channel = primary_channel - CH_10MHZ_APART;
} else {
return INVCHANSPEC;
}
return wf_create_40MHz_chspec(primary_channel, center_channel, band);
}
/**
* Returns the chanspec for an 80MHz channel given the primary 20MHz channel number,
* the center channel number, and the band.
*
* @param primary_channel primary 20Mhz channel
* @param center_channel center channel of the 80MHz channel
* @param band band of the 80MHz channel (chanspec_band_t value)
*
* The center_channel can be one of {42, 58, 106, 122, 138, 155} for 5G,
* or {7 + 16*X for 0 <= X <= 13} for 6G.
*
* @return returns an 80MHz chanspec, or INVCHANSPEC in case of error
*/
chanspec_t
wf_create_80MHz_chspec(uint primary_channel, uint center_channel,
chanspec_band_t band)
{
int sb;
/* Calculate the sideband value for the center and primary channel.
* Will return -1 if not a valid pair for 80MHz
*/
sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_80);
/* return err if the sideband was bad or the center channel is not
* valid for the given band.
*/
if (sb < 0 || !wf_valid_80MHz_center_chan(center_channel, band)) {
return INVCHANSPEC;
}
/* othewise construct and return the valid 80MHz chanspec */
return (chanspec_t)(center_channel | WL_CHANSPEC_BW_80 | band |
((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT));
}
/**
* Returns the chanspec for an 160MHz channel given the primary 20MHz channel number,
* the center channel number, and the band.
*
* @param primary_channel primary 20Mhz channel
* @param center_channel center channel of the 160MHz channel
* @param band band of the 160MHz channel (chanspec_band_t value)
*
* The center_channel can be one of {50, 114} for 5G,
* or {15 + 32*X for 0 <= X <= 7} for 6G.
*
* @return returns an 160MHz chanspec, or INVCHANSPEC in case of error
*/
chanspec_t
wf_create_160MHz_chspec(uint primary_channel, uint center_channel, chanspec_band_t band)
{
int sb;
/* Calculate the sideband value for the center and primary channel.
* Will return -1 if not a valid pair for 160MHz
*/
sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_160);
/* return err if the sideband was bad or the center channel is not
* valid for the given band.
*/
if (sb < 0 || !wf_valid_160MHz_center_chan(center_channel, band)) {
return INVCHANSPEC;
}
/* othewise construct and return the valid 160MHz chanspec */
return (chanspec_t)(center_channel | WL_CHANSPEC_BW_160 | band |
((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT));
}
/**
* Returns the chanspec for an 80+80MHz channel given the primary 20MHz channel number,
* the center channel numbers for each frequency segment, and the band.
*
* @param primary_channel primary 20 Mhz channel
* @param chan0 center channel number of one frequency segment
* @param chan1 center channel number of the other frequency segment
* @param band band of the 80+80 MHz channel (chanspec_band_t value)
*
* Parameters chan0 and chan1 are valid 80 MHz center channel numbers for the given band.
* The primary channel must be contained in one of the 80 MHz channels. This routine
* will determine which frequency segment is the primary 80 MHz segment.
*
* @return returns an 80+80 MHz chanspec, or INVCHANSPEC in case of error
*
* Refer to 802.11-2016 section 21.3.14 "Channelization".
*/
chanspec_t
wf_create_8080MHz_chspec(uint primary_channel, uint chan0, uint chan1,
chanspec_band_t band)
{
int sb = 0;
chanspec_t chanspec = 0;
int chan0_id = -1, chan1_id = -1;
int seg0, seg1;
/* frequency segments need to be non-contiguous, so the channel separation needs
* to be greater than 80MHz
*/
if ((uint)ABS((int)(chan0 - chan1)) <= CH_80MHZ_APART) {
return INVCHANSPEC;
}
if (band == WL_CHANSPEC_BAND_5G) {
chan0_id = channel_80mhz_to_id(chan0);
chan1_id = channel_80mhz_to_id(chan1);
} else if (band == WL_CHANSPEC_BAND_6G) {
chan0_id = channel_6g_80mhz_to_id(chan0);
chan1_id = channel_6g_80mhz_to_id(chan1);
}
/* make sure the channel numbers were valid */
if (chan0_id == -1 || chan1_id == -1) {
return INVCHANSPEC;
}
/* does the primary channel fit with the 1st 80MHz channel ? */
sb = channel_to_sb(chan0, primary_channel, WL_CHANSPEC_BW_80);
if (sb >= 0) {
/* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */
seg0 = chan0_id;
seg1 = chan1_id;
} else {
/* no, so does the primary channel fit with the 2nd 80MHz channel ? */
sb = channel_to_sb(chan1, primary_channel, WL_CHANSPEC_BW_80);
if (sb < 0) {
/* no match for pri_ch to either 80MHz center channel */
return INVCHANSPEC;
}
/* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */
seg0 = chan1_id;
seg1 = chan0_id;
}
chanspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN1_SHIFT) |
(sb << WL_CHANSPEC_CTL_SB_SHIFT) |
WL_CHANSPEC_BW_8080 |
band);
return chanspec;
}
/**
* Returns the chanspec for an 160+160MHz channel given the primary 20MHz channel number,
* the center channel numbers for each frequency segment, and the band.
*
* @param primary_channel primary 20 Mhz channel
* @param chan0 center channel number of one frequency segment
* @param chan1 center channel number of the other frequency segment
* @param band band of the 160+160 MHz channel (chanspec_band_t value)
*
* Parameters chan0 and chan1 are valid 160 MHz center channel numbers for the given band.
