blob: b65f72cca137237c4dce0b74fee4064106cf2dcb [file] [log] [blame]
/*
* (C) Copyright 2008
* Texas Instruments, <www.ti.com>
* Sukumar Ghorai <s-ghorai@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation's version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <mmc.h>
#include <part.h>
#include <i2c.h>
#include <twl4030.h>
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_SPL_BUILD
# undef CONFIG_OMAP_MMC_USE_DMA_WRITES
#endif
#ifdef CONFIG_OMAP_MMC_USE_DMA_WRITES
# include <asm/omap_sdma.h>
#endif
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS 1000
static int mmc_read_data(hsmmc_t *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(hsmmc_t *mmc_base, const char *buf, unsigned int size);
#ifdef CONFIG_OMAP_MMC_USE_DMA_WRITES
static void mmc_dma_start(struct mmc* mmc, hsmmc_t *mmc_base, const char *buf, unsigned int blkSiz, unsigned int numBlk, int write);
static int mmc_dma_wait_for_transfer_complete(struct mmc* mmc, hsmmc_t *mmc_base, const char *buf, unsigned int blkSiz, unsigned int numBlk);
#endif
static struct mmc hsmmc_dev[3];
unsigned char mmc_board_init(struct mmc *mmc)
{
#if defined(CONFIG_TWL4030_POWER)
twl4030_power_mmc_init();
#endif
#if defined(CONFIG_OMAP34XX)
t2_t *t2_base = (t2_t *)T2_BASE;
writel(readl(&t2_base->pbias_lite) | PBIASLITEPWRDNZ1 |
PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
&t2_base->pbias_lite);
writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
&t2_base->devconf0);
#endif
#if defined(CONFIG_OMAP44XX)
unsigned char data;
unsigned int reg;
t2_t *t2_base = (t2_t *)T2_BASE;
switch (mmc->block_dev.dev) {
case 0:
/* Phoenix LDO config */
i2c_set_bus_num(0);
data = 0x01;
i2c_write(0x48, 0x98, 1, &data, 1);
data = 0x03;
i2c_write(0x48, 0x99, 1, &data, 1);
data = 0x21;
i2c_write(0x48, 0x9A, 1, &data, 1);
data = 0x15;
i2c_write(0x48, 0x9B, 1, &data, 1);
/* Wait for the power to stabilize before setting PWRDNZ */
udelay(100);
/* SLOT-0 PBIAS config - 3v IO */
reg = readl(&t2_base->pbias_lite);
reg |= MMC1_PBIASLITE_VMODE |
MMC1_PBIASLITE_PWRDNZ |
MMC1_PWRDNZ;
writel(reg, &t2_base->pbias_lite);
/* Wait for the the supply detector to tell us if there is a
* mismatch between the PBIAS supply and what we have configured
* IO for
*/
udelay(100);
reg = readl(&t2_base->pbias_lite);
if (!(reg & MMC1_PBIASLITE_SUPPLY_HI_OUT)) {
printf("Warning: 1.8v PBIAS supply detected after"
" configuring for 3v. Switching to 1.8v"
" configuration.\n");
reg &= ~(MMC1_PBIASLITE_VMODE |
MMC1_PBIASLITE_PWRDNZ |
MMC1_PWRDNZ);
writel(reg, &t2_base->pbias_lite);
udelay(100);
reg = readl(&t2_base->pbias_lite);
reg |= MMC1_PBIASLITE_PWRDNZ |
MMC1_PWRDNZ;
writel(reg, &t2_base->pbias_lite);
}
writel(readl(&t2_base->control_mmc1) | SDMMC1_DR2_SPEEDCTRL |
SDMMC1_DR1_SPEEDCTRL | SDMMC1_DR0_SPEEDCTRL |
SDMMC1_PUSTRENGTH_GRP1 | SDMMC1_PUSTRENGTH_GRP0,
&t2_base->control_mmc1);
break;
case 1:
break;
default:
break;
}
#endif
return 0;
}
void mmc_init_stream(hsmmc_t *mmc_base)
{
ulong start;
writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
writel(MMC_CMD0, &mmc_base->cmd);
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc!\n", __func__);
return;
}
}
writel(CC_MASK, &mmc_base->stat)
;
writel(MMC_CMD0, &mmc_base->cmd)
;
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return;
}
}
writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}
static int mmc_init_setup(struct mmc *mmc)
{
hsmmc_t *mmc_base = (hsmmc_t *)mmc->priv;
unsigned int reg_val;
unsigned int dsor;
ulong start;
mmc_board_init(mmc);
writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
&mmc_base->sysconfig);
start = get_timer(0);
while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return TIMEOUT;
}
}
writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for softresetall!\n",
__func__);
return TIMEOUT;
}
}
writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
&mmc_base->capa);
reg_val = readl(&mmc_base->con) & RESERVED_MASK;
writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
