blob: adf3c3f02b0c28d90cf82c3060b49080163d9ca8 [file] [log] [blame]
/*
* Linux cfg80211 Vendor Extension Code
*
* Copyright (C) 1999-2016, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: wl_cfgvendor.c 455257 2014-02-20 08:10:24Z $
*/
/*
* New vendor interface additon to nl80211/cfg80211 to allow vendors
* to implement proprietary features over the cfg80211 stack.
*/
#include <typedefs.h>
#include <linuxver.h>
#include <osl.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <bcmutils.h>
#include <bcmwifi_channels.h>
#include <bcmendian.h>
#include <proto/ethernet.h>
#include <proto/802.11.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#include <dngl_stats.h>
#include <dhd.h>
#include <dhd_debug.h>
#include <dhdioctl.h>
#include <wlioctl.h>
#include <wlioctl_utils.h>
#include <dhd_cfg80211.h>
#ifdef PNO_SUPPORT
#include <dhd_pno.h>
#endif /* PNO_SUPPORT */
#ifdef RTT_SUPPORT
#include <dhd_rtt.h>
#endif /* RTT_SUPPORT */
#include <proto/ethernet.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include <wlioctl.h>
#include <wldev_common.h>
#include <wl_cfg80211.h>
#include <wl_cfgp2p.h>
#ifdef OEM_ANDROID
#include <wl_android.h>
#endif /* OEM_ANDROID */
#include <wl_cfgvendor.h>
#ifdef PROP_TXSTATUS
#include <dhd_wlfc.h>
#endif
#include <brcm_nl80211.h>
#if defined(WL_VENDOR_EXT_SUPPORT)
/*
* This API is to be used for asynchronous vendor events. This
* shouldn't be used in response to a vendor command from its
* do_it handler context (instead wl_cfgvendor_send_cmd_reply should
* be used).
*/
int wl_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len)
{
u16 kflags;
struct sk_buff *skb;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len, event_id, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
cfg80211_vendor_event(skb, kflags);
return 0;
}
static int
wl_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
struct net_device *dev, const void *data, int len)
{
struct sk_buff *skb;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
return cfg80211_vendor_cmd_reply(skb);
}
static int
wl_cfgvendor_get_feature_set(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int reply;
reply = dhd_dev_get_feature_set(bcmcfg_to_prmry_ndev(cfg));
err = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
&reply, sizeof(int));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
return err;
}
static int
wl_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
struct sk_buff *skb;
int *reply;
int num, mem_needed, i;
reply = dhd_dev_get_feature_set_matrix(bcmcfg_to_prmry_ndev(cfg), &num);
if (!reply) {
WL_ERR(("Could not get feature list matrix\n"));
err = -EINVAL;
return err;
}
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * num) +
ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET, num);
for (i = 0; i < num; i++) {
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET, reply[i]);
}
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
exit:
kfree(reply);
return err;
}
static int
wl_cfgvendor_set_rand_mac_oui(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
uint8 random_mac_oui[DOT11_OUI_LEN];
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_RANDOM_MAC_OUI) {
memcpy(random_mac_oui, nla_data(data), DOT11_OUI_LEN);
err = dhd_dev_cfg_rand_mac_oui(bcmcfg_to_prmry_ndev(cfg), random_mac_oui);
if (unlikely(err))
WL_ERR(("Bad OUI, could not set:%d \n", err));
} else {
err = -1;
}
return err;
}
#ifdef CUSTOM_FORCE_NODFS_FLAG
static int
wl_cfgvendor_set_nodfs_flag(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
u32 nodfs;
type = nla_type(data);
if (type == ANDR_WIFI_ATTRIBUTE_NODFS_SET) {
nodfs = nla_get_u32(data);
err = dhd_dev_set_nodfs(bcmcfg_to_prmry_ndev(cfg), nodfs);
} else {
err = -1;
}
return err;
}
#endif /* CUSTOM_FORCE_NODFS_FLAG */
#ifdef GSCAN_SUPPORT
int
wl_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, wl_vendor_event_t event)
{
u16 kflags;
const void *ptr;
struct sk_buff *skb;
int malloc_len, total, iter_cnt_to_send, cnt;
gscan_results_cache_t *cache = (gscan_results_cache_t *)data;
total = len/sizeof(wifi_gscan_result_t);
while (total > 0) {
malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
if (malloc_len > NLMSG_DEFAULT_SIZE) {
malloc_len = NLMSG_DEFAULT_SIZE;
}
iter_cnt_to_send =
(malloc_len - VENDOR_DATA_OVERHEAD)/sizeof(wifi_gscan_result_t);
total = total - iter_cnt_to_send;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, malloc_len, event, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, malloc_len, event, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
while (cache && iter_cnt_to_send) {
ptr = (const void *) &cache->results[cache->tot_consumed];
if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed)) {
cnt = iter_cnt_to_send;
} else {
cnt = (cache->tot_count - cache->tot_consumed);
}
iter_cnt_to_send -= cnt;
cache->tot_consumed += cnt;
/* Push the data to the skb */
nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
if (cache->tot_consumed == cache->tot_count) {
cache = cache->next;
}
}
cfg80211_vendor_event(skb, kflags);
}
return 0;
}
static int
wl_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_gscan_capabilities_t *reply = NULL;
uint32 reply_len = 0;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
if (!reply) {
WL_ERR(("Could not get capabilities\n"));
err = -EINVAL;
return err;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
reply, reply_len);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
kfree(reply);
return err;
}
static int
wl_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, type, band;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint16 *reply = NULL;
uint32 reply_len = 0, num_channels, mem_needed;
struct sk_buff *skb;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_BAND) {
band = nla_get_u32(data);
} else {
return -EINVAL;
}
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);
if (!reply) {
WL_ERR(("Could not get channel list\n"));
err = -EINVAL;
return err;
}
num_channels = reply_len/ sizeof(uint32);
mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);
err = cfg80211_vendor_cmd_reply(skb);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
kfree(reply);
return err;
}
static int
wl_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_results_cache_t *results, *iter;
uint32 reply_len, complete = 1;
int32 mem_needed, num_results_iter;
wifi_gscan_result_t *ptr;
uint16 num_scan_ids, num_results;
struct sk_buff *skb;
struct nlattr *scan_hdr, *complete_flag;
err = dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK)
return -EBUSY;
err = dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
if (err != BCME_OK) {
WL_ERR(("Can't obtain lock to access batch results %d\n", err));
return -EBUSY;
}
results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);
if (!results) {
WL_ERR(("No results to send %d\n", err));
err = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
