blob: f86a6d71b16740fbab796092873a6bada90fe5b6 [file] [log] [blame]
/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright (C) 2020, Broadcom.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
*
* <<Broadcom-WL-IPTag/Dual:>>
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include <pcie_core.h>
#include "siutils_priv.h"
#include <bcmdevs.h>
#if defined(ETD)
#include <etd.h>
#endif
#define PMU_DMP() (0)
#define GCI_DMP() (0)
#if defined(AXI_TIMEOUTS_NIC)
static bool ai_get_apb_bridge(const si_t *sih, uint32 coreidx, uint32 *apb_id,
uint32 *apb_coreunit);
#endif /* AXI_TIMEOUTS_NIC */
#if defined(AXI_TIMEOUTS) || defined(AXI_TIMEOUTS_NIC)
static void ai_reset_axi_to(const si_info_t *sii, aidmp_t *ai);
#endif /* defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC) */
/* AXI ID to CoreID + unit mappings */
typedef struct axi_to_coreidx {
uint coreid;
uint coreunit;
} axi_to_coreidx_t;
static const axi_to_coreidx_t axi2coreidx_4369[] = {
{CC_CORE_ID, 0}, /* 00 Chipcommon */
{PCIE2_CORE_ID, 0}, /* 01 PCIe */
{D11_CORE_ID, 0}, /* 02 D11 Main */
{ARMCR4_CORE_ID, 0}, /* 03 ARM */
{BT_CORE_ID, 0}, /* 04 BT AHB */
{D11_CORE_ID, 1}, /* 05 D11 Aux */
{D11_CORE_ID, 0}, /* 06 D11 Main l1 */
{D11_CORE_ID, 1}, /* 07 D11 Aux l1 */
{D11_CORE_ID, 0}, /* 08 D11 Main l2 */
{D11_CORE_ID, 1}, /* 09 D11 Aux l2 */
{NODEV_CORE_ID, 0}, /* 10 M2M DMA */
{NODEV_CORE_ID, 0}, /* 11 unused */
{NODEV_CORE_ID, 0}, /* 12 unused */
{NODEV_CORE_ID, 0}, /* 13 unused */
{NODEV_CORE_ID, 0}, /* 14 unused */
{NODEV_CORE_ID, 0} /* 15 unused */
};
/* EROM parsing */
static uint32
get_erom_ent(const si_t *sih, uint32 **eromptr, uint32 mask, uint32 match)
{
uint32 ent;
uint inv = 0, nom = 0;
uint32 size = 0;
while (TRUE) {
ent = R_REG(SI_INFO(sih)->osh, *eromptr);
(*eromptr)++;
if (mask == 0)
break;
if ((ent & ER_VALID) == 0) {
inv++;
continue;
}
if (ent == (ER_END | ER_VALID))
break;
if ((ent & mask) == match)
break;
/* escape condition related EROM size if it has invalid values */
size += sizeof(*eromptr);
if (size >= ER_SZ_MAX) {
SI_ERROR(("Failed to find end of EROM marker\n"));
break;
}
nom++;
}
SI_VMSG(("get_erom_ent: Returning ent 0x%08x\n", ent));
if (inv + nom) {
SI_VMSG((" after %d invalid and %d non-matching entries\n", inv, nom));
}
return ent;
}
static uint32
get_asd(const si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh,
uint32 *sizel, uint32 *sizeh)
{
uint32 asd, sz, szd;
BCM_REFERENCE(ad);
asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
if (((asd & ER_TAG1) != ER_ADD) ||
(((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
((asd & AD_ST_MASK) != st)) {
/* This is not what we want, "push" it back */
(*eromptr)--;
return 0;
}
*addrl = asd & AD_ADDR_MASK;
if (asd & AD_AG32)
*addrh = get_erom_ent(sih, eromptr, 0, 0);
else
*addrh = 0;
*sizeh = 0;
sz = asd & AD_SZ_MASK;
if (sz == AD_SZ_SZD) {
szd = get_erom_ent(sih, eromptr, 0, 0);
*sizel = szd & SD_SZ_MASK;
if (szd & SD_SG32)
*sizeh = get_erom_ent(sih, eromptr, 0, 0);
} else
*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
SI_VMSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
sp, ad, st, *sizeh, *sizel, *addrh, *addrl));
return asd;
}
/* Parse the enumeration rom to identify all cores */
void
ai_scan(si_t *sih, void *regs, uint devid)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
chipcregs_t *cc = (chipcregs_t *)regs;
uint32 erombase, *eromptr, *eromlim;
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
BCM_REFERENCE(devid);
erombase = R_REG(sii->osh, &cc->eromptr);
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
break;
case PCI_BUS:
/* Set wrappers address */
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
/* Now point the window at the erom */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
eromptr = regs;
break;
#ifdef BCMSDIO
case SPI_BUS:
case SDIO_BUS:
eromptr = (uint32 *)(uintptr)erombase;
break;
#endif /* BCMSDIO */
default:
SI_ERROR(("Don't know how to do AXI enumeration on bus %d\n", sih->bustype));
ASSERT(0);
return;
}
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
sii->axi_num_wrappers = 0;
SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n",
OSL_OBFUSCATE_BUF(regs), erombase,
OSL_OBFUSCATE_BUF(eromptr), OSL_OBFUSCATE_BUF(eromlim)));
while (eromptr < eromlim) {
uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
uint32 mpd, asd, addrl, addrh, sizel, sizeh;
uint i, j, idx;
bool br;
br = FALSE;
/* Grok a component */
cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
if (cia == (ER_END | ER_VALID)) {
SI_VMSG(("Found END of erom after %d cores\n", sii->numcores));
return;
}
cib = get_erom_ent(sih, &eromptr, 0, 0);
if ((cib & ER_TAG) != ER_CI) {
SI_ERROR(("CIA not followed by CIB\n"));
goto error;
}
cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
#ifdef BCMDBG_SI
SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, "
"nsw = %d, nmp = %d & nsp = %d\n",
mfg, cid, crev, OSL_OBFUSCATE_BUF(eromptr - 1), nmw, nsw, nmp, nsp));
#else
BCM_REFERENCE(crev);
#endif
/* Include Default slave wrapper for timeout monitoring */
if ((nsp == 0 && nsw == 0) ||
#if !defined(AXI_TIMEOUTS) && !defined(AXI_TIMEOUTS_NIC)
((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) ||
#else
((CHIPTYPE(sii->pub.socitype) == SOCI_NAI) &&
(mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) ||
#endif /* !defined(AXI_TIMEOUTS) && !defined(AXI_TIMEOUTS_NIC) */
FALSE) {
continue;
}
if ((nmw + nsw == 0)) {
/* A component which is not a core */
/* Should record some info */
if (cid == OOB_ROUTER_CORE_ID) {
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
&addrl, &addrh, &sizel, &sizeh);
if (asd != 0) {
if ((sii->oob_router != 0) && (sii->oob_router != addrl)) {
sii->oob_router1 = addrl;
} else {
sii->oob_router = addrl;
}
}
}
if ((cid != NS_CCB_CORE_ID) && (cid != PMU_CORE_ID) &&
(cid != GCI_CORE_ID) && (cid != SR_CORE_ID) &&
(cid != HUB_CORE_ID) && (cid != HND_OOBR_CORE_ID) &&
(cid != CCI400_CORE_ID) && (cid != SPMI_SLAVE_CORE_ID)) {
continue;
}
}
idx = sii->numcores;
cores_info->cia[idx] = cia;
cores_info->cib[idx] = cib;
cores_info->coreid[idx] = cid;
/* workaround the fact the variable buscoretype is used in _ai_set_coreidx()
* when checking PCIE_GEN2() for PCI_BUS case before it is setup later...,
* both use and setup happen in si_buscore_setup().