* The primary channel must be contained in one of the 160 MHz channels. This routine
* will determine which frequency segment is the primary 160 MHz segment.
*
* @return returns an 160+160 MHz chanspec, or INVCHANSPEC in case of error
*
* Refer to <TBD> "Channelization".
*/
chanspec_t
wf_create_160160MHz_chspec(uint primary_channel, uint chan0, uint chan1,
chanspec_band_t band)
{
int sb = 0;
chanspec_t chanspec = 0;
int chan0_id = -1, chan1_id = -1;
int seg0, seg1;
/* frequency segments need to be non-contiguous, so the channel separation needs
* to be greater than 160MHz
*/
if ((uint)ABS((int)(chan0 - chan1)) <= CH_160MHZ_APART) {
return INVCHANSPEC;
}
if (band == WL_CHANSPEC_BAND_5G) {
chan0_id = channel_5g_160mhz_to_id(chan0);
chan1_id = channel_5g_160mhz_to_id(chan1);
} else if (band == WL_CHANSPEC_BAND_6G) {
chan0_id = channel_6g_160mhz_to_id(chan0);
chan1_id = channel_6g_160mhz_to_id(chan1);
}
/* make sure the channel numbers were valid */
if (chan0_id == -1 || chan1_id == -1) {
return INVCHANSPEC;
}
/* does the primary channel fit with the 1st 160MHz channel ? */
sb = channel_to_sb(chan0, primary_channel, WL_CHANSPEC_BW_160);
if (sb >= 0) {
/* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */
seg0 = chan0_id;
seg1 = chan1_id;
} else {
/* no, so does the primary channel fit with the 2nd 160MHz channel ? */
sb = channel_to_sb(chan1, primary_channel, WL_CHANSPEC_BW_160);
if (sb < 0) {
/* no match for pri_ch to either 160MHz center channel */
return INVCHANSPEC;
}
/* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */
seg0 = chan1_id;
seg1 = chan0_id;
}
chanspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN1_SHIFT) |
(sb << WL_CHANSPEC_CTL_SB_SHIFT) |
WL_CHANSPEC_BW_160160 |
band);
return chanspec;
}
/**
* Returns the chanspec for an 320MHz channel given the primary 20MHz channel number,
* the center channel number, and the band.
*
* @param primary_channel primary 20 Mhz channel
* @param chan center channel number
* @param band band of the 320 MHz channel (chanspec_band_t value)
*
* Parameters chan is valid 320 MHz center channel numbers for the given band.
* The primary channel must be contained in one of the 320 MHz channels.
*
* @return returns an 320 MHz chanspec, or INVCHANSPEC in case of error
*
* Refer to <TBD> "Channelization".
*/
chanspec_t
wf_create_320MHz_chspec(uint primary_channel, uint center_channel, chanspec_band_t band)
{
int sb = 0;
chanspec_t chanspec = 0;
int chan_id = -1;
if (band == WL_CHANSPEC_BAND_6G) {
chan_id = channel_6g_320mhz_to_id(center_channel);
}
/* make sure the channel number were valid */
if (chan_id == -1) {
return INVCHANSPEC;
}
/* Calculate the sideband value for the center and primary channel.
* Will return -1 if not a valid pair for 320MHz
*/
sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_320);
/* return err if the sideband was bad or the center channel is not
* valid for the given band.
*/
if (sb < 0 || !wf_valid_320MHz_center_chan(center_channel, band)) {
return INVCHANSPEC;
}
chanspec = ((chan_id << WL_CHANSPEC_320_CHAN_SHIFT) |
(sb << WL_CHANSPEC_320_SB_SHIFT) |
WL_CHANSPEC_BW_320 |
band);
return chanspec;
}
/**
* Returns the chanspec given the primary 20MHz channel number,
* the center channel number, channel width, and the band. The channel width
* must be 20, 40, 80, 160, or 320 MHz.
* 80+80 or 160+160 MHz chanspec creation is not handled by this function,
* use wf_create_8080MHz_chspec() or wf_create_160160MHz_chspec()instead.
*
* @param primary_channel primary 20Mhz channel
* @param center_channel center channel of the channel
* @param bw width of the channel (chanspec_bw_t)
* @param band chanspec band of channel (chanspec_band_t)
*
* The center_channel can be one of the 802.11 spec valid center channels
* for the given bandwidth in the given band.
*
* @return returns a chanspec, or INVCHANSPEC in case of error
*/
chanspec_t
wf_create_chspec(uint primary_channel, uint center_channel,
chanspec_bw_t bw, chanspec_band_t band)
{
chanspec_t chspec = INVCHANSPEC;
int sb = -1;
uint sb_shift;
/* 20MHz channels have matching center and primary channels */
if (bw == WL_CHANSPEC_BW_20 && primary_channel == center_channel) {
sb = 0;
} else if (bw == WL_CHANSPEC_BW_40 ||
bw == WL_CHANSPEC_BW_80 ||
bw == WL_CHANSPEC_BW_160 ||
WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) {
/* calculate the sub-band index */
sb = channel_to_sb(center_channel, primary_channel, bw);
}
/* if we have a good sub-band, assemble the chanspec, and use wf_chspec_valid()
* to check it for correctness
*/
if (sb >= 0) {
if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) {
if (band == WL_CHANSPEC_BAND_6G) {
center_channel = channel_6g_320mhz_to_id(center_channel);
sb_shift = WL_CHANSPEC_320_SB_SHIFT;
} else {
return INVCHANSPEC;
}
} else {
sb_shift = WL_CHANSPEC_CTL_SB_SHIFT;
}
chspec = center_channel | band | bw |
((uint)sb << sb_shift);
if (!wf_chspec_valid(chspec)) {
chspec = INVCHANSPEC;
}
}
return chspec;
}
/**
* Returns the chanspec given the primary 20MHz channel number,
* channel width, and the band.