results, 0);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
num_scan_ids = reply_len & 0xFFFF;
num_results = (reply_len & 0xFFFF0000) >> 16;
mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
(num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;
if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
mem_needed = (int32)NLMSG_DEFAULT_SIZE;
}
WL_TRACE(("complete %d mem_needed %d max_mem %d\n", complete, mem_needed,
(int)NLMSG_DEFAULT_SIZE));
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
iter = results;
complete_flag = nla_reserve(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE,
sizeof(complete));
mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);
while (iter) {
num_results_iter = (mem_needed - (int32)GSCAN_BATCH_RESULT_HDR_LEN);
num_results_iter /= ((int32)sizeof(wifi_gscan_result_t));
if (num_results_iter <= 0 ||
((iter->tot_count - iter->tot_consumed) > num_results_iter)) {
break;
}
scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
/* no more room? we are done then (for now) */
if (scan_hdr == NULL) {
complete = 0;
break;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
num_results_iter = iter->tot_count - iter->tot_consumed;
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
if (num_results_iter) {
ptr = &iter->results[iter->tot_consumed];
iter->tot_consumed += num_results_iter;
nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
num_results_iter * sizeof(wifi_gscan_result_t), ptr);
}
nla_nest_end(skb, scan_hdr);
mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
(num_results_iter * sizeof(wifi_gscan_result_t));
iter = iter->next;
}
/* Returns TRUE if all result consumed */
complete = dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
memcpy(nla_data(complete_flag), &complete, sizeof(complete));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return cfg80211_vendor_cmd_reply(skb);
}
static int
wl_cfgvendor_initiate_gscan(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type, tmp = len;
int run = 0xFF;
int flush = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
run = nla_get_u32(iter);
else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
flush = nla_get_u32(iter);
}
if (run != 0xFF) {
err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
return err;
} else {
return -EINVAL;
}
}
static int
wl_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
bool real_time = FALSE;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
real_time = nla_get_u32(data);
err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);
if (unlikely(err)) {
WL_ERR(("Could not run gscan:%d \n", err));
}
} else {
err = -EINVAL;
}
return err;
}
static int
wl_cfgvendor_set_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_scan_params_t *scan_param;
int j = 0;
int type, tmp, tmp1, tmp2, k = 0;
const struct nlattr *iter, *iter1, *iter2;
struct dhd_pno_gscan_channel_bucket *ch_bucket;
scan_param = kzalloc(sizeof(gscan_scan_params_t), GFP_KERNEL);
if (!scan_param) {
WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
err = -EINVAL;
return err;
}
scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (j >= GSCAN_MAX_CH_BUCKETS) {
break;
}
switch (type) {
case GSCAN_ATTRIBUTE_BASE_PERIOD:
scan_param->scan_fr = nla_get_u32(iter)/1000;
break;
case GSCAN_ATTRIBUTE_NUM_BUCKETS:
scan_param->nchannel_buckets = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_CH_BUCKET_1:
case GSCAN_ATTRIBUTE_CH_BUCKET_2:
case GSCAN_ATTRIBUTE_CH_BUCKET_3:
case GSCAN_ATTRIBUTE_CH_BUCKET_4:
case GSCAN_ATTRIBUTE_CH_BUCKET_5:
case GSCAN_ATTRIBUTE_CH_BUCKET_6:
case GSCAN_ATTRIBUTE_CH_BUCKET_7:
nla_for_each_nested(iter1, iter, tmp1) {
type = nla_type(iter1);
ch_bucket =
scan_param->channel_bucket;
switch (type) {
case GSCAN_ATTRIBUTE_BUCKET_ID:
break;
case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
ch_bucket[j].bucket_freq_multiple =
nla_get_u32(iter1)/1000;
break;
case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
ch_bucket[j].num_channels =
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
nla_for_each_nested(iter2, iter1, tmp2) {
if (k >=
GSCAN_MAX_CHANNELS_IN_BUCKET)
break;
ch_bucket[j].chan_list[k] =
nla_get_u32(iter2);
k++;
}
k = 0;
break;
case GSCAN_ATTRIBUTE_BUCKETS_BAND:
ch_bucket[j].band = (uint16)
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_REPORT_EVENTS:
ch_bucket[j].report_flag = (uint8)
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_BUCKET_STEP_COUNT:
ch_bucket[j].repeat = (uint16)
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_BUCKET_MAX_PERIOD:
ch_bucket[j].bucket_max_multiple =
nla_get_u32(iter1)/1000;
default:
WL_ERR(("bucket attribute type error %d\n",
type));
break;
}
}
j++;
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SCAN_CFG_ID, scan_param, 0) < 0) {
WL_ERR(("Could not set GSCAN scan cfg\n"));
err = -EINVAL;
}
kfree(scan_param);
return err;
}
static int
wl_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_hotlist_scan_params_t *hotlist_params;
int tmp, tmp1, tmp2, type, j = 0, dummy;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
struct bssid_t *pbssid;
hotlist_params = (gscan_hotlist_scan_params_t *)kzalloc(len, GFP_KERNEL);
if (!hotlist_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes \n", len));
return -ENOMEM;
}
hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
pbssid = hotlist_params->bssid;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID:
memcpy(&(pbssid[j].macaddr),
nla_data(inner), ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
pbssid[j].rssi_reporting_threshold =
(int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
dummy = (int8) nla_get_u8(inner);
break;
default:
WL_ERR(("ATTR unknown %d\n",
type));
break;
}
}
j++;
}
hotlist_params->nbssid = j;
break;
case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
hotlist_params->lost_ap_window = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GEOFENCE_SCAN_CFG_ID,
hotlist_params, flush) < 0) {
WL_ERR(("Could not set GSCAN HOTLIST cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(hotlist_params);
return err;
}
static int wl_cfgvendor_epno_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_epno_params_t *epno_params;
int tmp, tmp1, tmp2, type, num = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0, i = 0;
uint16 num_visible_ssid = 0;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID_LIST:
nla_for_each_nested(outer, iter, tmp) {
epno_params = (dhd_epno_params_t *)
dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_EPNO_SSID_ELEM, NULL, &num);
if (!epno_params) {
WL_ERR(("Failed to get SSID LIST buffer\n"));
err = -ENOMEM;
goto exit;
}
i++;
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_EPNO_SSID:
memcpy(epno_params->ssid,
nla_data(inner),
DOT11_MAX_SSID_LEN);
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_LEN:
len = nla_get_u8(inner);
if (len < DOT11_MAX_SSID_LEN) {