*/
if (BUSTYPE(sih->bustype) == PCI_BUS &&
(cid == PCI_CORE_ID || cid == PCIE_CORE_ID || cid == PCIE2_CORE_ID)) {
sii->pub.buscoretype = (uint16)cid;
}
for (i = 0; i < nmp; i++) {
mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
if ((mpd & ER_TAG) != ER_MP) {
SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
goto error;
}
/* Record something? */
SI_VMSG((" Master port %d, mp: %d id: %d\n", i,
(mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
(mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
}
/* First Slave Address Descriptor should be port 0:
* the main register space for the core
*/
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
do {
/* Try again to see if it is a bridge */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
&sizel, &sizeh);
if (asd != 0)
br = TRUE;
else {
break;
}
} while (1);
} else {
if (addrl == 0 || sizel == 0) {
SI_ERROR((" Invalid ASD %x for slave port \n", asd));
goto error;
}
cores_info->coresba[idx] = addrl;
cores_info->coresba_size[idx] = sizel;
}
/* Get any more ASDs in first port */
j = 1;
do {
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
cores_info->coresba2[idx] = addrl;
cores_info->coresba2_size[idx] = sizel;
}
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
/* To get the first base address of second slave port */
if ((asd != 0) && (i == 1) && (j == 0)) {
cores_info->csp2ba[idx] = addrl;
cores_info->csp2ba_size[idx] = sizel;
}
if (asd == 0)
break;
j++;
} while (1);
if (j == 0) {
SI_ERROR((" SP %d has no address descriptors\n", i));
goto error;
}
}
/* Now get master wrappers */
for (i = 0; i < nmw; i++) {
asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
SI_ERROR(("Missing descriptor for MW %d\n", i));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Master wrapper %d is not 4KB\n", i));
goto error;
}
if (i == 0) {
cores_info->wrapba[idx] = addrl;
} else if (i == 1) {
cores_info->wrapba2[idx] = addrl;
} else if (i == 2) {
cores_info->wrapba3[idx] = addrl;
}
if (axi_wrapper && (sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS)) {
axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
axi_wrapper[sii->axi_num_wrappers].cid = cid;
axi_wrapper[sii->axi_num_wrappers].rev = crev;
axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_MASTER_WRAPPER;
axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
sii->axi_num_wrappers++;
SI_VMSG(("MASTER WRAPPER: %d, mfg:%x, cid:%x,"
"rev:%x, addr:%x, size:%x\n",
sii->axi_num_wrappers, mfg, cid, crev, addrl, sizel));
}
}
/* And finally slave wrappers */
for (i = 0; i < nsw; i++) {
uint fwp = (nsp <= 1) ? 0 : 1;
asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
SI_ERROR(("Missing descriptor for SW %d cid %x eromp %p fwp %d \n",
i, cid, eromptr, fwp));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
goto error;
}
/* HW4368-574, Slave wrapper address of 0x1810b000 should be 0x18133000 */
if (BCM4368_CHIP(sih->chip) && addrl == 0x1810b000) {
addrl = 0x18133000;
}
/* cache APB bridge wrapper address for set/clear timeout */
if ((mfg == MFGID_ARM) && (cid == APB_BRIDGE_ID)) {
ASSERT(sii->num_br < SI_MAXBR);
sii->br_wrapba[sii->num_br++] = addrl;
}
if ((mfg == MFGID_ARM) && (cid == ADB_BRIDGE_ID)) {
br = TRUE;
}
BCM_REFERENCE(br);
if ((nmw == 0) && (i == 0)) {
cores_info->wrapba[idx] = addrl;
} else if ((nmw == 0) && (i == 1)) {
cores_info->wrapba2[idx] = addrl;
} else if ((nmw == 0) && (i == 2)) {
cores_info->wrapba3[idx] = addrl;
}
/* Include all slave wrappers to the list to
* enable and monitor watchdog timeouts
*/
if (axi_wrapper && (sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS)) {
axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
axi_wrapper[sii->axi_num_wrappers].cid = cid;
axi_wrapper[sii->axi_num_wrappers].rev = crev;
axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_SLAVE_WRAPPER;
axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
sii->axi_num_wrappers++;
SI_VMSG(("SLAVE WRAPPER: %d, mfg:%x, cid:%x,"
"rev:%x, addr:%x, size:%x\n",
sii->axi_num_wrappers, mfg, cid, crev, addrl, sizel));
}
}
#ifndef AXI_TIMEOUTS_NIC
/* Don't record bridges and core with 0 slave ports */
if (br || (nsp == 0)) {
continue;
}
#endif
/* Done with core */
sii->numcores++;
}
SI_ERROR(("Reached end of erom without finding END\n"));
error:
sii->numcores = 0;
return;
}
#define AI_SETCOREIDX_MAPSIZE(coreid) \
(((coreid) == NS_CCB_CORE_ID) ? 15 * SI_CORE_SIZE : SI_CORE_SIZE)
/* This function changes the logical "focus" to the indicated core.
* Return the current core's virtual address.
*/
static volatile void *
_ai_setcoreidx(si_t *sih, uint coreidx, uint use_wrapn)
{
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
uint32 addr, wrap, wrap2, wrap3;
volatile void *regs;
if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
return (NULL);
addr = cores_info->coresba[coreidx];
wrap = cores_info->wrapba[coreidx];
wrap2 = cores_info->wrapba2[coreidx];
wrap3 = cores_info->wrapba3[coreidx];
#ifdef AXI_TIMEOUTS_NIC
/* No need to disable interrupts while entering/exiting APB bridge core */
if ((cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID) &&
(cores_info->coreid[sii->curidx] != APB_BRIDGE_CORE_ID))
#endif /* AXI_TIMEOUTS_NIC */
{
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((sii->intrsenabled_fn == NULL) ||
!(*(sii)->intrsenabled_fn)((sii)->intr_arg));
}
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
/* map new one */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(addr,
AI_SETCOREIDX_MAPSIZE(cores_info->coreid[coreidx]));
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
sii->curmap = regs = cores_info->regs[coreidx];
if (!cores_info->wrappers[coreidx] && (wrap != 0)) {
cores_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->wrappers[coreidx]));
}
if (!cores_info->wrappers2[coreidx] && (wrap2 != 0)) {
cores_info->wrappers2[coreidx] = REG_MAP(wrap2, SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->wrappers2[coreidx]));
}
if (!cores_info->wrappers3[coreidx] && (wrap3 != 0)) {
cores_info->wrappers3[coreidx] = REG_MAP(wrap3, SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->wrappers3[coreidx]));
}
if (use_wrapn == 2) {
sii->curwrap = cores_info->wrappers3[coreidx];
} else if (use_wrapn == 1) {
sii->curwrap = cores_info->wrappers2[coreidx];
} else {
sii->curwrap = cores_info->wrappers[coreidx];
}
break;
case PCI_BUS:
regs = sii->curmap;
/* point bar0 2nd 4KB window to the primary wrapper */
if (use_wrapn == 2) {
wrap = wrap3;
} else if (use_wrapn == 1) {
wrap = wrap2;
}
/* Use BAR0 Window to support dual mac chips... */
/* TODO: the other mac unit can't be supportd by the current BAR0 window.