dsor = 240;
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO | CEN_DISABLE));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return TIMEOUT;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC,
&mmc_base->ie);
mmc_init_stream(mmc_base);
return 0;
}
static int last_start_value;
static int last_end_value;
static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
hsmmc_t *mmc_base = (hsmmc_t *)mmc->priv;
unsigned int flags, mmc_stat;
ulong start;
int canUseDma = 1;
start = get_timer(0);
while ((readl(&mmc_base->pstate) & DATI_MASK) == DATI_CMDDIS) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cmddis!\n", __func__);
return TIMEOUT;
}
}
writel(0xFFFFFFFF, &mmc_base->stat);
start = get_timer(0);
while (readl(&mmc_base->stat)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for stat!\n", __func__);
return TIMEOUT;
}
}
if ((cmd->cmdidx == SD_CMD_ERASE_WR_BLK_START) ||
(cmd->cmdidx == MMC_CMD_ERASE_GROUP_START))
last_start_value = cmd->cmdarg;
else if ((cmd->cmdidx == SD_CMD_ERASE_WR_BLK_END) ||
(cmd->cmdidx == MMC_CMD_ERASE_GROUP_END))
last_end_value = cmd->cmdarg;
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
/* Delay added before checking the status of frq change
* retry not supported by mmc.c(core file)
*/
if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
udelay(50000); /* wait 50 ms */
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = 0;
else if (cmd->resp_type & MMC_RSP_136)
flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = RSP_TYPE_LGHT48B;
else
flags = RSP_TYPE_LGHT48;
/* enable default flags */
flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE);
if (cmd->resp_type & MMC_RSP_CRC)
flags |= CCCE_CHECK;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= CICE_CHECK;
if (data) {
if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
(cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
flags |= (MSBS_MULTIBLK | BCE_ENABLE);
data->blocksize = 512;
writel(data->blocksize | (data->blocks << 16),
&mmc_base->blk);
} else
writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
if (data->flags & MMC_DATA_READ)
flags |= (DP_DATA | DDIR_READ);
else
flags |= (DP_DATA | DDIR_WRITE);
#ifdef CONFIG_OMAP_MMC_USE_DMA_WRITES
if (data->flags & MMC_DATA_WRITE) {
if ((((unsigned)data->src) & 3) || (((unsigned)data->blocksize) & 3)) {
canUseDma = 0;
} else {
flags = (flags &~ DE_DISABLE) | DE_ENABLE;
mmc_dma_start(mmc, mmc_base, data->src,
data->blocksize, data->blocks, 1);
}
}
#else
canUseDma = 0;
#endif
}
writel(cmd->cmdarg, &mmc_base->arg);
writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s : timeout: No status update\n", __func__);
return TIMEOUT;
}
} while (!mmc_stat);
if ((mmc_stat & IE_CTO) != 0)
return TIMEOUT;
else if ((mmc_stat & ERRI_MASK) != 0)
return -1;
if (mmc_stat & CC_MASK) {
writel(CC_MASK, &mmc_base->stat);
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
/* response type 2 */
cmd->response[3] = readl(&mmc_base->rsp10);
cmd->response[2] = readl(&mmc_base->rsp32);
cmd->response[1] = readl(&mmc_base->rsp54);
cmd->response[0] = readl(&mmc_base->rsp76);
} else
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->response[0] = readl(&mmc_base->rsp10);
}
}
if (data && (data->flags & MMC_DATA_READ)) {
mmc_read_data(mmc_base, data->dest,
data->blocksize * data->blocks);
} else if (data && (data->flags & MMC_DATA_WRITE)) {
if (canUseDma) {
#ifdef CONFIG_OMAP_MMC_USE_DMA_WRITES
return mmc_dma_wait_for_transfer_complete(mmc, mmc_base, data->src,
data->blocksize, data->blocks);
#endif
} else {
return mmc_write_data(mmc_base, data->src,
data->blocksize * data->blocks);
}
}
/* If this is an erase, wait for it to complete. Add a fixed
* additional time to the timeout to allow the device to manage its
* blocks (10X normal retry) plus add an additional time based on
* number of blocks being erased (1 ms per 1024 blocks). In
* addition, when that time expires, only a warning is printed and
* an error will not be returned until double the time has passed.