epno_params->ssid_len = len;
} else {
WL_ERR(("SSID too"
"long %d\n", len));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_EPNO_RSSI:
epno_params->rssi_thresh =
(int8) nla_get_u32(inner);
break;
case GSCAN_ATTRIBUTE_EPNO_FLAGS:
epno_params->flags =
nla_get_u8(inner);
if (!(epno_params->flags &
DHD_PNO_USE_SSID))
num_visible_ssid++;
break;
case GSCAN_ATTRIBUTE_EPNO_AUTH:
epno_params->auth =
nla_get_u8(inner);
break;
}
}
}
break;
case GSCAN_ATTRIBUTE_EPNO_SSID_NUM:
num = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_EPNO_FLUSH:
flush = nla_get_u8(iter);
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, NULL, flush);
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
err = -EINVAL;
goto exit;
}
}
if (i != num) {
WL_ERR(("%s: num_ssid %d does not match ssids sent %d\n", __FUNCTION__,
num, i));
err = -EINVAL;
}
exit:
/* Flush all configs if error condition */
flush = (err < 0) ? TRUE: FALSE;
dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_EPNO_CFG_ID, &num_visible_ssid, flush);
return err;
}
static int
wl_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_batch_params_t batch_param;
const struct nlattr *iter;
batch_param.mscan = batch_param.bestn = 0;
batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
batch_param.bestn = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
batch_param.mscan = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
batch_param.buffer_threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_BATCH_SCAN_CFG_ID,
&batch_param, 0) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
return err;
}
return err;
}
static int
wl_cfgvendor_significant_change_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_swc_params_t *significant_params;
int tmp, tmp1, tmp2, type, j = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
wl_pfn_significant_bssid_t *bssid;
significant_params = (gscan_swc_params_t *) kzalloc(len, GFP_KERNEL);
if (!significant_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes \n", len));
return -ENOMEM;
}
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_RSSI_SAMPLE_SIZE:
significant_params->rssi_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
significant_params->lost_ap_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_MIN_BREACHING:
significant_params->swc_threshold = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_BSSIDS:
bssid = significant_params->bssid_elem_list;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
switch (nla_type(inner)) {
case GSCAN_ATTRIBUTE_BSSID:
memcpy(&(bssid[j].macaddr),
nla_data(inner),
ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
bssid[j].rssi_high_threshold
= (int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
bssid[j].rssi_low_threshold
= (int8) nla_get_u8(inner);
break;
default:
WL_ERR(("ATTR unknown %d\n",
type));
break;
}
}
j++;
}
break;
default:
WL_ERR(("Unknown type %d\n", type));
break;
}
}
significant_params->nbssid = j;
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SIGNIFICANT_SCAN_CFG_ID,
significant_params, flush) < 0) {
WL_ERR(("Could not set GSCAN significant cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(significant_params);
return err;
}
#endif /* GSCAN_SUPPORT */
#ifdef RTT_SUPPORT
void
wl_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
struct wireless_dev *wdev = (struct wireless_dev *)ctx;
struct wiphy *wiphy;
struct sk_buff *skb;
uint32 complete = 0;
gfp_t kflags;
rtt_result_t *rtt_result;
rtt_results_header_t *rtt_header;
struct list_head *rtt_cache_list;
struct nlattr *rtt_nl_hdr;
wiphy = wdev->wiphy;
WL_DBG(("In\n"));
/* Push the data to the skb */
if (!rtt_data) {
WL_ERR(("rtt_data is NULL\n"));
return;
}
rtt_cache_list = (struct list_head *)rtt_data;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
if (list_empty(rtt_cache_list)) {
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, 100, GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
complete = 1;
nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, complete);
cfg80211_vendor_event(skb, kflags);
return;
}
list_for_each_entry(rtt_header, rtt_cache_list, list) {
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, rtt_header->result_tot_len + 100,
GOOGLE_RTT_COMPLETE_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
if (list_is_last(&rtt_header->list, rtt_cache_list)) {
complete = 1;
}
nla_put_u32(skb, RTT_ATTRIBUTE_RESULTS_COMPLETE, complete);
rtt_nl_hdr = nla_nest_start(skb, RTT_ATTRIBUTE_RESULTS_PER_TARGET);
if (!rtt_nl_hdr) {
WL_ERR(("rtt_nl_hdr is NULL\n"));
break;
}
nla_put(skb, RTT_ATTRIBUTE_TARGET_MAC, ETHER_ADDR_LEN, &rtt_header->peer_mac);
nla_put_u32(skb, RTT_ATTRIBUTE_RESULT_CNT, rtt_header->result_cnt);
list_for_each_entry(rtt_result, &rtt_header->result_list, list) {
nla_put(skb, RTT_ATTRIBUTE_RESULT,
rtt_result->report_len, &rtt_result->report);
}
nla_nest_end(skb, rtt_nl_hdr);
cfg80211_vendor_event(skb, kflags);
}
}
static int
wl_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len) {
int err = 0, rem, rem1, rem2, type;
int target_cnt;
rtt_config_params_t rtt_param;
rtt_target_info_t* rtt_target = NULL;
const struct nlattr *iter, *iter1, *iter2;
int8 eabuf[ETHER_ADDR_STR_LEN];
int8 chanbuf[CHANSPEC_STR_LEN];
int32 feature_set = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
feature_set = dhd_dev_get_feature_set(bcmcfg_to_prmry_ndev(cfg));
WL_DBG(("In\n"));
err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
if (err < 0) {
WL_ERR(("failed to register rtt_noti_callback\n"));
goto exit;
}
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (err < 0) {
WL_ERR(("failed to get the capability\n"));
goto exit;
}
memset(&rtt_param, 0, sizeof(rtt_param));
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
target_cnt = nla_get_u8(iter);
if (rtt_param.rtt_target_cnt > RTT_MAX_TARGET_CNT) {
WL_ERR(("exceed max target count : %d\n",
target_cnt));
err = BCME_RANGE;
goto exit;
}
rtt_param.rtt_target_cnt = target_cnt;
rtt_param.target_info = kzalloc(TARGET_INFO_SIZE(target_cnt), GFP_KERNEL);
if (rtt_param.target_info == NULL) {
WL_ERR(("failed to allocate target info for (%d)\n", target_cnt));
err = BCME_NOMEM;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_INFO:
rtt_target = rtt_param.target_info;
nla_for_each_nested(iter1, iter, rem1) {
nla_for_each_nested(iter2, iter1, rem2) {
type = nla_type(iter2);
switch (type) {
case RTT_ATTRIBUTE_TARGET_MAC:
memcpy(&rtt_target->addr, nla_data(iter2),
ETHER_ADDR_LEN);
break;
case RTT_ATTRIBUTE_TARGET_TYPE:
rtt_target->type = nla_get_u8(iter2);
if (rtt_target->type == RTT_INVALID ||
(rtt_target->type == RTT_ONE_WAY &&
!capability.rtt_one_sided_supported)) {
WL_ERR(("doesn't support RTT type"
" : %d\n",
rtt_target->type));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_PEER:
rtt_target->peer = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_CHAN:
memcpy(&rtt_target->channel, nla_data(iter2),