* need to find other ways to access these cores.
*/
switch (sii->slice) {
case 0: /* main/first slice */
#ifdef AXI_TIMEOUTS_NIC
/* No need to set the BAR0 if core is APB Bridge.
* This is to reduce 2 PCI writes while checkng for errlog
*/
if (cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID)
#endif /* AXI_TIMEOUTS_NIC */
{
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, addr);
}
if (PCIE_GEN2(sii))
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2, 4, wrap);
else
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2, 4, wrap);
break;
case 1: /* aux/second slice */
/* PCIE GEN2 only for other slices */
if (!PCIE_GEN2(sii)) {
/* other slices not supported */
SI_ERROR(("PCI GEN not supported for slice %d\n", sii->slice));
ASSERT(0);
break;
}
/* 0x4000 - 0x4fff: enum space 0x5000 - 0x5fff: wrapper space */
regs = (volatile uint8 *)regs + PCI_SEC_BAR0_WIN_OFFSET;
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
/* point bar0 window */
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_CORE2_WIN, 4, addr);
OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_CORE2_WIN2, 4, wrap);
break;
case 2: /* scan/third slice */
/* PCIE GEN2 only for other slices */
if (!PCIE_GEN2(sii)) {
/* other slices not supported */
SI_ERROR(("PCI GEN not supported for slice %d\n", sii->slice));
ASSERT(0);
break;
}
/* 0x9000 - 0x9fff: enum space 0xa000 - 0xafff: wrapper space */
regs = (volatile uint8 *)regs + PCI_TER_BAR0_WIN_OFFSET;
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
/* point bar0 window */
ai_corereg(sih, sih->buscoreidx, PCIE_TER_BAR0_WIN, ~0, addr);
ai_corereg(sih, sih->buscoreidx, PCIE_TER_BAR0_WRAPPER, ~0, wrap);
break;
default: /* other slices */
SI_ERROR(("BAR0 Window not supported for slice %d\n", sii->slice));
ASSERT(0);
break;
}
break;
#ifdef BCMSDIO
case SPI_BUS:
case SDIO_BUS:
sii->curmap = regs = (void *)((uintptr)addr);
if (use_wrapn)
sii->curwrap = (void *)((uintptr)wrap2);
else
sii->curwrap = (void *)((uintptr)wrap);
break;
#endif /* BCMSDIO */
default:
ASSERT(0);
sii->curmap = regs = NULL;
break;
}
sii->curidx = coreidx;
return regs;
}
volatile void *
ai_setcoreidx(si_t *sih, uint coreidx)
{
return _ai_setcoreidx(sih, coreidx, 0);
}
volatile void *
ai_setcoreidx_2ndwrap(si_t *sih, uint coreidx)
{
return _ai_setcoreidx(sih, coreidx, 1);
}
volatile void *
ai_setcoreidx_3rdwrap(si_t *sih, uint coreidx)
{
return _ai_setcoreidx(sih, coreidx, 2);
}
void
ai_coreaddrspaceX(const si_t *sih, uint asidx, uint32 *addr, uint32 *size)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
chipcregs_t *cc = NULL;
uint32 erombase, *eromptr, *eromlim;
uint i, j, cidx;
uint32 cia, cib, nmp, nsp;
uint32 asd, addrl, addrh, sizel, sizeh;
for (i = 0; i < sii->numcores; i++) {
if (cores_info->coreid[i] == CC_CORE_ID) {
cc = (chipcregs_t *)cores_info->regs[i];
break;
}
}
if (cc == NULL)
goto error;
BCM_REFERENCE(erombase);
erombase = R_REG(sii->osh, &cc->eromptr);
eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
cidx = sii->curidx;
cia = cores_info->cia[cidx];
cib = cores_info->cib[cidx];
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
/* scan for cores */
while (eromptr < eromlim) {
if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) &&
(get_erom_ent(sih, &eromptr, 0, 0) == cib)) {
break;
}
}
/* skip master ports */
for (i = 0; i < nmp; i++)
get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
/* Skip ASDs in port 0 */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
/* Try again to see if it is a bridge */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
&sizel, &sizeh);
}
j = 1;
do {
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0)
break;
if (!asidx--) {
*addr = addrl;
*size = sizel;
return;
}
j++;
} while (1);
if (j == 0) {
SI_ERROR((" SP %d has no address descriptors\n", i));
break;
}
}
error:
*size = 0;
return;
}
/* Return the number of address spaces in current core */
int
ai_numaddrspaces(const si_t *sih)
{
/* TODO: Either save it or parse the EROM on demand, currently hardcode 2 */
BCM_REFERENCE(sih);
return 2;
}
/* Return the address of the nth address space in the current core
* Arguments:
* sih : Pointer to struct si_t
* spidx : slave port index
* baidx : base address index
*/
uint32
ai_addrspace(const si_t *sih, uint spidx, uint baidx)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint cidx;
cidx = sii->curidx;
if (spidx == CORE_SLAVE_PORT_0) {
if (baidx == CORE_BASE_ADDR_0)
return cores_info->coresba[cidx];
else if (baidx == CORE_BASE_ADDR_1)
return cores_info->coresba2[cidx];
}
else if (spidx == CORE_SLAVE_PORT_1) {
if (baidx == CORE_BASE_ADDR_0)
return cores_info->csp2ba[cidx];
}
SI_ERROR(("ai_addrspace: Need to parse the erom again to find %d base addr"
" in %d slave port\n",
baidx, spidx));
return 0;
}
/* Return the size of the nth address space in the current core
* Arguments:
* sih : Pointer to struct si_t
* spidx : slave port index
* baidx : base address index
*/
uint32
ai_addrspacesize(const si_t *sih, uint spidx, uint baidx)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint cidx;
cidx = sii->curidx;
if (spidx == CORE_SLAVE_PORT_0) {
if (baidx == CORE_BASE_ADDR_0)
return cores_info->coresba_size[cidx];
else if (baidx == CORE_BASE_ADDR_1)
return cores_info->coresba2_size[cidx];
}
else if (spidx == CORE_SLAVE_PORT_1) {
if (baidx == CORE_BASE_ADDR_0)
return cores_info->csp2ba_size[cidx];
}
SI_ERROR(("ai_addrspacesize: Need to parse the erom again to find %d"
" base addr in %d slave port\n",
baidx, spidx));
return 0;
}
uint
ai_flag(si_t *sih)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
if (PMU_DMP()) {
uint idx, flag;
idx = sii->curidx;
ai_setcoreidx(sih, SI_CC_IDX);
flag = ai_flag_alt(sih);
ai_setcoreidx(sih, idx);
return flag;
}
ai = sii->curwrap;
ASSERT(ai != NULL);
return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
}
uint
ai_flag_alt(const si_t *sih)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai = sii->curwrap;
return ((R_REG(sii->osh, &ai->oobselouta30) >> AI_OOBSEL_1_SHIFT) & AI_OOBSEL_MASK);
}
void
ai_setint(const si_t *sih, int siflag)
{
BCM_REFERENCE(sih);
BCM_REFERENCE(siflag);
/* TODO: Figure out how to set interrupt mask in ai */
}
uint
ai_wrap_reg(const si_t *sih, uint32 offset, uint32 mask, uint32 val)
{
const si_info_t *sii = SI_INFO(sih);
uint32 *addr = (uint32 *) ((uchar *)(sii->curwrap) + offset);
if (mask || val) {
uint32 w = R_REG(sii->osh, addr);
w &= ~mask;
w |= val;
W_REG(sii->osh, addr, w);
}
return (R_REG(sii->osh, addr));
}
uint