*
* @param primary_channel primary 20Mhz channel
* @param bw width of the channel (chanspec_bw_t)
* @param band chanspec band of channel (chanspec_band_t)
*
* @return returns a chanspec, or INVCHANSPEC in case of error
*
* This function is a similar to wf_create_chspec() but does not require the
* center_channel parameter. As a result, it can not create 40MHz channels on
* the 2G band.
*
* This function supports creating 20MHz bandwidth chanspecs on any band.
*
* For the 2GHz band, 40MHz channels overlap, so two 40MHz channels may
* have the same primary 20MHz channel. This function will return INVCHANSPEC
* whenever called with a bandwidth of 40MHz or wider for the 2GHz band.
*
* 5GHz and 6GHz bands have non-overlapping 40/80/160 MHz channels, so a
* 20MHz primary channel uniquely specifies a wider channel in a given band.
*
* 80+80MHz channels also cannot be uniquely defined. This function will return
* INVCHANSPEC whenever bandwidth of WL_CHANSPEC_BW_8080.
*/
chanspec_t
wf_create_chspec_from_primary(uint primary_channel, chanspec_bw_t bw, chanspec_band_t band)
{
chanspec_t chspec = INVCHANSPEC;
if (bw == WL_CHANSPEC_BW_20) {
chspec = wf_create_20MHz_chspec(primary_channel, band);
} else if (band == WL_CHANSPEC_BAND_2G) {
/* 2G 40MHz cannot be uniquely identified by the primary channel.
* Return INVAL for any channel given. Or if bw != 20
*/
} else if (band == WL_CHANSPEC_BAND_5G) {
/* For 5GHz, use the lookup tables for valid 40/80/160 center channels
* and search for a center channel compatible with the given primary channel.
*/
const uint8 *center_ch = NULL;
uint num_ch, i;
if (bw == WL_CHANSPEC_BW_40) {
center_ch = wf_5g_40m_chans;
num_ch = WF_NUM_5G_40M_CHANS;
} else if (bw == WL_CHANSPEC_BW_80) {
center_ch = wf_5g_80m_chans;
num_ch = WF_NUM_5G_80M_CHANS;
} else if (bw == WL_CHANSPEC_BW_160) {
center_ch = wf_5g_160m_chans;
num_ch = WF_NUM_5G_160M_CHANS;
} else {
num_ch = 0;
}
for (i = 0; i < num_ch; i ++) {
chspec = wf_create_chspec(primary_channel, center_ch[i], bw, band);
if (chspec != INVCHANSPEC) {
break;
}
}
}
else if (band == WL_CHANSPEC_BAND_6G) {
/* For 6GHz, use a formula to calculate the valid 40/80/160 center channel from
* the primary channel.
*/
uint ch_per_block;
uint mask;
uint base, center;
if (bw == WL_CHANSPEC_BW_40) {
ch_per_block = 8;
} else if (bw == WL_CHANSPEC_BW_80) {
ch_per_block = 16;
} else if (bw == WL_CHANSPEC_BW_160) {
ch_per_block = 32;
} else if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) {
ch_per_block = 64;
} else {
ch_per_block = 0;
}
if (ch_per_block) {
/* calculate the base of the block of channel numbers
* covered by the given bw
*/
mask = ~(ch_per_block - 1);
base = 1 + ((primary_channel - 1) & mask);
/* calculate the center channel from the base channel */
center = base + center_chan_to_edge(bw);
chspec = wf_create_chspec(primary_channel, center, bw, band);
}
}
return chspec;
}
/**
* Return the primary 20MHz channel.
*
* This function returns the channel number of the primary 20MHz channel. For
* 20MHz channels this is just the channel number. For 40MHz or wider channels
* it is the primary 20MHz channel specified by the chanspec.
*
* @param chspec input chanspec
*
* @return Returns the channel number of the primary 20MHz channel
*/
uint8
wf_chspec_primary20_chan(chanspec_t chspec)
{
uint center_chan = INVCHANNEL;
chanspec_bw_t bw;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
/* Is there a sideband ? */
if (CHSPEC_IS20(chspec)) {
return CHSPEC_CHANNEL(chspec);
} else {
if (CHSPEC_IS320(chspec)) {
sb = CHSPEC_320_SB(chspec) >> WL_CHANSPEC_320_SB_SHIFT;
} else {
sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
}
if (CHSPEC_IS8080(chspec)) {
/* For an 80+80 MHz channel, the sideband 'sb' field is an 80 MHz sideband
* (LL, LU, UL, LU) for the 80 MHz frequency segment 0.
*/
/* use bw 80MHz for the primary channel lookup */
bw = WL_CHANSPEC_BW_80;
/* convert from channel index to channel number */
if (CHSPEC_IS5G(chspec)) {
center_chan = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN0(chspec));
} else if (CHSPEC_IS6G(chspec)) {
center_chan = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN0(chspec));
}
} else if (CHSPEC_IS160160(chspec)) {
/* For an 160+160 MHz channel, the sideband 'sb' field is an 160MHz sideband
* for the 160 MHz frequency segment 0.