sizeof(rtt_target->channel));
break;
case RTT_ATTRIBUTE_TARGET_PERIOD:
rtt_target->burst_period = nla_get_u32(iter2);
if (rtt_target->burst_period < 32) {
/* 100ms unit */
rtt_target->burst_period *= 100;
} else {
WL_ERR(("%d value must in (0-31)\n",
rtt_target->burst_period));
err = EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_NUM_BURST:
rtt_target->num_burst = nla_get_u32(iter2);
if (rtt_target->num_burst > 16) {
WL_ERR(("%d value must in (0-15)\n",
rtt_target->num_burst));
err = -EINVAL;
goto exit;
}
rtt_target->num_burst = BIT(rtt_target->num_burst);
break;
case RTT_ATTRIBUTE_TARGET_NUM_FTM_BURST:
rtt_target->num_frames_per_burst =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTM:
rtt_target->num_retries_per_ftm =
nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY_FTMR:
rtt_target->num_retries_per_ftmr =
nla_get_u32(iter2);
if (rtt_target->num_retries_per_ftmr > 3) {
WL_ERR(("%d value must in (0-3)\n",
rtt_target->num_retries_per_ftmr));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_LCI:
rtt_target->LCI_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_LCR:
rtt_target->LCI_request = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_BURST_DURATION:
if ((nla_get_u32(iter2) > 1 &&
nla_get_u32(iter2) < 12)) {
rtt_target->burst_duration =
dhd_rtt_idx_to_burst_duration(
nla_get_u32(iter2));
} else if (nla_get_u32(iter2) == 15) {
/* use default value */
rtt_target->burst_duration = 0;
} else {
WL_ERR(("%d value must in (2-11) or 15\n",
nla_get_u32(iter2)));
err = -EINVAL;
goto exit;
}
break;
case RTT_ATTRIBUTE_TARGET_BW:
rtt_target->bw = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_PREAMBLE:
rtt_target->preamble = nla_get_u8(iter2);
break;
}
}
/* convert to chanspec value */
rtt_target->chanspec =
dhd_rtt_convert_to_chspec(rtt_target->channel);
if (rtt_target->chanspec == 0) {
WL_ERR(("Channel is not valid \n"));
err = -EINVAL;
goto exit;
}
WL_INFORM(("Target addr %s, Channel : %s for RTT \n",
bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr,
eabuf),
wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
rtt_target++;
}
break;
}
}
WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
WL_ERR(("Could not set RTT configuration\n"));
err = -EINVAL;
}
exit:
/* free the target info list */
kfree(rtt_param.target_info);
return err;
}
static int
wl_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, type, target_cnt = 1;
int target_cnt_chk = 0;
const struct nlattr *iter;
struct ether_addr *mac_list = NULL, *mac_addr = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
if (mac_list != NULL) {
WL_ERR(("mac_list is not NULL\n"));
goto exit;
}
target_cnt = nla_get_u8(iter);
if (target_cnt > 0) {
mac_list = (struct ether_addr *)kzalloc(target_cnt * ETHER_ADDR_LEN,
GFP_KERNEL);
if (mac_list == NULL) {
WL_ERR(("failed to allocate mem for mac list\n"));
goto exit;
}
mac_addr = &mac_list[0];
} else {
/* cancel the current whole RTT process */
goto cancel;
}
break;
case RTT_ATTRIBUTE_TARGET_MAC:
if (mac_addr) {
memcpy(mac_addr++, nla_data(iter), ETHER_ADDR_LEN);
target_cnt_chk++;
if (target_cnt_chk > target_cnt) {
WL_ERR(("over target count\n"));
goto exit;
}
break;
} else {
WL_ERR(("mac_list is NULL\n"));
goto exit;
}
}
}
cancel:
if (dhd_dev_rtt_cancel_cfg(bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
WL_ERR(("Could not cancel RTT configuration\n"));
err = -EINVAL;
}
exit:
if (mac_list) {
kfree(mac_list);
}
return err;
}
static int
wl_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
goto exit;
}
err = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
&capability, sizeof(capability));
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
}
exit:
return err;
}
#endif /* RTT_SUPPORT */
#ifdef GSCAN_SUPPORT
static int wl_cfgvendor_enable_lazy_roam(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = -EINVAL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
uint32 lazy_roam_enable_flag;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_LAZY_ROAM_ENABLE) {
lazy_roam_enable_flag = nla_get_u32(data);
err = dhd_dev_lazy_roam_enable(bcmcfg_to_prmry_ndev(cfg),
lazy_roam_enable_flag);
if (unlikely(err))
WL_ERR(("Could not enable lazy roam:%d \n", err));
}
return err;
}
static int wl_cfgvendor_set_lazy_roam_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wlc_roam_exp_params_t roam_param;
const struct nlattr *iter;
memset(&roam_param, 0, sizeof(roam_param));
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_A_BAND_BOOST_THRESHOLD:
roam_param.a_band_boost_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_THRESHOLD:
roam_param.a_band_penalty_threshold = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_BOOST_FACTOR:
roam_param.a_band_boost_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_PENALTY_FACTOR:
roam_param.a_band_penalty_factor = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_A_BAND_MAX_BOOST:
roam_param.a_band_max_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_LAZY_ROAM_HYSTERESIS:
roam_param.cur_bssid_boost = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_ALERT_ROAM_RSSI_TRIGGER:
roam_param.alert_roam_trigger_threshold = nla_get_u32(iter);
break;
}
}
if (dhd_dev_set_lazy_roam_cfg(bcmcfg_to_prmry_ndev(cfg), &roam_param) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
}
return err;
}
/* small helper function */
static wl_bssid_pref_cfg_t *
create_bssid_pref_cfg(uint32 num)
{
uint32 mem_needed;
wl_bssid_pref_cfg_t *bssid_pref;
mem_needed = sizeof(wl_bssid_pref_cfg_t);
if (num)
mem_needed += (num - 1) * sizeof(wl_bssid_pref_list_t);
bssid_pref = (wl_bssid_pref_cfg_t *) kmalloc(mem_needed, GFP_KERNEL);
return bssid_pref;
}
static int
wl_cfgvendor_set_bssid_pref(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_bssid_pref_cfg_t *bssid_pref = NULL;
wl_bssid_pref_list_t *bssids;
int tmp, tmp1, tmp2, type;
const struct nlattr *outer, *inner, *iter;
uint32 flush = 0, i = 0, num = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
num = nla_get_u32(iter);
if (num > MAX_BSSID_PREF_LIST_NUM) {
WL_ERR(("Too many Preferred BSSIDs!\n"));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_FLUSH:
flush = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_BSSID_PREF_LIST:
if (!num)
return -EINVAL;
if ((bssid_pref = create_bssid_pref_cfg(num)) == NULL) {
WL_ERR(("%s: Can't malloc memory\n", __FUNCTION__));
err = -ENOMEM;
goto exit;
}
bssid_pref->count = num;
bssids = bssid_pref->bssids;
nla_for_each_nested(outer, iter, tmp) {
if (i >= num) {
WL_ERR(("CFGs don't seem right!\n"));
err = -EINVAL;
goto exit;
}
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID_PREF:
memcpy(&(bssids[i].bssid),
nla_data(inner), ETHER_ADDR_LEN);
/* not used for now */
bssids[i].flags = 0;
break;
case GSCAN_ATTRIBUTE_RSSI_MODIFIER:
bssids[i].rssi_factor =
(int8) nla_get_u32(inner);
break;
}
}
i++;
}
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