ai_corevendor(const si_t *sih)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint32 cia;
cia = cores_info->cia[sii->curidx];
return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
}
uint
ai_corerev(const si_t *sih)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint32 cib;
cib = cores_info->cib[sii->curidx];
return ((cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
}
uint
ai_corerev_minor(const si_t *sih)
{
return (ai_core_sflags(sih, 0, 0) >> SISF_MINORREV_D11_SHIFT) &
SISF_MINORREV_D11_MASK;
}
bool
ai_iscoreup(const si_t *sih)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai = sii->curwrap;
return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fiddling with interrupts or core switches is needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint
ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
volatile uint32 *r = NULL;
uint w;
bcm_int_bitmask_t intr_val;
bool fast = FALSE;
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
ASSERT(GOODIDX(coreidx, sii->numcores));
ASSERT(regoff < SI_CORE_SIZE);
ASSERT((val & ~mask) == 0);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (volatile uint32 *)((volatile char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
INTR_OFF(sii, &intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
/* switch core */
r = (volatile uint32*) ((volatile uchar*) ai_setcoreidx(&sii->pub, coreidx) +
regoff);
}
ASSERT(r != NULL);
/* mask and set */
if (mask || val) {
w = (R_REG(sii->osh, r) & ~mask) | val;
W_REG(sii->osh, r, w);
}
/* readback */
w = R_REG(sii->osh, r);
if (!fast) {
/* restore core index */
if (origidx != coreidx)
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, &intr_val);
}
return (w);
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fiddling with interrupts or core switches is needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint
ai_corereg_writeonly(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
volatile uint32 *r = NULL;
uint w = 0;
bcm_int_bitmask_t intr_val;
bool fast = FALSE;
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
ASSERT(GOODIDX(coreidx, sii->numcores));
ASSERT(regoff < SI_CORE_SIZE);
ASSERT((val & ~mask) == 0);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (volatile uint32 *)((volatile char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
INTR_OFF(sii, &intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
/* switch core */
r = (volatile uint32*) ((volatile uchar*) ai_setcoreidx(&sii->pub, coreidx) +
regoff);
}
ASSERT(r != NULL);
/* mask and set */
if (mask || val) {
w = (R_REG(sii->osh, r) & ~mask) | val;
W_REG(sii->osh, r, w);
}
if (!fast) {
/* restore core index */
if (origidx != coreidx)
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, &intr_val);
}
return (w);
}
/*
* If there is no need for fiddling with interrupts or core switches (typically silicon
* back plane registers, pci registers and chipcommon registers), this function
* returns the register offset on this core to a mapped address. This address can
* be used for W_REG/R_REG directly.
*
* For accessing registers that would need a core switch, this function will return
* NULL.
*/
volatile uint32 *
ai_corereg_addr(si_t *sih, uint coreidx, uint regoff)
{
volatile uint32 *r = NULL;
bool fast = FALSE;
si_info_t *sii = SI_INFO(sih);
si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
ASSERT(GOODIDX(coreidx, sii->numcores));
ASSERT(regoff < SI_CORE_SIZE);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!cores_info->regs[coreidx]) {
cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
SI_CORE_SIZE);
ASSERT(GOODREGS(cores_info->regs[coreidx]));
}
r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (volatile uint32 *)((volatile char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (volatile uint32 *)((volatile char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
ASSERT(sii->curidx == coreidx);
r = (volatile uint32*) ((volatile uchar*)sii->curmap + regoff);
}
return (r);
}
void
ai_core_disable(const si_t *sih, uint32 bits)
{
const si_info_t *sii = SI_INFO(sih);
volatile uint32 dummy;
uint32 status;
aidmp_t *ai;
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/* if core is already in reset, just return */
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
return;
}
/* ensure there are no pending backplane operations */
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
/* if pending backplane ops still, try waiting longer */
if (status != 0) {
/* 300usecs was sufficient to allow backplane ops to clear for big hammer */
/* during driver load we may need more time */
SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000);
/* if still pending ops, continue on and try disable anyway */
/* this is in big hammer path, so don't call wl_reinit in this case... */
}
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
dummy = R_REG(sii->osh, &ai->resetctrl);
BCM_REFERENCE(dummy);
OSL_DELAY(1);
W_REG(sii->osh, &ai->ioctrl, bits);
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
OSL_DELAY(10);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
static void
_ai_core_reset(const si_t *sih, uint32 bits, uint32 resetbits)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
volatile uint32 dummy;
uint loop_counter = 10;
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
/* put core into reset state */
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
OSL_DELAY(10);
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
W_REG(sii->osh, &ai->ioctrl, (bits | resetbits | SICF_FGC | SICF_CLOCK_EN));
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
#ifdef UCM_CORRUPTION_WAR
if (si_coreid(sih) == D11_CORE_ID) {
/* Reset FGC */
OSL_DELAY(1);
W_REG(sii->osh, &ai->ioctrl, (dummy & (~SICF_FGC)));
}
#endif /* UCM_CORRUPTION_WAR */
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
while (R_REG(sii->osh, &ai->resetctrl) != 0 && --loop_counter != 0) {
/* ensure there are no pending backplane operations */
SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
/* take core out of reset */
W_REG(sii->osh, &ai->resetctrl, 0);
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
}
#ifdef UCM_CORRUPTION_WAR
/* Pulse FGC after lifting Reset */
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN));
#else
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
#endif /* UCM_CORRUPTION_WAR */
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
#ifdef UCM_CORRUPTION_WAR
if (si_coreid(sih) == D11_CORE_ID) {
/* Reset FGC */
OSL_DELAY(1);