* Callers should try to avoid erasing very large numbers of blocks
* at once to prevent timeouts so long that users can't tell if
* progress is being made.
*/
if (cmd->cmdidx == MMC_CMD_ERASE) {
ulong timeout_ms = MAX_RETRY_MS * 10;
ulong erase_blk_cnt = last_end_value - last_start_value + 1;
int warned = 0;
timeout_ms += DIV_ROUND_UP(erase_blk_cnt, 1024);
start = get_timer(0);
while ((readl(&mmc_base->pstate) & DATI_MASK) == DATI_CMDDIS) {
if (get_timer(0) - start > timeout_ms) {
printf("%s: %s erasing blocks %u to %u, "
"timeout = %lu seconds\n",
__func__,
warned ? "Timed out" : "Warning",
last_start_value, last_end_value,
timeout_ms / 1000);
if (warned) {
return TIMEOUT;
} else {
warned = 1;
timeout_ms *= 2;
}
}
}
}
return 0;
}
static int mmc_read_data(hsmmc_t *mmc_base, char *buf, unsigned int size)
{
unsigned int *output_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Read
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return TIMEOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BRR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
*output_buf = readl(&mmc_base->data);
output_buf++;
}
size -= (count*4);
}
if (mmc_stat & BWR_MASK)
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
static int mmc_write_data(hsmmc_t *mmc_base, const char *buf, unsigned int size)
{
unsigned int *input_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Write
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return TIMEOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BWR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
writel(*input_buf, &mmc_base->data);
input_buf++;
}
size -= (count*4);
}
if (mmc_stat & BRR_MASK)
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
#ifdef CONFIG_OMAP_MMC_USE_DMA_WRITES
static void mmc_dma_start(struct mmc* mmc, hsmmc_t *mmc_base, const char *buf, unsigned int blkSiz, unsigned int numBlk, int write)
{
/*
We would love to use ADMA here, since it is simpler to program,and faster,
BUT in interest of compatibility with OMAP 36xx, we cannot, since it lacks
such a feature. Additionally not all SDMMC controllers on OMAP44xx have
ADMA ability, while all controllers on OMAP36xx and OMAP44xx have sDMA
abilities. This forces us to write an sDMA driver. Writing a complete
driver, with full consideration for all possible options is most
definitely beyound the scope an SDMMC driver. So what folows is a very
very simple hard-coded mini-driver for OMAP's sDMA, which is functional
enough to allow us SDMMC transfers and no more than that. **If any other
part of uboot, at any point in time, decides that it will use sDMA too,
we'll probably have a conflict, and a better resolution will be needed**
(like a real driver).
*/
omap_sdma* sdma = OMAP_SDMA;
omap_sdma_channel* chan = sdma->channels + OMAP_DMA_CHANNEL_NUM;
unsigned i, dmaReqNum;
unsigned long csdp, ccr;
/* for large areas flushing the entire cache is likely faster */
if(numBlk > 128){
flush_dcache_all();
} else {
flush_cache((unsigned long)buf, blkSiz * numBlk);
}
/* figure out what our controller and dma request num are */
switch (mmc - hsmmc_dev) {
default:
case 0:
dmaReqNum = write ? SDMA_REQ_MMC1_TX : SDMA_REQ_MMC1_RX;
break;
case 1:
dmaReqNum = write ? SDMA_REQ_MMC2_TX : SDMA_REQ_MMC2_RX;
break;
case 2:
dmaReqNum = write ? SDMA_REQ_MMC3_TX : SDMA_REQ_MMC3_RX;
break;
}
dmaReqNum += SDMA_REQ_NUM_OFFSET;
/*
clear interrupt statuses for our channel and mask them.
Why? Docs say we must clear these before enabling a channel.