*/
/* use bw 160MHz for the primary channel lookup */
bw = WL_CHANSPEC_BW_160;
/* convert from channel index to channel number */
if (CHSPEC_IS5G(chspec)) {
center_chan = wf_chspec_5G_id160_to_ch(CHSPEC_CHAN0(chspec));
} else if (CHSPEC_IS6G(chspec)) {
center_chan = wf_chspec_6G_id160_to_ch(CHSPEC_CHAN0(chspec));
}
} else if (CHSPEC_IS320(chspec)) {
/* use bw 320MHz for the primary channel lookup */
bw = WL_CHANSPEC_BW_320;
/* convert from channel index to channel number */
if (CHSPEC_IS6G(chspec)) {
center_chan = wf_chspec_6G_id320_to_ch(CHSPEC_320_CHAN(chspec));
}
/* What to return otherwise? */
}
else {
bw = CHSPEC_BW(chspec);
center_chan = CHSPEC_CHANNEL(chspec) >> WL_CHANSPEC_CHAN_SHIFT;
}
return (uint8)(channel_to_primary20_chan((uint8)center_chan, bw, sb));
}
}
/**
* Return the bandwidth string for a given chanspec
*
* This function returns the bandwidth string for the passed chanspec.
*
* @param chspec input chanspec
*
* @return Returns the bandwidth string:
* "5", "10", "20", "40", "80", "160", "80+80"
*/
const char *
BCMRAMFN(wf_chspec_to_bw_str)(chanspec_t chspec)
{
return wf_chspec_bw_str[(CHSPEC_BW(chspec) >> WL_CHANSPEC_BW_SHIFT)];
}
/**
* Return the primary 20MHz chanspec of a given chanspec
*
* This function returns the chanspec of the primary 20MHz channel. For 20MHz
* channels this is just the chanspec. For 40MHz or wider channels it is the
* chanspec of the primary 20MHz channel specified by the chanspec.
*
* @param chspec input chanspec
*
* @return Returns the chanspec of the primary 20MHz channel
*/
chanspec_t
wf_chspec_primary20_chspec(chanspec_t chspec)
{
chanspec_t pri_chspec = chspec;
uint8 pri_chan;
ASSERT(!wf_chspec_malformed(chspec));
/* Is there a sideband ? */
if (!CHSPEC_IS20(chspec)) {
pri_chan = wf_chspec_primary20_chan(chspec);
pri_chspec = pri_chan | WL_CHANSPEC_BW_20;
pri_chspec |= CHSPEC_BAND(chspec);
}
return pri_chspec;
}
/* return chanspec given primary 20MHz channel and bandwidth
* return 0 on error
* does not support 6G
*/
uint16
wf_channel2chspec(uint pri_ch, uint bw)
{
uint16 chspec;
const uint8 *center_ch = NULL;
int num_ch = 0;
int sb = -1;
int i = 0;
chspec = ((pri_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
chspec |= bw;
if (bw == WL_CHANSPEC_BW_40) {
center_ch = wf_5g_40m_chans;
num_ch = WF_NUM_5G_40M_CHANS;
} else if (bw == WL_CHANSPEC_BW_80) {
center_ch = wf_5g_80m_chans;
num_ch = WF_NUM_5G_80M_CHANS;
} else if (bw == WL_CHANSPEC_BW_160) {
center_ch = wf_5g_160m_chans;
num_ch = WF_NUM_5G_160M_CHANS;
} else if (bw == WL_CHANSPEC_BW_20) {
chspec |= pri_ch;
return chspec;
} else {
return 0;
}
for (i = 0; i < num_ch; i ++) {
sb = channel_to_sb(center_ch[i], pri_ch, (chanspec_bw_t)bw);
if (sb >= 0) {
chspec |= center_ch[i];
chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT);
break;
}
}
/* check for no matching sb/center */
if (sb < 0) {
return 0;
}
return chspec;
}
/**
* Return the primary 40MHz chanspec or a 40MHz or wider channel
*
* This function returns the chanspec for the primary 40MHz of an 80MHz or wider channel.
* The primary 40MHz channel is the 40MHz sub-band that contains the primary 20MHz channel.
* The primary 20MHz channel of the returned 40MHz chanspec is the same as the primary 20MHz
* channel of the input chanspec.
*
* @param chspec input chanspec
*
* @return Returns the chanspec of the primary 20MHz channel
*/
chanspec_t
wf_chspec_primary40_chspec(chanspec_t chspec)
{
chanspec_t chspec40 = chspec;
uint center_chan;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
/* if the chanspec is > 80MHz, use the helper routine to find the primary 80 MHz channel */
if (CHSPEC_IS8080(chspec) || CHSPEC_IS160(chspec)) {
chspec = wf_chspec_primary80_chspec(chspec);
}
/* determine primary 40 MHz sub-channel of an 80 MHz chanspec */
if (CHSPEC_IS80(chspec)) {
center_chan = CHSPEC_CHANNEL(chspec);
sb = CHSPEC_CTL_SB(chspec);
if (sb < WL_CHANSPEC_CTL_SB_UL) {
/* Primary 40MHz is on lower side */
center_chan -= CH_20MHZ_APART;
/* sideband bits are the same for LL/LU and L/U */
} else {
/* Primary 40MHz is on upper side */
center_chan += CH_20MHZ_APART;
/* sideband bits need to be adjusted by UL offset */
sb -= WL_CHANSPEC_CTL_SB_UL;
}
/* Create primary 40MHz chanspec */
chspec40 = (CHSPEC_BAND(chspec) | WL_CHANSPEC_BW_40 |
sb | center_chan);
}
return chspec40;
}
/**
* Return the channel number for a given frequency and base frequency.