W_REG(sii->osh, &ai->ioctrl, (dummy & (~SICF_FGC)));
}
#endif /* UCM_CORRUPTION_WAR */
OSL_DELAY(1);
}
void
ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint idx = sii->curidx;
if (cores_info->wrapba3[idx] != 0) {
ai_setcoreidx_3rdwrap(sih, idx);
_ai_core_reset(sih, bits, resetbits);
ai_setcoreidx(sih, idx);
}
if (cores_info->wrapba2[idx] != 0) {
ai_setcoreidx_2ndwrap(sih, idx);
_ai_core_reset(sih, bits, resetbits);
ai_setcoreidx(sih, idx);
}
_ai_core_reset(sih, bits, resetbits);
}
#ifdef BOOKER_NIC400_INF
void
ai_core_reset_ext(const si_t *sih, uint32 bits, uint32 resetbits)
{
_ai_core_reset(sih, bits, resetbits);
}
#endif /* BOOKER_NIC400_INF */
void
ai_core_cflags_wo(const si_t *sih, uint32 mask, uint32 val)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (PMU_DMP()) {
SI_ERROR(("ai_core_cflags_wo: Accessing PMU DMP register (ioctrl)\n"));
return;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
}
uint32
ai_core_cflags(const si_t *sih, uint32 mask, uint32 val)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (PMU_DMP()) {
SI_ERROR(("ai_core_cflags: Accessing PMU DMP register (ioctrl)\n"));
return 0;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
return R_REG(sii->osh, &ai->ioctrl);
}
uint32
ai_core_sflags(const si_t *sih, uint32 mask, uint32 val)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 w;
if (PMU_DMP()) {
SI_ERROR(("ai_core_sflags: Accessing PMU DMP register (ioctrl)\n"));
return 0;
}
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SISF_CORE_BITS) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
W_REG(sii->osh, &ai->iostatus, w);
}
return R_REG(sii->osh, &ai->iostatus);
}
#if defined(BCMDBG_PHYDUMP)
/* print interesting aidmp registers */
void
ai_dumpregs(const si_t *sih, struct bcmstrbuf *b)
{
const si_info_t *sii = SI_INFO(sih);
osl_t *osh;
aidmp_t *ai;
uint i;
uint32 prev_value = 0;
const axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
uint32 cfg_reg = 0;
uint bar0_win_offset = 0;
osh = sii->osh;
/* Save and restore wrapper access window */
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
if (PCIE_GEN2(sii)) {
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
bar0_win_offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
} else {
cfg_reg = PCI_BAR0_WIN2;
bar0_win_offset = PCI_BAR0_WIN2_OFFSET;
}
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
if (prev_value == ID32_INVALID) {
SI_PRINT(("ai_dumpregs, PCI_BAR0_WIN2 - %x\n", prev_value));
return;
}
}
bcm_bprintf(b, "ChipNum:%x, ChipRev;%x, BusType:%x, BoardType:%x, BoardVendor:%x\n\n",
sih->chip, sih->chiprev, sih->bustype, sih->boardtype, sih->boardvendor);
for (i = 0; i < sii->axi_num_wrappers; i++) {
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
/* Set BAR0 window to bridge wapper base address */
OSL_PCI_WRITE_CONFIG(osh,
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
ai = (aidmp_t *) ((volatile uint8*)sii->curmap + bar0_win_offset);
} else {
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
}
bcm_bprintf(b, "core 0x%x: core_rev:%d, %s_WR ADDR:%x \n", axi_wrapper[i].cid,
axi_wrapper[i].rev,
axi_wrapper[i].wrapper_type == AI_SLAVE_WRAPPER ? "SLAVE" : "MASTER",
axi_wrapper[i].wrapper_addr);
bcm_bprintf(b, "ioctrlset 0x%x ioctrlclear 0x%x ioctrl 0x%x iostatus 0x%x "
"ioctrlwidth 0x%x iostatuswidth 0x%x\n"
"resetctrl 0x%x resetstatus 0x%x resetreadid 0x%x resetwriteid 0x%x\n"
"errlogctrl 0x%x errlogdone 0x%x errlogstatus 0x%x "
"errlogaddrlo 0x%x errlogaddrhi 0x%x\n"
"errlogid 0x%x errloguser 0x%x errlogflags 0x%x\n"
"intstatus 0x%x config 0x%x itcr 0x%x\n\n",
R_REG(osh, &ai->ioctrlset),
R_REG(osh, &ai->ioctrlclear),
R_REG(osh, &ai->ioctrl),
R_REG(osh, &ai->iostatus),
R_REG(osh, &ai->ioctrlwidth),
R_REG(osh, &ai->iostatuswidth),
R_REG(osh, &ai->resetctrl),
R_REG(osh, &ai->resetstatus),
R_REG(osh, &ai->resetreadid),
R_REG(osh, &ai->resetwriteid),
R_REG(osh, &ai->errlogctrl),
R_REG(osh, &ai->errlogdone),
R_REG(osh, &ai->errlogstatus),
R_REG(osh, &ai->errlogaddrlo),
R_REG(osh, &ai->errlogaddrhi),
R_REG(osh, &ai->errlogid),
R_REG(osh, &ai->errloguser),
R_REG(osh, &ai->errlogflags),
R_REG(osh, &ai->intstatus),
R_REG(osh, &ai->config),
R_REG(osh, &ai->itcr));
}
/* Restore the initial wrapper space */
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
if (prev_value && cfg_reg) {
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
}
}
}
#endif
void
ai_update_backplane_timeouts(const si_t *sih, bool enable, uint32 timeout_exp, uint32 cid)
{
#if defined(AXI_TIMEOUTS) || defined(AXI_TIMEOUTS_NIC)
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 i;
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
uint32 errlogctrl = (enable << AIELC_TO_ENAB_SHIFT) |
((timeout_exp << AIELC_TO_EXP_SHIFT) & AIELC_TO_EXP_MASK);
#ifdef AXI_TIMEOUTS_NIC
uint32 prev_value = 0;
osl_t *osh = sii->osh;
uint32 cfg_reg = 0;
uint32 offset = 0;
#endif /* AXI_TIMEOUTS_NIC */
if ((sii->axi_num_wrappers == 0) ||
#ifdef AXI_TIMEOUTS_NIC
(!PCIE(sii)) ||
#endif /* AXI_TIMEOUTS_NIC */
FALSE) {
SI_VMSG((" iai_update_backplane_timeouts, axi_num_wrappers:%d, Is_PCIE:%d,"
" BUS_TYPE:%d, ID:%x\n",
sii->axi_num_wrappers, PCIE(sii),
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
return;
}
#ifdef AXI_TIMEOUTS_NIC
/* Save and restore the wrapper access window */
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
if (PCIE_GEN1(sii)) {
cfg_reg = PCI_BAR0_WIN2;
offset = PCI_BAR0_WIN2_OFFSET;
} else if (PCIE_GEN2(sii)) {
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
}
else {
ASSERT(!"!PCIE_GEN1 && !PCIE_GEN2");
}
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
if (prev_value == ID32_INVALID) {
SI_PRINT(("ai_update_backplane_timeouts, PCI_BAR0_WIN2 - %x\n",
prev_value));
return;
}
}
#endif /* AXI_TIMEOUTS_NIC */
for (i = 0; i < sii->axi_num_wrappers; ++i) {
/* WAR for wrong EROM entries w.r.t slave and master wrapper
* for ADB bridge core...so checking actual wrapper config to determine type
* http://jira.broadcom.com/browse/HW4388-905
*/
if ((cid == 0 || cid == ADB_BRIDGE_ID) &&
(axi_wrapper[i].cid == ADB_BRIDGE_ID)) {
/* WAR is applicable only to 89B0 and 89C0 */
if (CCREV(sih->ccrev) == 70) {
ai = (aidmp_t *)(uintptr)axi_wrapper[i].wrapper_addr;
if (R_REG(sii->osh, &ai->config) & WRAPPER_TIMEOUT_CONFIG) {
axi_wrapper[i].wrapper_type = AI_SLAVE_WRAPPER;
} else {
axi_wrapper[i].wrapper_type = AI_MASTER_WRAPPER;
}
}
}
if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER || (BCM4389_CHIP(sih->chip) &&
(axi_wrapper[i].wrapper_addr == WL_BRIDGE1_S ||