break;
}
}
if (!bssid_pref) {
/* What if only flush is desired? */
if (flush) {
if ((bssid_pref = create_bssid_pref_cfg(0)) == NULL) {
WL_ERR(("%s: Can't malloc memory\n", __FUNCTION__));
err = -ENOMEM;
goto exit;
}
bssid_pref->count = 0;
} else {
err = -EINVAL;
goto exit;
}
}
err = dhd_dev_set_lazy_roam_bssid_pref(bcmcfg_to_prmry_ndev(cfg),
bssid_pref, flush);
exit:
kfree(bssid_pref);
return err;
}
static int
wl_cfgvendor_set_bssid_blacklist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
maclist_t *blacklist = NULL;
int err = 0;
int type, tmp;
const struct nlattr *iter;
uint32 mem_needed = 0, flush = 0, i = 0, num = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_BSSID:
num = nla_get_u32(iter);
if (num > MAX_BSSID_BLACKLIST_NUM) {
WL_ERR(("Too many Blacklist BSSIDs!\n"));
err = -EINVAL;
goto exit;
}
break;
case GSCAN_ATTRIBUTE_BSSID_BLACKLIST_FLUSH:
flush = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_BLACKLIST_BSSID:
if (num) {
if (!blacklist) {
mem_needed = sizeof(maclist_t) +
sizeof(struct ether_addr) * (num - 1);
blacklist = (maclist_t *)
kmalloc(mem_needed, GFP_KERNEL);
if (!blacklist) {
WL_ERR(("%s: Can't malloc %d bytes\n",
__FUNCTION__, mem_needed));
err = -ENOMEM;
goto exit;
}
blacklist->count = num;
}
if (i >= num) {
WL_ERR(("CFGs don't seem right!\n"));
err = -EINVAL;
goto exit;
}
memcpy(&(blacklist->ea[i]),
nla_data(iter), ETHER_ADDR_LEN);
i++;
}
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
break;
}
}
err = dhd_dev_set_blacklist_bssid(bcmcfg_to_prmry_ndev(cfg),
blacklist, mem_needed, flush);
exit:
kfree(blacklist);
return err;
}
static int
wl_cfgvendor_set_ssid_whitelist(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
wl_ssid_whitelist_t *ssid_whitelist = NULL;
wlc_ssid_t *ssid_elem;
int tmp, tmp2, mem_needed = 0, type;
const struct nlattr *inner, *iter;
uint32 flush = 0, i = 0, num = 0;
/* Assumption: NUM attribute must come first */
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_WL_SSID:
num = nla_get_u32(iter);
if (num > MAX_SSID_WHITELIST_NUM) {
WL_ERR(("Too many WL SSIDs!\n"));
err = -EINVAL;
goto exit;
}
mem_needed = sizeof(wl_ssid_whitelist_t);
if (num)
mem_needed += (num - 1) * sizeof(ssid_info_t);
ssid_whitelist = (wl_ssid_whitelist_t *)
kzalloc(mem_needed, GFP_KERNEL);
if (ssid_whitelist == NULL) {
WL_ERR(("%s: Can't malloc %d bytes\n",
__FUNCTION__, mem_needed));
err = -ENOMEM;
goto exit;
}
ssid_whitelist->ssid_count = num;
break;
case GSCAN_ATTRIBUTE_WL_SSID_FLUSH:
flush = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_WHITELIST_SSID_ELEM:
if (!num || !ssid_whitelist) {
WL_ERR(("num ssid is not set!\n"));
return -EINVAL;
}
if (i >= num) {
WL_ERR(("CFGs don't seem right!\n"));
err = -EINVAL;
goto exit;
}
ssid_elem = &ssid_whitelist->ssids[i];
nla_for_each_nested(inner, iter, tmp) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_WHITELIST_SSID:
memcpy(ssid_elem->SSID,
nla_data(inner),
DOT11_MAX_SSID_LEN);
break;
case GSCAN_ATTRIBUTE_WL_SSID_LEN:
ssid_elem->SSID_len = (uint8)
nla_get_u32(inner);
break;
}
}
i++;
break;
default:
WL_ERR(("%s: No such attribute %d\n", __FUNCTION__, type));
break;
}
}
err = dhd_dev_set_whitelist_ssid(bcmcfg_to_prmry_ndev(cfg),
ssid_whitelist, mem_needed, flush);
exit:
kfree(ssid_whitelist);
return err;
}
#endif /* GSCAN_SUPPORT */
static int wl_cfgvendor_set_rssi_monitor(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type, start = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int8 max_rssi = 0, min_rssi = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case RSSI_MONITOR_ATTRIBUTE_MAX_RSSI:
max_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_MIN_RSSI:
min_rssi = (int8) nla_get_u32(iter);
break;
case RSSI_MONITOR_ATTRIBUTE_START:
start = nla_get_u32(iter);
}
}
if (dhd_dev_set_rssi_monitor_cfg(bcmcfg_to_prmry_ndev(cfg),
start, max_rssi, min_rssi) < 0) {
WL_ERR(("Could not set rssi monitor cfg\n"));
err = -EINVAL;
}
return err;
}
static int
wl_cfgvendor_priv_string_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int ret = 0;
int ret_len = 0, payload = 0, msglen;
const struct bcm_nlmsg_hdr *nlioc = data;
void *buf = NULL, *cur;
int maxmsglen = PAGE_SIZE - 0x100;
struct sk_buff *reply;
WL_ERR(("entry: cmd = %d\n", nlioc->cmd));
len -= sizeof(struct bcm_nlmsg_hdr);
ret_len = nlioc->len;
if (ret_len > 0 || len > 0) {
if (len > DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize input buffer %d\n", len));
len = DHD_IOCTL_MAXLEN;
}
if (ret_len > DHD_IOCTL_MAXLEN) {
WL_ERR(("oversize return buffer %d\n", ret_len));
ret_len = DHD_IOCTL_MAXLEN;
}
payload = max(ret_len, len) + 1;
buf = vzalloc(payload);
if (!buf) {
return -ENOMEM;
}
memcpy(buf, (void *)nlioc + nlioc->offset, len);
*(char *)(buf + len) = '\0';
}
ret = dhd_cfgvendor_priv_string_handler(cfg, wdev, nlioc, buf);
if (ret) {
WL_ERR(("dhd_cfgvendor returned error %d", ret));
vfree(buf);
return ret;
}
cur = buf;
while (ret_len > 0) {
msglen = nlioc->len > maxmsglen ? maxmsglen : ret_len;
ret_len -= msglen;
payload = msglen + sizeof(msglen);
reply = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, payload);
if (!reply) {
WL_ERR(("Failed to allocate reply msg\n"));
ret = -ENOMEM;
break;
}
if (nla_put(reply, BCM_NLATTR_DATA, msglen, cur) ||
nla_put_u16(reply, BCM_NLATTR_LEN, msglen)) {
kfree_skb(reply);
ret = -ENOBUFS;
break;
}
ret = cfg80211_vendor_cmd_reply(reply);
if (ret) {
WL_ERR(("testmode reply failed:%d\n", ret));
break;
}
cur += msglen;
}
return ret;
}
struct net_device *
wl_cfgvendor_get_ndev(struct bcm_cfg80211 *cfg, struct wireless_dev *wdev,
const void *data, unsigned long int *out_addr)
{
char *pos, *pos1;
char ifname[IFNAMSIZ + 1] = {0};
struct net_info *iter, *next;
struct net_device *ndev = NULL;
*out_addr = (unsigned long int) data; /* point to command str by default */
/* check whether ifname=<ifname> is provided in the command */
pos = strstr(data, "ifname=");
if (pos) {
pos += strlen("ifname=");
pos1 = strstr(pos, " ");
if (!pos1) {
WL_ERR(("command format error \n"));
return NULL;
}
memcpy(ifname, pos, (pos1 - pos));
for_each_ndev(cfg, iter, next) {
if (iter->ndev) {
if (strncmp(iter->ndev->name, ifname,
strlen(iter->ndev->name)) == 0) {
/* matching ifname found */
WL_DBG(("matching interface (%s) found ndev:%p \n",
iter->ndev->name, iter->ndev));
*out_addr = (unsigned long int)(pos1 + 1);
/* Returns the command portion after ifname=<name> */
return iter->ndev;
}
}
}
WL_ERR(("Couldn't find ifname:%s in the netinfo list \n",
ifname));
return NULL;
}
/* If ifname=<name> arg is not provided, use default ndev */
ndev = wdev->netdev ? wdev->netdev : bcmcfg_to_prmry_ndev(cfg);
WL_DBG(("Using default ndev (%s) \n", ndev->name));
return ndev;
}
/* Max length for the reply buffer. For BRCM_ATTR_DRIVER_CMD, the reply
* would be a formatted string and reply buf would be the size of the
* string.