*
* @param freq frequency in MHz of the channel center
* @param start_factor starting base frequency in 500 KHz units
*
* @return Returns a channel number > 0, or -1 on error
*
* The returned channel number is relative to the given base frequency.
*
* The base frequency is specified as (start_factor * 500 kHz).
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G, and WF_CHAN_FACTOR_6_G are
* defined for 2.4 GHz, 5 GHz, and 6 GHz bands.
*
* If the given base frequency is zero these base frequencies are assumed:
*
* freq (GHz) -> assumed base freq (GHz)
* 2G band 2.4 - 2.5 2.407
* 5G band 5.0 - 5.940 5.000
* 6G band 5.940 - 7.205 5.940
*
* It is an error if the start_factor is zero and the freq is not in one of
* these ranges.
*
* The returned channel will be in the range [1, 14] in the 2.4 GHz band,
* [1, 253] for 6 GHz band, or [1, 200] otherwise.
*
* It is an error if the start_factor is WF_CHAN_FACTOR_2_4_G and the
* frequency is not a 2.4 GHz channel. For any other start factor the frequency
* must be an even 5 MHz multiple greater than the base frequency.
*
* For a start_factor WF_CHAN_FACTOR_6_G, the frequency may be up to 7.205 MHz
* (channel 253). For any other start_factor, the frequence can be up to
* 1 GHz from the base freqency (channel 200).
*
* Reference 802.11-2016, section 17.3.8.3 and section 16.3.6.3
*/
int
wf_mhz2channel(uint freq, uint start_factor)
{
int ch = -1;
uint base;
int offset;
/* take the default channel start frequency */
if (start_factor == 0) {
if (freq >= 2400 && freq <= 2500) {
start_factor = WF_CHAN_FACTOR_2_4_G;
} else if (freq >= 5000 && freq < 5940) {
start_factor = WF_CHAN_FACTOR_5_G;
} else if (freq >= 5940 && freq <= 7205) {
start_factor = WF_CHAN_FACTOR_6_G;
}
}
if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G)
return 14;
base = start_factor / 2;
if (freq < base) {
return -1;
}
offset = freq - base;
ch = offset / 5;
/* check that frequency is a 5MHz multiple from the base */
if (offset != (ch * 5))
return -1;
/* channel range checks */
if (start_factor == WF_CHAN_FACTOR_2_4_G) {
/* 2G should only be up to 13 here as 14 is
* handled above as it is a non-5MHz offset
*/
if (ch > 13) {
ch = -1;
}
}
else if (start_factor == WF_CHAN_FACTOR_6_G) {
/* 6G has a higher channel range than 5G channelization specifies [1,200] */
if ((uint)ch > CH_MAX_6G_CHANNEL) {
ch = -1;
}
} else if (ch > 200) {
ch = -1;
}
return ch;
}
/**
* Return the center frequency in MHz of the given channel and base frequency.
*
* The channel number is interpreted relative to the given base frequency.
*
* The valid channel range is [1, 14] in the 2.4 GHz band, [1,253] in the 6 GHz
* band, and [1, 200] otherwise.
* The base frequency is specified as (start_factor * 500 kHz).
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G, and WF_CHAN_FACTOR_6_G are
* defined for 2.4 GHz, 5 GHz, and 6 GHz bands.
* The channel range of [1, 14] is only checked for a start_factor of
* WF_CHAN_FACTOR_2_4_G (4814).
* Odd start_factors produce channels on .5 MHz boundaries, in which case
* the answer is rounded down to an integral MHz.
* -1 is returned for an out of range channel.
*
* Reference 802.11-2016, section 17.3.8.3 and section 16.3.6.3
*
* @param channel input channel number
* @param start_factor base frequency in 500 kHz units, e.g. 10000 for 5 GHz
*
* @return Returns a frequency in MHz
*
* @see WF_CHAN_FACTOR_2_4_G
* @see WF_CHAN_FACTOR_5_G
* @see WF_CHAN_FACTOR_6_G
*/
int
wf_channel2mhz(uint ch, uint start_factor)
{
int freq;
if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) ||
(start_factor == WF_CHAN_FACTOR_6_G && (ch < 1 || ch > 253)) ||
(start_factor != WF_CHAN_FACTOR_6_G && (ch < 1 || ch > 200))) {
freq = -1;
} else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14)) {
freq = 2484;
} else {
freq = ch * 5 + start_factor / 2;
}
return freq;
}
static const uint16 sidebands[] = {
WL_CHANSPEC_CTL_SB_LLL, WL_CHANSPEC_CTL_SB_LLU,
WL_CHANSPEC_CTL_SB_LUL, WL_CHANSPEC_CTL_SB_LUU,
WL_CHANSPEC_CTL_SB_ULL, WL_CHANSPEC_CTL_SB_ULU,
WL_CHANSPEC_CTL_SB_UUL, WL_CHANSPEC_CTL_SB_UUU
};
/*
* Returns the chanspec 80Mhz channel corresponding to the following input
* parameters
*
* primary_channel - primary 20Mhz channel
* center_channel - center frequecny of the 80Mhz channel
*
* The center_channel can be one of {42, 58, 106, 122, 138, 155}
*
* returns INVCHANSPEC in case of error
*
* does not support 6G
*/
chanspec_t
wf_chspec_80(uint8 center_channel, uint8 primary_channel)
{
chanspec_t chanspec = INVCHANSPEC;
chanspec_t chanspec_cur;
uint i;
for (i = 0; i < WF_NUM_SIDEBANDS_80MHZ; i++) {
chanspec_cur = CH80MHZ_CHSPEC(center_channel, sidebands[i]);
if (primary_channel == wf_chspec_primary20_chan(chanspec_cur)) {
chanspec = chanspec_cur;
break;
}
}
/* If the loop ended early, we are good, otherwise we did not
* find a 80MHz chanspec with the given center_channel that had a primary channel
*matching the given primary_channel.