axi_wrapper[i].wrapper_addr == WL_BRIDGE2_S))) {
SI_VMSG(("SKIP ENABLE BPT: MFG:%x, CID:%x, ADDR:%x\n",
axi_wrapper[i].mfg,
axi_wrapper[i].cid,
axi_wrapper[i].wrapper_addr));
continue;
}
/* Update only given core if requested */
if ((cid != 0) && (axi_wrapper[i].cid != cid)) {
continue;
}
#ifdef AXI_TIMEOUTS_NIC
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
/* Set BAR0_CORE2_WIN2 to bridge wapper base address */
OSL_PCI_WRITE_CONFIG(osh,
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
ai = (aidmp_t *) (DISCARD_QUAL(sii->curmap, uint8) + offset);
}
else
#endif /* AXI_TIMEOUTS_NIC */
{
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
}
W_REG(sii->osh, &ai->errlogctrl, errlogctrl);
SI_VMSG(("ENABLED BPT: MFG:%x, CID:%x, ADDR:%x, ERR_CTRL:%x\n",
axi_wrapper[i].mfg,
axi_wrapper[i].cid,
axi_wrapper[i].wrapper_addr,
R_REG(sii->osh, &ai->errlogctrl)));
}
#ifdef AXI_TIMEOUTS_NIC
/* Restore the initial wrapper space */
if (prev_value) {
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
}
#endif /* AXI_TIMEOUTS_NIC */
#endif /* AXI_TIMEOUTS || AXI_TIMEOUTS_NIC */
}
#if defined(AXI_TIMEOUTS) || defined(AXI_TIMEOUTS_NIC)
/* slave error is ignored, so account for those cases */
static uint32 si_ignore_errlog_cnt = 0;
static bool
ai_ignore_errlog(const si_info_t *sii, const aidmp_t *ai,
uint32 lo_addr, uint32 hi_addr, uint32 err_axi_id, uint32 errsts)
{
uint32 ignore_errsts = AIELS_SLAVE_ERR;
uint32 ignore_errsts_2 = 0;
uint32 ignore_hi = BT_CC_SPROM_BADREG_HI;
uint32 ignore_lo = BT_CC_SPROM_BADREG_LO;
uint32 ignore_size = BT_CC_SPROM_BADREG_SIZE;
bool address_check = TRUE;
uint32 axi_id = 0;
uint32 axi_id2 = 0;
bool extd_axi_id_mask = FALSE;
uint32 axi_id_mask;
SI_PRINT(("err check: core %p, error %d, axi id 0x%04x, addr(0x%08x:%08x)\n",
ai, errsts, err_axi_id, hi_addr, lo_addr));
/* ignore the BT slave errors if the errlog is to chipcommon addr 0x190 */
switch (CHIPID(sii->pub.chip)) {
#if defined(BT_WLAN_REG_ON_WAR)
/*
* 4389B0/C0 - WL and BT turn on WAR, ignore AXI error originating from
* AHB-AXI bridge i.e, any slave error or timeout from BT access
*/
case BCM4389_CHIP_GRPID:
axi_id = BCM4389_BT_AXI_ID;
ignore_errsts = AIELS_SLAVE_ERR;
axi_id2 = BCM4389_BT_AXI_ID;
ignore_errsts_2 = AIELS_TIMEOUT;
address_check = FALSE;
extd_axi_id_mask = TRUE;
break;
#endif /* BT_WLAN_REG_ON_WAR */
#ifdef BTOVERPCIE
case BCM4369_CHIP_GRPID:
axi_id = BCM4369_BT_AXI_ID;
/* For BT over PCIE, ignore any slave error from BT. */
/* No need to check any address range */
address_check = FALSE;
ignore_errsts_2 = AIELS_DECODE;
break;
#endif /* BTOVERPCIE */
case BCM4376_CHIP_GRPID:
case BCM4378_CHIP_GRPID:
case BCM4385_CHIP_GRPID:
case BCM4387_CHIP_GRPID:
#ifdef BTOVERPCIE
axi_id = BCM4378_BT_AXI_ID;
/* For BT over PCIE, ignore any slave error from BT. */
/* No need to check any address range */
address_check = FALSE;
#endif /* BTOVERPCIE */
axi_id2 = BCM4378_ARM_PREFETCH_AXI_ID;
extd_axi_id_mask = TRUE;
ignore_errsts_2 = AIELS_DECODE;
break;
case BCM4368_CHIP_GRPID:
axi_id = BCM4368_BT_AXI_ID;
/* For BT over PCIE, ignore any slave error from BT. */
/* No need to check any address range */
address_check = FALSE;
ignore_errsts_2 = AIELS_DECODE;
break;
default:
return FALSE;
}
axi_id_mask = extd_axi_id_mask ? AI_ERRLOGID_AXI_ID_MASK_EXTD : AI_ERRLOGID_AXI_ID_MASK;
/* AXI ID check */
err_axi_id &= axi_id_mask;
errsts &= AIELS_ERROR_MASK;
/* check the ignore error cases. 2 checks */
if (!(((err_axi_id == axi_id) && (errsts == ignore_errsts)) ||
((err_axi_id == axi_id2) && (errsts == ignore_errsts_2)))) {
/* not the error ignore cases */
return FALSE;
}
/* check the specific address checks now, if specified */
if (address_check) {
/* address range check */
if ((hi_addr != ignore_hi) ||
(lo_addr < ignore_lo) || (lo_addr >= (ignore_lo + ignore_size))) {
return FALSE;
}
}
SI_PRINT(("err check: ignored\n"));
return TRUE;
}
#endif /* defined (AXI_TIMEOUTS) || defined (AXI_TIMEOUTS_NIC) */
#ifdef AXI_TIMEOUTS_NIC
/* Function to return the APB bridge details corresponding to the core */
static bool
ai_get_apb_bridge(const si_t * sih, uint32 coreidx, uint32 *apb_id, uint32 * apb_coreunit)
{
uint i;
uint32 core_base, core_end;
const si_info_t *sii = SI_INFO(sih);
static uint32 coreidx_cached = 0, apb_id_cached = 0, apb_coreunit_cached = 0;
uint32 tmp_coreunit = 0;
const si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
return FALSE;
/* Most of the time apb bridge query will be for d11 core.
* Maintain the last cache and return if found rather than iterating the table
*/
if (coreidx_cached == coreidx) {
*apb_id = apb_id_cached;
*apb_coreunit = apb_coreunit_cached;
return TRUE;
}
core_base = cores_info->coresba[coreidx];
core_end = core_base + cores_info->coresba_size[coreidx];
for (i = 0; i < sii->numcores; i++) {
if (cores_info->coreid[i] == APB_BRIDGE_ID) {
uint32 apb_base;
uint32 apb_end;
apb_base = cores_info->coresba[i];
apb_end = apb_base + cores_info->coresba_size[i];
if ((core_base >= apb_base) &&
(core_end <= apb_end)) {
/* Current core is attached to this APB bridge */
*apb_id = apb_id_cached = APB_BRIDGE_ID;
*apb_coreunit = apb_coreunit_cached = tmp_coreunit;
coreidx_cached = coreidx;
return TRUE;
}
/* Increment the coreunit */
tmp_coreunit++;
}
}
return FALSE;
}
uint32
ai_clear_backplane_to_fast(si_t *sih, void *addr)
{
const si_info_t *sii = SI_INFO(sih);
volatile const void *curmap = sii->curmap;
bool core_reg = FALSE;
/* Use fast path only for core register access */
if (((uintptr)addr >= (uintptr)curmap) &&
((uintptr)addr < ((uintptr)curmap + SI_CORE_SIZE))) {
/* address being accessed is within current core reg map */
core_reg = TRUE;
}
if (core_reg) {
uint32 apb_id, apb_coreunit;
if (ai_get_apb_bridge(sih, si_coreidx(&sii->pub),
&apb_id, &apb_coreunit) == TRUE) {
/* Found the APB bridge corresponding to current core,
* Check for bus errors in APB wrapper
*/
return ai_clear_backplane_to_per_core(sih,
apb_id, apb_coreunit, NULL);
}
}
/* Default is to poll for errors on all slave wrappers */
return si_clear_backplane_to(sih);
}
#endif /* AXI_TIMEOUTS_NIC */
#if defined(AXI_TIMEOUTS) || defined(AXI_TIMEOUTS_NIC)
static bool g_disable_backplane_logs = FALSE;
static uint32 last_axi_error = AXI_WRAP_STS_NONE;
static uint32 last_axi_error_log_status = 0;
static uint32 last_axi_error_core = 0;
static uint32 last_axi_error_wrap = 0;
static uint32 last_axi_errlog_lo = 0;
static uint32 last_axi_errlog_hi = 0;
static uint32 last_axi_errlog_id = 0;
/*
* API to clear the back plane timeout per core.