*/
#define WL_DRIVER_PRIV_CMD_LEN 512
static int
wl_cfgvendor_priv_bcm_handler(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
const struct nlattr *iter;
int err = 0;
int data_len = 0, cmd_len = 0, tmp = 0, type = 0;
char *cmd = NULL;
int bytes_written;
char *reply_buf = NULL;
struct net_device *net = NULL;
struct net_device *ndev = wdev->netdev;
unsigned long int cmd_out = 0;
u32 reply_len = WL_DRIVER_PRIV_CMD_LEN;
WL_DBG(("%s: Enter \n", __func__));
/* hold wake lock */
net_os_wake_lock(ndev);
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
cmd = nla_data(iter);
cmd_len = nla_len(iter);
WL_DBG(("%s: type: %d len:%d\n", __func__, type, cmd_len));
#ifdef OEM_ANDROID
if (type == BRCM_ATTR_DRIVER_CMD) {
if (cmd_len >= WL_DRIVER_PRIV_CMD_LEN) {
WL_ERR(("Unexpected command length. Ignore the command\n"));
err = -EINVAL;
goto exit;
}
net = wl_cfgvendor_get_ndev(cfg, wdev, cmd, &cmd_out);
if (!cmd_out || !net) {
err = -ENODEV;
goto exit;
}
cmd = (char *)cmd_out;
reply_buf = kzalloc(reply_len, GFP_KERNEL);
if (!reply_buf) {
WL_ERR(("memory alloc failed for %u \n", cmd_len));
err = -ENOMEM;
goto exit;
}
memcpy(reply_buf, cmd, cmd_len);
WL_DBG(("vendor_command: %s len: %u \n", cmd, cmd_len));
bytes_written = wl_handle_private_cmd(net, reply_buf, reply_len);
WL_DBG(("bytes_written: %d \n", bytes_written));
if (bytes_written == 0) {
sprintf(reply_buf, "%s", "OK");
data_len = strlen("OK");
} else if (bytes_written > 0) {
data_len = bytes_written > reply_len ?
reply_len : bytes_written;
} else {
/* -ve return value. Propagate the error back */
err = bytes_written;
goto exit;
}
break;
}
#endif /* OEM_ANDROID */
}
if ((data_len > 0) && reply_buf) {
err = wl_cfgvendor_send_cmd_reply(wiphy, wdev->netdev,
reply_buf, data_len+1);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
else
WL_DBG(("Vendor Command reply sent successfully!\n"));
} else {
/* No data to be sent back as reply */
WL_ERR(("Vendor_cmd: No reply expected. data_len:%u reply_buf %p \n",
data_len, reply_buf));
}
exit:
if (reply_buf)
kfree(reply_buf);
net_os_wake_unlock(ndev);
return err;
}
#ifdef LINKSTAT_SUPPORT
#define NUM_RATE 32
#define NUM_PEER 1
#define NUM_CHAN 11
#define HEADER_SIZE sizeof(ver_len)
static int wl_cfgvendor_lstats_get_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
static char iovar_buf[WLC_IOCTL_MAXLEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int err = 0, i;
wifi_iface_stat *iface;
wifi_radio_stat *radio;
wl_wme_cnt_t *wl_wme_cnt;
wl_cnt_v_le10_mcst_t *macstat_cnt;
wl_cnt_wlc_t *wlc_cnt;
scb_val_t scbval;
char *output;
WL_INFORM(("%s: Enter \n", __func__));
RETURN_EIO_IF_NOT_UP(cfg);
bzero(cfg->ioctl_buf, WLC_IOCTL_MAXLEN);
bzero(iovar_buf, WLC_IOCTL_MAXLEN);
output = cfg->ioctl_buf;
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "radiostat", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wifi_radio_stat)));
return err;
}
radio = (wifi_radio_stat *)iovar_buf;
radio->num_channels = NUM_CHAN;
memcpy(output, iovar_buf+HEADER_SIZE, sizeof(wifi_radio_stat)-HEADER_SIZE);
output += (sizeof(wifi_radio_stat) - HEADER_SIZE);
output += (NUM_CHAN*sizeof(wifi_channel_stat));
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "wme_counters", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d)\n", err));
return err;
}
wl_wme_cnt = (wl_wme_cnt_t *)iovar_buf;
iface = (wifi_iface_stat *)output;
iface->ac[WIFI_AC_VO].ac = WIFI_AC_VO;
iface->ac[WIFI_AC_VO].tx_mpdu = wl_wme_cnt->tx[AC_VO].packets;
iface->ac[WIFI_AC_VO].rx_mpdu = wl_wme_cnt->rx[AC_VO].packets;
iface->ac[WIFI_AC_VO].mpdu_lost = wl_wme_cnt->tx_failed[WIFI_AC_VO].packets;
iface->ac[WIFI_AC_VI].ac = WIFI_AC_VI;
iface->ac[WIFI_AC_VI].tx_mpdu = wl_wme_cnt->tx[AC_VI].packets;
iface->ac[WIFI_AC_VI].rx_mpdu = wl_wme_cnt->rx[AC_VI].packets;
iface->ac[WIFI_AC_VI].mpdu_lost = wl_wme_cnt->tx_failed[WIFI_AC_VI].packets;
iface->ac[WIFI_AC_BE].ac = WIFI_AC_BE;
iface->ac[WIFI_AC_BE].tx_mpdu = wl_wme_cnt->tx[AC_BE].packets;
iface->ac[WIFI_AC_BE].rx_mpdu = wl_wme_cnt->rx[AC_BE].packets;
iface->ac[WIFI_AC_BE].mpdu_lost = wl_wme_cnt->tx_failed[WIFI_AC_BE].packets;
iface->ac[WIFI_AC_BK].ac = WIFI_AC_BK;
iface->ac[WIFI_AC_BK].tx_mpdu = wl_wme_cnt->tx[AC_BK].packets;
iface->ac[WIFI_AC_BK].rx_mpdu = wl_wme_cnt->rx[AC_BK].packets;
iface->ac[WIFI_AC_BK].mpdu_lost = wl_wme_cnt->tx_failed[WIFI_AC_BK].packets;
bzero(iovar_buf, WLC_IOCTL_MAXLEN);
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "counters", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (unlikely(err)) {
WL_ERR(("error (%d) - size = %zu\n", err, sizeof(wl_cnt_wlc_t)));
return err;
}
/* Translate traditional (ver <= 10) counters struct to new xtlv type struct */
err = wl_cntbuf_to_xtlv_format(NULL, iovar_buf, WL_CNTBUF_MAX_SIZE, 0);
if (err != BCME_OK) {
WL_ERR(("%s wl_cntbuf_to_xtlv_format ERR %d\n",
__FUNCTION__, err));
return err;
}
if (!(wlc_cnt = GET_WLCCNT_FROM_CNTBUF(iovar_buf))) {
WL_ERR(("%s wlc_cnt NULL!\n", __FUNCTION__));
return BCME_ERROR;
}
iface->ac[WIFI_AC_BE].retries = wlc_cnt->txretry;
if ((macstat_cnt = bcm_get_data_from_xtlv_buf(((wl_cnt_info_t *)iovar_buf)->data,
((wl_cnt_info_t *)iovar_buf)->datalen, WL_CNT_XTLV_CNTV_LE10_UCODE, NULL,
BCM_XTLV_OPTION_ALIGN32)) == NULL) {
macstat_cnt = bcm_get_data_from_xtlv_buf(((wl_cnt_info_t *)iovar_buf)->data,
((wl_cnt_info_t *)iovar_buf)->datalen,
WL_CNT_XTLV_LT40_UCODE_V1, NULL,
BCM_XTLV_OPTION_ALIGN32);
}
if (macstat_cnt == NULL) {
printf("wlmTxGetAckedPackets: macstat_cnt NULL!\n");
return FALSE;
}
iface->beacon_rx = macstat_cnt->rxbeaconmbss;
err = wldev_get_rssi(bcmcfg_to_prmry_ndev(cfg), &scbval);
if (unlikely(err)) {
WL_ERR(("get_rssi error (%d)\n", err));
return err;
}
iface->rssi_mgmt = scbval.val;
iface->num_peers = NUM_PEER;
iface->peer_info->num_rate = NUM_RATE;
bzero(iovar_buf, WLC_IOCTL_MAXLEN);
output = (char *)iface + sizeof(wifi_iface_stat) + NUM_PEER*sizeof(wifi_peer_info);