*/
return chanspec;
}
/*
* Returns the 80+80 chanspec corresponding to the following input parameters
*
* primary_20mhz - Primary 20 MHz channel
* chan0 - center channel number of one frequency segment
* chan1 - center channel number of the other frequency segment
*
* Parameters chan0 and chan1 are channel numbers in {42, 58, 106, 122, 138, 155}.
* The primary channel must be contained in one of the 80MHz channels. This routine
* will determine which frequency segment is the primary 80 MHz segment.
*
* Returns INVCHANSPEC in case of error.
*
* Refer to 802.11-2016 section 22.3.14 "Channelization".
*
* does not support 6G
*/
chanspec_t
wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan0, uint8 chan1)
{
int sb = 0;
uint16 chanspec = 0;
int chan0_id = 0, chan1_id = 0;
int seg0, seg1;
chan0_id = channel_80mhz_to_id(chan0);
chan1_id = channel_80mhz_to_id(chan1);
/* make sure the channel numbers were valid */
if (chan0_id == -1 || chan1_id == -1)
return INVCHANSPEC;
/* does the primary channel fit with the 1st 80MHz channel ? */
sb = channel_to_sb(chan0, primary_20mhz, WL_CHANSPEC_BW_80);
if (sb >= 0) {
/* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */
seg0 = chan0_id;
seg1 = chan1_id;
} else {
/* no, so does the primary channel fit with the 2nd 80MHz channel ? */
sb = channel_to_sb(chan1, primary_20mhz, WL_CHANSPEC_BW_80);
if (sb < 0) {
/* no match for pri_ch to either 80MHz center channel */
return INVCHANSPEC;
}
/* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */
seg0 = chan1_id;
seg1 = chan0_id;
}
chanspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN1_SHIFT) |
(sb << WL_CHANSPEC_CTL_SB_SHIFT) |
WL_CHANSPEC_BW_8080 |
WL_CHANSPEC_BAND_5G);
return chanspec;
}
/*
* Returns the center channel of the primary 80 MHz sub-band of the provided chanspec
*/
uint8
wf_chspec_primary80_channel(chanspec_t chanspec)
{
chanspec_t primary80_chspec;
uint8 primary80_chan;
primary80_chspec = wf_chspec_primary80_chspec(chanspec);
if (primary80_chspec == INVCHANSPEC) {
primary80_chan = INVCHANNEL;
} else {
primary80_chan = CHSPEC_CHANNEL(primary80_chspec);
}
return primary80_chan;
}
/*
* Returns the center channel of the secondary 80 MHz sub-band of the provided chanspec
*/
uint8
wf_chspec_secondary80_channel(chanspec_t chanspec)
{
chanspec_t secondary80_chspec;
uint8 secondary80_chan;
secondary80_chspec = wf_chspec_secondary80_chspec(chanspec);
if (secondary80_chspec == INVCHANSPEC) {
secondary80_chan = INVCHANNEL;
} else {
secondary80_chan = CHSPEC_CHANNEL(secondary80_chspec);
}
return secondary80_chan;
}
/*
* Returns the chanspec for the primary 80MHz sub-band of an 160MHz or 80+80 channel
*/
chanspec_t
wf_chspec_primary80_chspec(chanspec_t chspec)
{
chanspec_t chspec80;
uint center_chan;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
if (CHSPEC_IS80(chspec)) {
chspec80 = chspec;
}
else if (CHSPEC_IS8080(chspec)) {
sb = CHSPEC_CTL_SB(chspec);
/* primary sub-band is stored in seg0 */
if (CHSPEC_IS5G(chspec)) {
center_chan = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN0(chspec));
} else if (CHSPEC_IS6G(chspec)) {
center_chan = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN0(chspec));
} else {
center_chan = INVCHANNEL;
}
/* Create primary 80MHz chanspec */
chspec80 = (CHSPEC_BAND(chspec) | WL_CHANSPEC_BW_80 | sb | center_chan);
}
else if (CHSPEC_IS160(chspec)) {
center_chan = CHSPEC_CHANNEL(chspec);
sb = CHSPEC_CTL_SB(chspec);
if (sb < WL_CHANSPEC_CTL_SB_ULL) {
/* Primary 80MHz is on lower side */
