blob: d73fc718d22e301bbf82328b9fb0fd2b33874c2f [file] [log] [blame]
/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*******************************************************************************
* This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
* plug-in component to the Secure Monitor, registered as a runtime service. The
* SPD is expected to be a functional extension of the Secure Payload (SP) that
* executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
* the Trusted OS/Applications range to the dispatcher. The SPD will either
* handle the request locally or delegate it to the Secure Payload. It is also
* responsible for initialising and maintaining communication with the SP.
******************************************************************************/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
#include <context_mgmt.h>
#include <debug.h>
#include <errno.h>
#include <platform.h>
#include <runtime_svc.h>
#include <stddef.h>
#include <string.h>
#include <uuid.h>
#include "opteed_private.h"
#include "teesmc_opteed_macros.h"
#include "teesmc_opteed.h"
#define OPTEE_MAGIC 0x4554504f
#define OPTEE_VERSION 1
#define OPTEE_ARCH_ARM32 0
#define OPTEE_ARCH_ARM64 1
struct optee_header {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t init_size;
uint32_t init_load_addr_hi;
uint32_t init_load_addr_lo;
uint32_t init_mem_usage;
uint32_t paged_size;
};
/*******************************************************************************
* Address of the entrypoint vector table in OPTEE. It is
* initialised once on the primary core after a cold boot.
******************************************************************************/
optee_vectors_t *optee_vectors;
/*******************************************************************************
* Array to keep track of per-cpu OPTEE state
******************************************************************************/
optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
uint32_t opteed_rw;
static int32_t opteed_init(void);
/*******************************************************************************
* This function is the handler registered for S-EL1 interrupts by the
* OPTEED. It validates the interrupt and upon success arranges entry into
* the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
******************************************************************************/
static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
uint32_t flags,
void *handle,
void *cookie)
{
uint32_t linear_id;
uint64_t mpidr;
optee_context_t *optee_ctx;
/* Check the security state when the exception was generated */
assert(get_interrupt_src_ss(flags) == NON_SECURE);
#if IMF_READ_INTERRUPT_ID
/* Check the security status of the interrupt */
assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
#endif
/* Sanity check the pointer to this cpu's context */
mpidr = read_mpidr();
assert(handle == cm_get_context(NON_SECURE));
/* Save the non-secure context before entering the OPTEE */
cm_el1_sysregs_context_save(NON_SECURE);
/* Get a reference to this cpu's OPTEE context */
linear_id = platform_get_core_pos(mpidr);
optee_ctx = &opteed_sp_context[linear_id];
assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/*
* Tell the OPTEE that it has to handle an FIQ (synchronously).
* Also the instruction in normal world where the interrupt was
* generated is passed for debugging purposes. It is safe to
* retrieve this address from ELR_EL3 as the secure context will
* not take effect until el3_exit().
*/
SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
}
static int is_mem_free(uint64_t free_base, size_t free_size,
uint64_t addr, size_t size)
{
return (addr >= free_base) && (addr + size <= free_base + free_size);
}
/*******************************************************************************
* OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
* (aarch32/aarch64) if not already known and initialises the context for entry
* into OPTEE for its initialization.
******************************************************************************/
int32_t opteed_setup(void)
{
entry_point_info_t *ep_info;
struct optee_header *header;
uint64_t mpidr = read_mpidr();
uint32_t linear_id;
uintptr_t init_load_addr;
size_t init_size;
size_t init_mem_usage;
uintptr_t payload_addr;
uintptr_t mem_limit;
uintptr_t paged_part;
uintptr_t paged_size;
linear_id = platform_get_core_pos(mpidr);
/*
* Get information about the Secure Payload (BL32) image. Its
* absence is a critical failure. TODO: Add support to
* conditionally include the SPD service
*/
ep_info = bl31_plat_get_next_image_ep_info(SECURE);
if (!ep_info) {
WARN("No OPTEE provided by BL2 boot loader.\n");
goto err;
}
header = (struct optee_header *)ep_info->pc;
if (header->magic != OPTEE_MAGIC || header->version != OPTEE_VERSION) {
WARN("Invalid OPTEE header.\n");
goto err;
}
if (header->arch == OPTEE_ARCH_ARM32)
opteed_rw = OPTEE_AARCH32;
else if (header->arch == OPTEE_ARCH_ARM64)
opteed_rw = OPTEE_AARCH64;
else {
WARN("Invalid OPTEE architecture (%d)\n", header->arch);
goto err;
}
init_load_addr = ((uint64_t)header->init_load_addr_hi << 32) |
header->init_load_addr_lo;
init_size = header->init_size;
init_mem_usage = header->init_mem_usage;
payload_addr = (uintptr_t)(header + 1);
paged_size = header->paged_size;
/*
* Move OPTEE binary to the required location in memory.