err = wldev_iovar_getbuf(bcmcfg_to_prmry_ndev(cfg), "ratestat", NULL, 0,
iovar_buf, WLC_IOCTL_MAXLEN, NULL);
if (err != BCME_OK && err != BCME_UNSUPPORTED) {
WL_ERR(("error (%d) - size = %zu\n", err, NUM_RATE*sizeof(wifi_rate_stat)));
return err;
}
for (i = 0; i < NUM_RATE; i++)
memcpy(output, iovar_buf+HEADER_SIZE+i*sizeof(wifi_rate_stat),
sizeof(wifi_rate_stat)-HEADER_SIZE);
err = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
cfg->ioctl_buf,
sizeof(wifi_radio_stat)-HEADER_SIZE +
NUM_CHAN*sizeof(wifi_channel_stat) +
sizeof(wifi_iface_stat)+NUM_PEER*sizeof(wifi_peer_info) +
NUM_RATE*(sizeof(wifi_rate_stat)-HEADER_SIZE));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d \n", err));
return err;
}
#endif /* LINKSTAT_SUPPORT */
static int wl_cfgvendor_dbg_start_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
int log_level = 0, flags = 0, time_intval = 0, threshold = 0;
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
break;
case DEBUG_ATTRIBUTE_LOG_LEVEL:
log_level = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_RING_FLAGS:
flags = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_TIME_INTVAL:
time_intval = nla_get_u32(iter);
break;
case DEBUG_ATTRIBUTE_LOG_MIN_DATA_SIZE:
threshold = nla_get_u32(iter);
break;
default:
WL_ERR(("Unknown type: %d\n", type));
ret = BCME_BADADDR;
goto exit;
}
}
ret = dhd_os_start_logging(dhd_pub, ring_name, log_level, flags, time_intval, threshold);
if (ret < 0) {
WL_ERR(("start_logging is failed ret: %d\n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_reset_logging(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_reset_logging(dhd_pub);
if (ret < 0) {
WL_ERR(("reset logging is failed ret: %d\n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_ring_status(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
int ring_id, i;
int ring_cnt;
struct sk_buff *skb;
dhd_dbg_ring_status_t dbg_ring_status[DEBUG_RING_ID_MAX];
dhd_dbg_ring_status_t ring_status;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
memset(dbg_ring_status, 0, DBG_RING_STATUS_SIZE * DEBUG_RING_ID_MAX);
ring_cnt = 0;
for (ring_id = DEBUG_RING_ID_INVALID + 1; ring_id < DEBUG_RING_ID_MAX; ring_id++) {
ret = dhd_os_get_ring_status(dhd_pub, ring_id, &ring_status);
if (ret == BCME_NOTFOUND) {
WL_DBG(("The ring (%d) is not found \n", ring_id));
} else if (ret == BCME_OK) {
dbg_ring_status[ring_cnt++] = ring_status;
}
}
/* Alloc the SKB for vendor_event */
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy,
(DBG_RING_STATUS_SIZE * ring_cnt) + 100);
if (!skb) {
WL_ERR(("skb allocation is failed\n"));
ret = BCME_NOMEM;
goto exit;
}
nla_put_u32(skb, DEBUG_ATTRIBUTE_RING_NUM, ring_cnt);
for (i = 0; i < ring_cnt; i++) {
nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, DBG_RING_STATUS_SIZE,
&dbg_ring_status[i]);
}
ret = cfg80211_vendor_cmd_reply(skb);
if (ret) {
WL_ERR(("Vendor Command reply failed ret:%d \n", ret));
}
exit:
return ret;
}
static int wl_cfgvendor_dbg_get_ring_data(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK, rem, type;
char ring_name[DBGRING_NAME_MAX] = {0};
const struct nlattr *iter;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case DEBUG_ATTRIBUTE_RING_NAME:
strncpy(ring_name, nla_data(iter),
MIN(sizeof(ring_name) -1, nla_len(iter)));
break;
default:
WL_ERR(("Unknown type: %d\n", type));
return ret;
}
}
ret = dhd_os_trigger_get_ring_data(dhd_pub, ring_name);
if (ret < 0) {
WL_ERR(("trigger_get_data failed ret:%d\n", ret));
}
return ret;
}
static int wl_cfgvendor_dbg_get_feature(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int ret = BCME_OK;
u32 supported_features;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pub_t *dhd_pub = cfg->pub;
ret = dhd_os_dbg_get_feature(dhd_pub, &supported_features);
if (ret < 0) {
WL_ERR(("dbg_get_feature failed ret:%d\n", ret));
goto exit;
}
ret = wl_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
&supported_features, sizeof(supported_features));
exit:
return ret;
}
static void wl_cfgvendor_dbg_ring_send_evt(void *ctx,
const int ring_id, const void *data, const uint32 len,
const dhd_dbg_ring_status_t ring_status)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb;
if (!ndev) {
WL_ERR(("ndev is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + 100,
GOOGLE_DEBUG_RING_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + 100,
GOOGLE_DEBUG_RING_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
nla_put(skb, DEBUG_ATTRIBUTE_RING_STATUS, sizeof(ring_status), &ring_status);
nla_put(skb, DEBUG_ATTRIBUTE_RING_DATA, len, data);
cfg80211_vendor_event(skb, kflags);
}
static void wl_cfgvendor_dbg_send_urgent_evt(void *ctx, const void *data,
const uint32 len, const uint32 fw_len)
{
struct net_device *ndev = ctx;
struct wiphy *wiphy;
gfp_t kflags;
struct sk_buff *skb;
if (!ndev) {
WL_ERR(("ndev is NULL\n"));
return;
}
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
wiphy = ndev->ieee80211_ptr->wiphy;
/* Alloc the SKB for vendor_event */
#if (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || \
LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
skb = cfg80211_vendor_event_alloc(wiphy, NULL, len + 100,
GOOGLE_FW_DUMP_EVENT, kflags);
#else
skb = cfg80211_vendor_event_alloc(wiphy, len + 100,
GOOGLE_FW_DUMP_EVENT, kflags);
#endif /* (defined(CONFIG_ARCH_MSM) && defined(SUPPORT_WDEV_CFG80211_VENDOR_EVENT_ALLOC)) || */
/* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0) */
if (!skb) {
WL_ERR(("skb alloc failed"));
return;
}
nla_put_u32(skb, DEBUG_ATTRIBUTE_FW_DUMP_LEN, fw_len);
nla_put(skb, DEBUG_ATTRIBUTE_RING_DATA, len, data);
cfg80211_vendor_event(skb, kflags);
}
static const struct wiphy_vendor_command wl_vendor_cmds [] = {
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_PRIV_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_priv_string_handler
},
{
{
.vendor_id = OUI_BRCM,