center_chan -= CH_40MHZ_APART;
}
else {
/* Primary 80MHz is on upper side */
center_chan += CH_40MHZ_APART;
sb -= WL_CHANSPEC_CTL_SB_ULL;
}
/* Create primary 80MHz chanspec */
chspec80 = (CHSPEC_BAND(chspec) | WL_CHANSPEC_BW_80 | sb | center_chan);
}
else {
chspec80 = INVCHANSPEC;
}
return chspec80;
}
/*
* Returns the chanspec for the secondary 80MHz sub-band of an 160MHz or 80+80 channel
*/
chanspec_t
wf_chspec_secondary80_chspec(chanspec_t chspec)
{
chanspec_t chspec80;
uint center_chan;
ASSERT(!wf_chspec_malformed(chspec));
if (CHSPEC_IS8080(chspec)) {
/* secondary sub-band is stored in seg1 */
if (CHSPEC_IS5G(chspec)) {
center_chan = wf_chspec_5G_id80_to_ch(CHSPEC_CHAN1(chspec));
} else if (CHSPEC_IS6G(chspec)) {
center_chan = wf_chspec_6G_id80_to_ch(CHSPEC_CHAN1(chspec));
} else {
center_chan = INVCHANNEL;
}
/* Create secondary 80MHz chanspec */
chspec80 = (CHSPEC_BAND(chspec) |
WL_CHANSPEC_BW_80 |
WL_CHANSPEC_CTL_SB_LL |
center_chan);
}
else if (CHSPEC_IS160(chspec)) {
center_chan = CHSPEC_CHANNEL(chspec);
if (CHSPEC_CTL_SB(chspec) < WL_CHANSPEC_CTL_SB_ULL) {
/* Primary 80MHz is on lower side, so the secondary is on
* the upper side
*/
center_chan += CH_40MHZ_APART;
} else {
/* Primary 80MHz is on upper side, so the secondary is on
* the lower side
*/
center_chan -= CH_40MHZ_APART;
}
/* Create secondary 80MHz chanspec */
chspec80 = (CHSPEC_BAND(chspec) |
WL_CHANSPEC_BW_80 |
WL_CHANSPEC_CTL_SB_LL |
center_chan);
}
else {
chspec80 = INVCHANSPEC;
}
return chspec80;
}
/*
* For 160MHz or 80P80 chanspec, set ch[0]/ch[1] to be the low/high 80 Mhz channels
*
* For 20/40/80MHz chanspec, set ch[0] to be the center freq, and chan[1]=-1
*/
void
wf_chspec_get_80p80_channels(chanspec_t chspec, uint8 *ch)
{
if (CHSPEC_IS160(chspec)) {
uint8 center_chan = CHSPEC_CHANNEL(chspec);
ch[0] = center_chan - CH_40MHZ_APART;
ch[1] = center_chan + CH_40MHZ_APART;
}
else {
/* for 20, 40, and 80 Mhz */
ch[0] = CHSPEC_CHANNEL(chspec);
ch[1] = -1;
}
return;
}
/* Populates array with all 20MHz side bands of a given chanspec_t in the following order:
* primary20, secondary20, two secondary40s, four secondary80s.
* 'chspec' is the chanspec of interest
* 'pext' must point to an uint8 array of long enough to hold all side bands of the given chspec
*
* Works with 20, 40, 80, and 160MHz chspec
*/
void
wf_get_all_ext(chanspec_t chspec, uint8 *pext)
{
#ifdef WL11N_20MHZONLY
GET_ALL_SB(chspec, pext);
#else /* !WL11N_20MHZONLY */
chanspec_t t = (CHSPEC_IS160(chspec)) ? /* if bw > 80MHz */
wf_chspec_primary80_chspec(chspec) : (chspec); /* extract primary 80 */
/* primary20 channel as first element */
uint8 pri_ch = (pext)[0] = wf_chspec_primary20_chan(t);
if (CHSPEC_IS20(chspec)) return; /* nothing more to do since 20MHz chspec */
/* 20MHz EXT */
(pext)[1] = (IS_CTL_IN_L20(t) ? pri_ch + CH_20MHZ_APART : pri_ch - CH_20MHZ_APART);
if (CHSPEC_IS40(chspec)) return; /* nothing more to do since 40MHz chspec */
/* center 40MHz EXT */
t = wf_channel2chspec((IS_CTL_IN_L40(chspec) ?
pri_ch + CH_40MHZ_APART : pri_ch - CH_40MHZ_APART), WL_CHANSPEC_BW_40);
GET_ALL_SB(t, &((pext)[2])); /* get the 20MHz side bands in 40MHz EXT */
if (CHSPEC_IS80(chspec)) return; /* nothing more to do since 80MHz chspec */
t = CH80MHZ_CHSPEC(wf_chspec_secondary80_channel(chspec), WL_CHANSPEC_CTL_SB_LLL);
/* get the 20MHz side bands in 80MHz EXT (secondary) */
GET_ALL_SB(t, &((pext)[4]));
#endif /* !WL11N_20MHZONLY */
}
/*
* Given two chanspecs, returns true if they overlap.