*
* There's two ways OPTEE can be running in memory:
* 1. A memory large enough to keep the entire OPTEE binary
* (DRAM currently)
* 2. A part of OPTEE in a smaller (and more secure) memory
* (SRAM currently). This is achieved with demand paging
* of read-only data/code against a backing store in some
* larger memory (DRAM currently).
*
* In either case dictates init_load_addr in the OPTEE
* header the address where what's after the header
* (payload) should be residing when started. init_size in
* the header tells how much of the payload that need to be
* copied. init_mem_usage tells how much runtime memory in
* total is needed by OPTEE.
*
* In alternative 2 there's additional data after
* init_size, this is the rest of OPTEE which is demand
* paged into memory. A pointer to that data is supplied
* to OPTEE when initializing.
*
* Alternative 1 only uses DRAM when executing OPTEE while
* alternative 2 uses both SRAM and DRAM to execute.
*
* All data written which is later read by OPTEE must be flushed
* out to memory since OPTEE starts with MMU turned off and caches
* disabled.
*/
if (is_mem_free(BL32_SRAM_BASE,
BL32_SRAM_LIMIT - BL32_SRAM_BASE,
init_load_addr, init_mem_usage)) {
/* Running in SRAM, paging some code against DRAM */
memcpy((void *)init_load_addr, (void *)payload_addr,
init_size);
flush_dcache_range(init_load_addr, init_size);
paged_part = payload_addr + init_size;
mem_limit = BL32_SRAM_LIMIT;
} else if (is_mem_free(BL32_DRAM_BASE,
BL32_DRAM_LIMIT - BL32_DRAM_BASE,
init_load_addr, init_mem_usage)) {
/*
* Running in DRAM.
*
* The paged part normally empty, but if it isn't,
* move it to the end of DRAM before moving the
* init part in place.
*/
paged_part = BL32_DRAM_LIMIT - paged_size;
if (paged_size) {
if (!is_mem_free(BL32_DRAM_BASE,
BL32_DRAM_LIMIT - BL32_DRAM_BASE,
init_load_addr,
init_mem_usage + paged_size)) {
WARN("Failed to reserve memory 0x%lx - 0x%lx\n",
init_load_addr,
init_load_addr + init_mem_usage +
paged_size);
goto err;
}
memcpy((void *)paged_part,
(void *)(payload_addr + init_size),
paged_size);
flush_dcache_range(paged_part, paged_size);
}
memmove((void *)init_load_addr, (void *)payload_addr,
init_size);
flush_dcache_range(init_load_addr, init_size);
mem_limit = BL32_DRAM_LIMIT;
} else {
WARN("Failed to reserve memory 0x%lx - 0x%lx\n",
init_load_addr, init_load_addr + init_mem_usage);
goto err;
}
opteed_init_optee_ep_state(ep_info, opteed_rw, init_load_addr,
paged_part, mem_limit,
&opteed_sp_context[linear_id]);
/*
* All OPTEED initialization done. Now register our init function with
* BL31 for deferred invocation
*/
bl31_register_bl32_init(&opteed_init);
return 0;
err:
WARN("Booting device without OPTEE initialization.\n");
WARN("SMC`s destined for OPTEE will return SMC_UNK\n");
return 1;
}
/*******************************************************************************
* This function passes control to the OPTEE image (BL32) for the first time
* on the primary cpu after a cold boot. It assumes that a valid secure
* context has already been created by opteed_setup() which can be directly
* used. It also assumes that a valid non-secure context has been
* initialised by PSCI so it does not need to save and restore any
* non-secure state. This function performs a synchronous entry into
* OPTEE. OPTEE passes control back to this routine through a SMC.
******************************************************************************/
static int32_t opteed_init(void)
{
uint64_t mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr);
optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
entry_point_info_t *optee_entry_point;
uint64_t rc;
/*
* Get information about the OPTEE (BL32) image. Its
* absence is a critical failure.
*/
optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
assert(optee_entry_point);
cm_init_context(mpidr, optee_entry_point);
/*
* Arrange for an entry into OPTEE. It will be returned via
* OPTEE_ENTRY_DONE case
*/
rc = opteed_synchronous_sp_entry(optee_ctx);
assert(rc != 0);
return rc;
}
/*******************************************************************************
* This function is responsible for handling all SMCs in the Trusted OS/App
* range from the non-secure state as defined in the SMC Calling Convention
* Document. It is also responsible for communicating with the Secure
* payload to delegate work and return results back to the non-secure
* state. Lastly it will also return any information that OPTEE needs to do
* the work assigned to it.