.subcmd = BRCM_VENDOR_SCMD_BCM_STR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_priv_bcm_handler
},
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_capabilities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_batch_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_initiate_gscan
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_enable_full_scan_result
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_HOTLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_hotlist_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SIGNIFICANT_CHANGE_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_significant_change_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_batch_results
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_gscan_get_channel_list
},
#endif /* GSCAN_SUPPORT */
#ifdef RTT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_set_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_cancel_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETCAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_rtt_get_capability
},
#endif /* RTT_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_feature_set
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_get_feature_set_matrix
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_RANDOM_MAC_OUI
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_rand_mac_oui
},
#ifdef CUSTOM_FORCE_NODFS_FLAG
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = ANDR_WIFI_NODFS_CHANNELS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_nodfs_flag
},
#endif /* CUSTOM_FORCE_NODFS_FLAG */
#ifdef LINKSTAT_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_GET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_lstats_get_info
},
#endif /* LINKSTAT_SUPPORT */
#ifdef GSCAN_SUPPORT
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_EPNO_SSID
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_epno_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_SSID_WHITELIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_ssid_whitelist
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_LAZY_ROAM_PARAMS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_lazy_roam_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_ENABLE_LAZY_ROAM
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_enable_lazy_roam
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_PREF
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_bssid_pref
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_BSSID_BLACKLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_bssid_blacklist
},
#endif /* GSCAN_SUPPORT */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_SET_RSSI_MONITOR
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_set_rssi_monitor
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_START_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_start_logging
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_RESET_LOGGING
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_reset_logging
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_STATUS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_ring_status
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_RING_DATA
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_ring_data
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = DEBUG_GET_FEATURE
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = wl_cfgvendor_dbg_get_feature
},
};
static const struct nl80211_vendor_cmd_info wl_vendor_events [] = {
{ OUI_BRCM, BRCM_VENDOR_EVENT_UNSPEC },
{ OUI_BRCM, BRCM_VENDOR_EVENT_PRIV_STR },
#ifdef GSCAN_SUPPORT
{ OUI_GOOGLE, GOOGLE_GSCAN_SIGNIFICANT_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_FOUND_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_BATCH_SCAN_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_FULL_RESULTS_EVENT },
#endif /* GSCAN_SUPPORT */
#ifdef RTT_SUPPORT
{ OUI_GOOGLE, GOOGLE_RTT_COMPLETE_EVENT },
#endif /* RTT_SUPPORT */
#ifdef GSCAN_SUPPORT
{ OUI_GOOGLE, GOOGLE_SCAN_COMPLETE_EVENT },
{ OUI_GOOGLE, GOOGLE_GSCAN_GEOFENCE_LOST_EVENT },
{ OUI_GOOGLE, GOOGLE_SCAN_EPNO_EVENT },
#endif /* GSCAN_SUPPORT */
{ OUI_GOOGLE, GOOGLE_DEBUG_RING_EVENT },
{ OUI_GOOGLE, GOOGLE_FW_DUMP_EVENT },
#ifdef GSCAN_SUPPORT
{ OUI_GOOGLE, GOOGLE_PNO_HOTSPOT_FOUND_EVENT },
#endif /* GSCAN_SUPPORT */
{ OUI_GOOGLE, GOOGLE_RSSI_MONITOR_EVENT },
#ifdef KEEP_ALIVE
{ OUI_GOOGLE, GOOGLE_MKEEP_ALIVE_EVENT },
#endif
{ OUI_GOOGLE, NAN_EVENT_ENABLED },
{ OUI_GOOGLE, NAN_EVENT_DISABLED },
{ OUI_GOOGLE, NAN_EVENT_PUBLISH_REPLIED },
{ OUI_GOOGLE, NAN_EVENT_PUBLISH_TERMINATED },
{ OUI_GOOGLE, NAN_EVENT_SUBSCRIBE_MATCH },
{ OUI_GOOGLE, NAN_EVENT_SUBSCRIBE_UNMATCH },
{ OUI_GOOGLE, NAN_EVENT_SUBSCRIBE_TERMINATED },
{ OUI_GOOGLE, NAN_EVENT_DE_EVENT },
{ OUI_GOOGLE, NAN_EVENT_FOLLOWUP },
{ OUI_GOOGLE, NAN_EVENT_TCA },
{ OUI_GOOGLE, NAN_EVENT_UNKNOWN }
};
int wl_cfgvendor_attach(struct wiphy *wiphy, dhd_pub_t *dhd)
{
WL_INFORM(("Vendor: Register BRCM cfg80211 vendor cmd(0x%x) interface \n",
NL80211_CMD_VENDOR));
wiphy->vendor_commands = wl_vendor_cmds;
wiphy->n_vendor_commands = ARRAY_SIZE(wl_vendor_cmds);
wiphy->vendor_events = wl_vendor_events;
wiphy->n_vendor_events = ARRAY_SIZE(wl_vendor_events);
dhd_os_dbg_register_callback(FW_VERBOSE_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(FW_EVENT_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(DHD_EVENT_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_callback(NAN_EVENT_RING_ID, wl_cfgvendor_dbg_ring_send_evt);
dhd_os_dbg_register_urgent_notifier(dhd, wl_cfgvendor_dbg_send_urgent_evt);
return 0;
}
int wl_cfgvendor_detach(struct wiphy *wiphy)
{
WL_INFORM(("Vendor: Unregister BRCM cfg80211 vendor interface \n"));
wiphy->vendor_commands = NULL;
wiphy->vendor_events = NULL;
wiphy->n_vendor_commands = 0;
wiphy->n_vendor_events = 0;
return 0;
}
#endif /* defined(WL_VENDOR_EXT_SUPPORT) */