* Caller may passs optional wrapper address. If present this will be used as
* the wrapper base address. If wrapper base address is provided then caller
* must provide the coreid also.
* If both coreid and wrapper is zero, then err status of current bridge
* will be verified.
*/
uint32
ai_clear_backplane_to_per_core(si_t *sih, uint coreid, uint coreunit, void *wrap)
{
int ret = AXI_WRAP_STS_NONE;
aidmp_t *ai = NULL;
uint32 errlog_status = 0;
const si_info_t *sii = SI_INFO(sih);
uint32 errlog_lo = 0, errlog_hi = 0, errlog_id = 0, errlog_flags = 0;
uint32 current_coreidx = si_coreidx(sih);
uint32 target_coreidx = si_findcoreidx(sih, coreid, coreunit);
#if defined(AXI_TIMEOUTS_NIC)
si_axi_error_t * axi_error = sih->err_info ?
&sih->err_info->axi_error[sih->err_info->count] : NULL;
#endif /* AXI_TIMEOUTS_NIC */
bool restore_core = FALSE;
if ((sii->axi_num_wrappers == 0) ||
#ifdef AXI_TIMEOUTS_NIC
(!PCIE(sii)) ||
#endif /* AXI_TIMEOUTS_NIC */
FALSE) {
SI_VMSG(("ai_clear_backplane_to_per_core, axi_num_wrappers:%d, Is_PCIE:%d,"
" BUS_TYPE:%d, ID:%x\n",
sii->axi_num_wrappers, PCIE(sii),
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
return AXI_WRAP_STS_NONE;
}
if (wrap != NULL) {
ai = (aidmp_t *)wrap;
} else if (coreid && (target_coreidx != current_coreidx)) {
if (ai_setcoreidx(sih, target_coreidx) == NULL) {
/* Unable to set the core */
SI_PRINT(("Set Code Failed: coreid:%x, unit:%d, target_coreidx:%d\n",
coreid, coreunit, target_coreidx));
errlog_lo = target_coreidx;
ret = AXI_WRAP_STS_SET_CORE_FAIL;
goto end;
}
restore_core = TRUE;
ai = (aidmp_t *)si_wrapperregs(sih);
} else {
/* Read error status of current wrapper */
ai = (aidmp_t *)si_wrapperregs(sih);
/* Update CoreID to current Code ID */
coreid = si_coreid(sih);
}
/* read error log status */
errlog_status = R_REG(sii->osh, &ai->errlogstatus);
if (errlog_status == ID32_INVALID) {
/* Do not try to peek further */
SI_PRINT(("ai_clear_backplane_to_per_core, errlogstatus:%x - Slave Wrapper:%x\n",
errlog_status, coreid));
ret = AXI_WRAP_STS_WRAP_RD_ERR;
errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
goto end;
}
if ((errlog_status & AIELS_ERROR_MASK) != 0) {
uint32 tmp;
uint32 count = 0;
/* set ErrDone to clear the condition */
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
/* SPINWAIT on errlogstatus timeout status bits */
while ((tmp = R_REG(sii->osh, &ai->errlogstatus)) & AIELS_ERROR_MASK) {
if (tmp == ID32_INVALID) {
SI_PRINT(("ai_clear_backplane_to_per_core: prev errlogstatus:%x,"
" errlogstatus:%x\n",
errlog_status, tmp));
ret = AXI_WRAP_STS_WRAP_RD_ERR;
errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
goto end;
}
/*
* Clear again, to avoid getting stuck in the loop, if a new error
* is logged after we cleared the first timeout
*/
W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
count++;
OSL_DELAY(10);
if ((10 * count) > AI_REG_READ_TIMEOUT) {
errlog_status = tmp;
break;
}
}
errlog_lo = R_REG(sii->osh, &ai->errlogaddrlo);
errlog_hi = R_REG(sii->osh, &ai->errlogaddrhi);
errlog_id = R_REG(sii->osh, &ai->errlogid);
errlog_flags = R_REG(sii->osh, &ai->errlogflags);
/* we are already in the error path, so OK to check for the slave error */
if (ai_ignore_errlog(sii, ai, errlog_lo, errlog_hi, errlog_id,
errlog_status)) {
si_ignore_errlog_cnt++;
goto end;
}
/* only reset APB Bridge on timeout (not slave error, or dec error) */
switch (errlog_status & AIELS_ERROR_MASK) {
case AIELS_SLAVE_ERR:
SI_PRINT(("AXI slave error\n"));
ret |= AXI_WRAP_STS_SLAVE_ERR;
break;
case AIELS_TIMEOUT:
ai_reset_axi_to(sii, ai);
ret |= AXI_WRAP_STS_TIMEOUT;
break;
case AIELS_DECODE:
SI_PRINT(("AXI decode error\n"));
{
ret |= AXI_WRAP_STS_DECODE_ERR;
}
break;
default:
ASSERT(0); /* should be impossible */
}
if (errlog_status & AIELS_MULTIPLE_ERRORS) {
SI_PRINT(("Multiple AXI Errors\n"));
/* Set multiple errors bit only if actual error is not ignored */
if (ret) {
ret |= AXI_WRAP_STS_MULTIPLE_ERRORS;
}
}
SI_PRINT(("\tCoreID: %x\n", coreid));
SI_PRINT(("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x"
", status 0x%08x\n",
errlog_lo, errlog_hi, errlog_id, errlog_flags,
errlog_status));
}
end:
if (ret != AXI_WRAP_STS_NONE) {
last_axi_error = ret;
last_axi_error_log_status = errlog_status;
last_axi_error_core = coreid;
last_axi_error_wrap = (uint32)ai;
last_axi_errlog_lo = errlog_lo;
last_axi_errlog_hi = errlog_hi;
last_axi_errlog_id = errlog_id;
}
#if defined(AXI_TIMEOUTS_NIC)
if (axi_error && (ret != AXI_WRAP_STS_NONE)) {
axi_error->error = ret;
axi_error->coreid = coreid;
axi_error->errlog_lo = errlog_lo;
axi_error->errlog_hi = errlog_hi;
axi_error->errlog_id = errlog_id;
axi_error->errlog_flags = errlog_flags;
axi_error->errlog_status = errlog_status;
sih->err_info->count++;
if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
SI_PRINT(("AXI Error log overflow\n"));
}
}
#endif /* AXI_TIMEOUTS_NIC */
if (restore_core) {
if (ai_setcoreidx(sih, current_coreidx) == NULL) {
/* Unable to set the core */
return ID32_INVALID;
}
}
return ret;
}
/* reset AXI timeout */
static void
ai_reset_axi_to(const si_info_t *sii, aidmp_t *ai)
{
/* reset APB Bridge */
OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
/* sync write */
(void)R_REG(sii->osh, &ai->resetctrl);
/* clear Reset bit */
AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET));
/* sync write */
(void)R_REG(sii->osh, &ai->resetctrl);
SI_PRINT(("AXI timeout\n"));
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
SI_PRINT(("reset failed on wrapper %p\n", ai));
g_disable_backplane_logs = TRUE;
}
}
void
ai_wrapper_get_last_error(const si_t *sih, uint32 *error_status, uint32 *core, uint32 *lo,
uint32 *hi, uint32 *id)
{
*error_status = last_axi_error_log_status;
*core = last_axi_error_core;
*lo = last_axi_errlog_lo;
*hi = last_axi_errlog_hi;
*id = last_axi_errlog_id;
}
/* Function to check whether AXI timeout has been registered on a core */
uint32
ai_get_axi_timeout_reg(void)
{
return (GOODREGS(last_axi_errlog_lo) ? last_axi_errlog_lo : 0);
}
#endif /* AXI_TIMEOUTS || AXI_TIMEOUTS_NIC */
uint32
ai_findcoreidx_by_axiid(const si_t *sih, uint32 axiid)
{
uint coreid = 0;
uint coreunit = 0;
const axi_to_coreidx_t *axi2coreidx = NULL;
switch (CHIPID(sih->chip)) {
case BCM4369_CHIP_GRPID:
axi2coreidx = axi2coreidx_4369;
break;
default:
SI_PRINT(("Chipid mapping not found\n"));
break;
}
if (!axi2coreidx)
return (BADIDX);
coreid = axi2coreidx[axiid].coreid;
coreunit = axi2coreidx[axiid].coreunit;
return si_findcoreidx(sih, coreid, coreunit);
}
/*
* This API polls all slave wrappers for errors and returns bit map of
* all reported errors.