******************************************************************************/
uint64_t opteed_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
cpu_context_t *ns_cpu_context;
unsigned long mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr);
optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
uint64_t rc;
/*
* Determine which security state this SMC originated from
*/
if (is_caller_non_secure(flags)) {
/*
* This is a fresh request from the non-secure client.
* The parameters are in x1 and x2. Figure out which
* registers need to be preserved, save the non-secure
* state and send the request to the secure payload.
*/
assert(handle == cm_get_context(NON_SECURE));
cm_el1_sysregs_context_save(NON_SECURE);
/*
* We are done stashing the non-secure context. Ask the
* OPTEE to do the work now.
*/
/*
* Verify if there is a valid context to use, copy the
* operation type and parameters to the secure context
* and jump to the fast smc entry point in the secure
* payload. Entry into S-EL1 will take place upon exit
* from this function.
*/
assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
/* Set appropriate entry for SMC.
* We expect OPTEE to manage the PSTATE.I and PSTATE.F
* flags as appropriate.
*/
if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
cm_set_elr_el3(SECURE, (uint64_t)
&optee_vectors->fast_smc_entry);
} else {
cm_set_elr_el3(SECURE, (uint64_t)
&optee_vectors->std_smc_entry);
}
cm_el1_sysregs_context_restore(SECURE);
cm_set_next_eret_context(SECURE);
/* Propagate hypervisor client ID */
write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
CTX_GPREG_X7,
read_ctx_reg(get_gpregs_ctx(handle),
CTX_GPREG_X7));
SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
}
/*
* Returning from OPTEE
*/
switch (smc_fid) {
/*
* OPTEE has finished initialising itself after a cold boot
*/
case TEESMC_OPTEED_RETURN_ENTRY_DONE:
/*
* Stash the OPTEE entry points information. This is done
* only once on the primary cpu
*/
assert(optee_vectors == NULL);
optee_vectors = (optee_vectors_t *) x1;
if (optee_vectors) {
set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
/*
* OPTEE has been successfully initialized.
* Register power management hooks with PSCI
*/
psci_register_spd_pm_hook(&opteed_pm);
/*
* Register an interrupt handler for S-EL1 interrupts
* when generated during code executing in the
* non-secure state.
*/
flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
opteed_sel1_interrupt_handler,
flags);
if (rc)
panic();
}
/*
* OPTEE reports completion. The OPTEED must have initiated
* the original request through a synchronous entry into
* OPTEE. Jump back to the original C runtime context.
*/
opteed_synchronous_sp_exit(optee_ctx, x1);
/*
* These function IDs is used only by OP-TEE to indicate it has
* finished:
* 1. turning itself on in response to an earlier psci
* cpu_on request
* 2. resuming itself after an earlier psci cpu_suspend
* request.
*/
case TEESMC_OPTEED_RETURN_ON_DONE:
case TEESMC_OPTEED_RETURN_RESUME_DONE:
/*
* These function IDs is used only by the SP to indicate it has
* finished:
* 1. suspending itself after an earlier psci cpu_suspend
* request.
* 2. turning itself off in response to an earlier psci
* cpu_off request.
*/
case TEESMC_OPTEED_RETURN_OFF_DONE:
case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
/*
* OPTEE reports completion. The OPTEED must have initiated the
* original request through a synchronous entry into OPTEE.
* Jump back to the original C runtime context, and pass x1 as
* return value to the caller
*/
opteed_synchronous_sp_exit(optee_ctx, x1);
/*
* OPTEE is returning from a call or being preempted from a call, in
* either case execution should resume in the normal world.
*/
case TEESMC_OPTEED_RETURN_CALL_DONE:
/*
* This is the result from the secure client of an
* earlier request. The results are in x0-x3. Copy it
* into the non-secure context, save the secure state
* and return to the non-secure state.
*/
assert(handle == cm_get_context(SECURE));
cm_el1_sysregs_context_save(SECURE);
/* Get a reference to the non-secure context */
ns_cpu_context = cm_get_context(NON_SECURE);
assert(ns_cpu_context);
/* Restore non-secure state */
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
/*
* OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
* should resume in the normal world.
*/
case TEESMC_OPTEED_RETURN_FIQ_DONE:
/* Get a reference to the non-secure context */
ns_cpu_context = cm_get_context(NON_SECURE);
assert(ns_cpu_context);
/*
* Restore non-secure state. There is no need to save the
* secure system register context since OPTEE was supposed
* to preserve it during S-EL1 interrupt handling.
*/
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
SMC_RET0((uint64_t) ns_cpu_context);
default:
panic();
}
}
/* Define an OPTEED runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
opteed_fast,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_FAST,
opteed_setup,
opteed_smc_handler
);
/* Define an OPTEED runtime service descriptor for standard SMC calls */
DECLARE_RT_SVC(
opteed_std,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_STD,
NULL,
opteed_smc_handler
);