*/
for (i = 0; i < 4; i++) {
writel(readl(&sdma->irqstatus[i]) | (1UL << OMAP_DMA_CHANNEL_NUM), &sdma->irqstatus[i]);
}
writel(SYSCONFIG_MIDLEMODE_NO_STBY | SYSCONFIG_SIDLEMODE_NO_IDLE | SYSCONFIG_AUTOIDLE_NONE, &sdma->ocpsysconfig);
/* configure the dma engine */
csdp = CSDP_SRC_LE | CSDP_SRC_ENDIAN_LOCK | CSDP_DST_LE | CSDP_DST_ENDIAN_LOCK | CSDP_DATA_TYPE_4B;
ccr = CCR_ENABLE | CCR_FIELDSYNC_FRAME | DMA_REQ_NUM_TO_CCR_VAL(dmaReqNum);
if (write) {
csdp |= CSDP_WRITE_POSTED_ALL | CSDP_SRC_BURST_64B | CSDP_DST_BURST_NONE;
writel((unsigned long)buf, &chan->cssa);
writel((unsigned long)&mmc_base->data, &chan->cdsa);
ccr |= CCR_DST_SYNC | CCR_DST_AMODE_CONST_ADDR | CCR_SRC_AMODE_POSTINCR;
} else {
csdp |= CSDP_WRITE_POSTED_ALL_BUT_LAST | CSDP_SRC_BURST_NONE | CSDP_DST_BURST_64B;
writel((unsigned long)&mmc_base->data, &chan->cssa);
writel((unsigned long)buf, &chan->cdsa);
ccr |= CCR_SRC_AMODE_CONST_ADDR | CCR_DST_AMODE_POSTINCR;
}
writel(0, &chan->ccr);
writel(0, &chan->cicr);
writel(0xFFFFFFFF, &chan->csr);
writel(csdp, &chan->csdp);
writel(blkSiz >> 2, &chan->cen);
writel(numBlk, &chan->cfn);
writel(CDP_TRANSFER_MODE_NORMAL, &chan->cdp);
writel(ccr, &chan->ccr);
}
static int mmc_dma_wait_for_transfer_complete(struct mmc* mmc, hsmmc_t *mmc_base, const char *buf, unsigned int blkSiz, unsigned int numBlk)
{
omap_sdma* sdma = OMAP_SDMA;
omap_sdma_channel* chan = sdma->channels + OMAP_DMA_CHANNEL_NUM;
unsigned mmc_stat;
ulong start;
int ret = 0;
start = get_timer(0);
while(1) {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > 10 * MAX_RETRY_MS) {
printf("%s: timed out waiting for status!\n",
__func__);
ret = TIMEOUT;
break;
}
if ((mmc_stat & ERRI_MASK) != 0) {
printf("%s: mmc error status reported!\n",
__func__);
ret = 1;
break;
}
if (mmc_stat & TC_MASK) {
writel(mmc_stat | TC_MASK, &mmc_base->stat);
break;
}
}
writel(0, &chan->ccr);
return ret;
}
#endif
static void mmc_set_ios(struct mmc *mmc)
{
hsmmc_t *mmc_base = (hsmmc_t *)mmc->priv;
unsigned int dsor = 0;
ulong start;
/* configue bus width */
switch (mmc->bus_width) {
case 8:
writel(readl(&mmc_base->con) | DTW_8_BITMODE,
&mmc_base->con);
break;
case 4:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
&mmc_base->hctl);
break;
case 1:
default:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
&mmc_base->hctl);
break;
}
/* configure clock with 96Mhz system clock.
*/
if (mmc->clock != 0) {
dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
dsor++;
}
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO | CEN_DISABLE));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
}
int omap_mmc_init(int dev_index)
{
struct mmc *mmc;
mmc = &hsmmc_dev[dev_index];
sprintf(mmc->name, "OMAP SD/MMC");
mmc->send_cmd = mmc_send_cmd;
mmc->set_ios = mmc_set_ios;
mmc->init = mmc_init_setup;
switch (dev_index) {
case 0:
mmc->priv = (hsmmc_t *)OMAP_HSMMC1_BASE;
break;
case 1:
mmc->priv = (hsmmc_t *)OMAP_HSMMC2_BASE;
break;
case 2:
mmc->priv = (hsmmc_t *)OMAP_HSMMC3_BASE;
break;
default:
mmc->priv = (hsmmc_t *)OMAP_HSMMC1_BASE;
return 1;
}
mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
mmc->host_caps = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_HC;
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc->b_max = 0;
#if defined(CONFIG_OMAP44XX)
mmc->host_caps |= MMC_MODE_8BIT;
#endif
#if defined(CONFIG_OMAP34XX)
/*
* Silicon revs 2.1 and older do not support multiblock transfers.
*/
if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
mmc->b_max = 1;
/* MMC1 and MMC2 support 8-bit, but MMC0 only supports 4-bit */
if (dev_index != 0)
mmc->host_caps |= MMC_MODE_8BIT;
#endif
mmc_register(mmc);
return 0;
}