* (Overlap: At least one 20MHz subband is common between the two chanspecs provided)
*/
bool wf_chspec_overlap(chanspec_t chspec0, chanspec_t chspec1)
{
uint8 ch0, ch1;
if (CHSPEC_BAND(chspec0) != CHSPEC_BAND(chspec1)) {
return FALSE;
}
FOREACH_20_SB(chspec0, ch0) {
FOREACH_20_SB(chspec1, ch1) {
if ((uint)ABS(ch0 - ch1) < CH_20MHZ_APART) {
return TRUE;
}
}
}
return FALSE;
}
uint8
channel_bw_to_width(chanspec_t chspec)
{
uint8 channel_width;
if (CHSPEC_IS80(chspec))
channel_width = VHT_OP_CHAN_WIDTH_80;
else if (CHSPEC_IS160(chspec))
channel_width = VHT_OP_CHAN_WIDTH_160;
else if (CHSPEC_IS8080(chspec))
channel_width = VHT_OP_CHAN_WIDTH_80_80;
else
channel_width = VHT_OP_CHAN_WIDTH_20_40;
return channel_width;
}
uint wf_chspec_first_20_sb(chanspec_t chspec)
{
#if defined(WL_BW160MHZ)
if (CHSPEC_IS160(chspec)) {
return LLL_20_SB_160(CHSPEC_CHANNEL(chspec));
} else
#endif
if (CHSPEC_IS80(chspec)) {
return LL_20_SB(CHSPEC_CHANNEL(chspec));
} else if (CHSPEC_IS40(chspec)) {
return LOWER_20_SB(CHSPEC_CHANNEL(chspec));
} else {
return CHSPEC_CHANNEL(chspec);
}
}
chanspec_t
wf_create_chspec_sb(uint sb, uint center_channel, chanspec_bw_t bw, chanspec_band_t band)
{
chanspec_t chspec;
if (sb > (WL_CHANSPEC_CTL_SB_MASK >> WL_CHANSPEC_CTL_SB_SHIFT)) {
return INVCHANSPEC;
}
chspec = center_channel | band | bw | ((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT);
return wf_chspec_valid(chspec) ? chspec : INVCHANSPEC;
}
chanspec_t
wf_create_8080MHz_chspec_sb(uint sb, uint chan0, uint chan1, chanspec_band_t band)
{
int chan0_id, chan1_id, seg0, seg1;
chanspec_t chspec;
if (sb > (WL_CHANSPEC_CTL_SB_UUU >> WL_CHANSPEC_CTL_SB_SHIFT)) {
return INVCHANSPEC;
}
/* From here on sb is not an index, but value for SB field */
sb <<= WL_CHANSPEC_CTL_SB_SHIFT;
/* frequency segments need to be non-contiguous, so the channel
* separation needs to be greater than 80MHz
*/
if ((uint)ABS((int)(chan0 - chan1)) <= CH_80MHZ_APART) {
return INVCHANSPEC;
}
if (band == WL_CHANSPEC_BAND_5G) {
chan0_id = channel_80mhz_to_id(chan0);
chan1_id = channel_80mhz_to_id(chan1);
} else if (band == WL_CHANSPEC_BAND_6G) {
chan0_id = channel_6g_80mhz_to_id(chan0);
chan1_id = channel_6g_80mhz_to_id(chan1);
} else {
return INVCHANSPEC;
}
/* make sure the channel numbers were valid */
if ((chan0_id == -1) || (chan1_id == -1)) {
return INVCHANSPEC;
}
/* Optionally swapping channel IDs to make sure that control subchannel
* is in chan0
*/
if (sb < WL_CHANSPEC_CTL_SB_ULL) {
seg0 = chan0_id;
seg1 = chan1_id;
} else {
seg0 = chan1_id;
seg1 = chan0_id;
sb -= WL_CHANSPEC_CTL_SB_ULL;
}
chspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN1_SHIFT) |
sb | WL_CHANSPEC_BW_8080 | band);
return wf_chspec_valid(chspec) ? chspec : INVCHANSPEC;
}
chanspec_t
wf_create_160160MHz_chspec_sb(uint sb, uint chan0, uint chan1, chanspec_band_t band)
{
int chan0_id, chan1_id, seg0, seg1;
chanspec_t chspec;
if (sb > (WL_CHANSPEC_CTL_SB_UUU >> WL_CHANSPEC_CTL_SB_SHIFT)) {
return INVCHANSPEC;
}
/* From here on sb is not an index, but value for SB field */
sb <<= WL_CHANSPEC_CTL_SB_SHIFT;
/* frequency segments need to be non-contiguous, so the channel
* separation needs to be greater than 160MHz
*/
if ((uint)ABS((int)(chan0 - chan1)) <= CH_160MHZ_APART) {
return INVCHANSPEC;
}
if (band == WL_CHANSPEC_BAND_5G) {
chan0_id = channel_5g_160mhz_to_id(chan0);
chan1_id = channel_5g_160mhz_to_id(chan1);
} else if (band == WL_CHANSPEC_BAND_6G) {
chan0_id = channel_6g_160mhz_to_id(chan0);
chan1_id = channel_6g_160mhz_to_id(chan1);
} else {
return INVCHANSPEC;
}
/* make sure the channel numbers were valid */
if ((chan0_id == -1) || (chan1_id == -1)) {
return INVCHANSPEC;
}
/* Optionally swapping channel IDs to make sure that control subchannel
* is in chan0
*/
if (sb < WL_CHANSPEC_CTL_SB_ULL) {
seg0 = chan0_id;
seg1 = chan1_id;
} else {
seg0 = chan1_id;
seg1 = chan0_id;
sb -= WL_CHANSPEC_CTL_SB_ULL;
}
chspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN1_SHIFT) |
sb | WL_CHANSPEC_BW_160160 | band);
return wf_chspec_valid(chspec) ? chspec : INVCHANSPEC;
}