* return - bit map of
* AXI_WRAP_STS_NONE
* AXI_WRAP_STS_TIMEOUT
* AXI_WRAP_STS_SLAVE_ERR
* AXI_WRAP_STS_DECODE_ERR
* AXI_WRAP_STS_PCI_RD_ERR
* AXI_WRAP_STS_WRAP_RD_ERR
* AXI_WRAP_STS_SET_CORE_FAIL
* On timeout detection, correspondign bridge will be reset to
* unblock the bus.
* Error reported in each wrapper can be retrieved using the API
* si_get_axi_errlog_info()
*/
uint32
ai_clear_backplane_to(si_t *sih)
{
uint32 ret = 0;
#if defined(AXI_TIMEOUTS) || defined(AXI_TIMEOUTS_NIC)
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai;
uint32 i;
axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
#ifdef AXI_TIMEOUTS_NIC
uint32 prev_value = 0;
osl_t *osh = sii->osh;
uint32 cfg_reg = 0;
uint32 offset = 0;
if ((sii->axi_num_wrappers == 0) || (!PCIE(sii)))
#else
if (sii->axi_num_wrappers == 0)
#endif
{
SI_VMSG(("ai_clear_backplane_to, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d,"
" ID:%x\n",
sii->axi_num_wrappers, PCIE(sii),
BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
return AXI_WRAP_STS_NONE;
}
#ifdef AXI_TIMEOUTS_NIC
/* Save and restore wrapper access window */
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
if (PCIE_GEN1(sii)) {
cfg_reg = PCI_BAR0_WIN2;
offset = PCI_BAR0_WIN2_OFFSET;
} else if (PCIE_GEN2(sii)) {
cfg_reg = PCIE2_BAR0_CORE2_WIN2;
offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
}
else {
ASSERT(!"!PCIE_GEN1 && !PCIE_GEN2");
}
prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
if (prev_value == ID32_INVALID) {
si_axi_error_t * axi_error =
sih->err_info ?
&sih->err_info->axi_error[sih->err_info->count] :
NULL;
SI_PRINT(("ai_clear_backplane_to, PCI_BAR0_WIN2 - %x\n", prev_value));
if (axi_error) {
axi_error->error = ret = AXI_WRAP_STS_PCI_RD_ERR;
axi_error->errlog_lo = cfg_reg;
sih->err_info->count++;
if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
SI_PRINT(("AXI Error log overflow\n"));
}
}
return ret;
}
}
#endif /* AXI_TIMEOUTS_NIC */
for (i = 0; i < sii->axi_num_wrappers; ++i) {
uint32 tmp;
if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER) {
continue;
}
#ifdef AXI_TIMEOUTS_NIC
if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
/* Set BAR0_CORE2_WIN2 to bridge wapper base address */
OSL_PCI_WRITE_CONFIG(osh,
cfg_reg, 4, axi_wrapper[i].wrapper_addr);
/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
ai = (aidmp_t *) (DISCARD_QUAL(sii->curmap, uint8) + offset);
}
else
#endif /* AXI_TIMEOUTS_NIC */
{
ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
}
tmp = ai_clear_backplane_to_per_core(sih, axi_wrapper[i].cid, 0,
DISCARD_QUAL(ai, void));
ret |= tmp;
}
#ifdef AXI_TIMEOUTS_NIC
/* Restore the initial wrapper space */
if (prev_value) {
OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
}
#endif /* AXI_TIMEOUTS_NIC */
#endif /* AXI_TIMEOUTS || AXI_TIMEOUTS_NIC */
return ret;
}
uint
ai_num_slaveports(const si_t *sih, uint coreidx)
{
const si_info_t *sii = SI_INFO(sih);
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
uint32 cib;
cib = cores_info->cib[coreidx];
return ((cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT);
}
#ifdef UART_TRAP_DBG
void
ai_dump_APB_Bridge_registers(const si_t *sih)
{
aidmp_t *ai;
const si_info_t *sii = SI_INFO(sih);
ai = (aidmp_t *)sii->br_wrapba[0];
printf("APB Bridge 0\n");
printf("lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x",
R_REG(sii->osh, &ai->errlogaddrlo),
R_REG(sii->osh, &ai->errlogaddrhi),
R_REG(sii->osh, &ai->errlogid),
R_REG(sii->osh, &ai->errlogflags));
printf("\n status 0x%08x\n", R_REG(sii->osh, &ai->errlogstatus));
}
#endif /* UART_TRAP_DBG */
void
ai_force_clocks(const si_t *sih, uint clock_state)
{
const si_info_t *sii = SI_INFO(sih);
aidmp_t *ai, *ai_sec = NULL;
volatile uint32 dummy;
uint32 ioctrl;
const si_cores_info_t *cores_info = (const si_cores_info_t *)sii->cores_info;
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
if (cores_info->wrapba2[sii->curidx])
ai_sec = REG_MAP(cores_info->wrapba2[sii->curidx], SI_CORE_SIZE);
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
if (clock_state == FORCE_CLK_ON) {
ioctrl = R_REG(sii->osh, &ai->ioctrl);
W_REG(sii->osh, &ai->ioctrl, (ioctrl | SICF_FGC));
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
if (ai_sec) {
ioctrl = R_REG(sii->osh, &ai_sec->ioctrl);
W_REG(sii->osh, &ai_sec->ioctrl, (ioctrl | SICF_FGC));
dummy = R_REG(sii->osh, &ai_sec->ioctrl);
BCM_REFERENCE(dummy);
}
} else {
ioctrl = R_REG(sii->osh, &ai->ioctrl);
W_REG(sii->osh, &ai->ioctrl, (ioctrl & (~SICF_FGC)));
dummy = R_REG(sii->osh, &ai->ioctrl);
BCM_REFERENCE(dummy);
if (ai_sec) {
ioctrl = R_REG(sii->osh, &ai_sec->ioctrl);
W_REG(sii->osh, &ai_sec->ioctrl, (ioctrl & (~SICF_FGC)));
dummy = R_REG(sii->osh, &ai_sec->ioctrl);
BCM_REFERENCE(dummy);
}
}
/* ensure there are no pending backplane operations */
SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
}