blob: 8d9102b76679b3bf27aa12dc68202a6c3951f796 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hubconnection.h"
#include "eventnums.h"
#include "sensType.h"
#define LOG_TAG "nanohub"
#include <utils/Log.h>
#include <utils/SystemClock.h>
#include "file.h"
#include "JSONObject.h"
#include <errno.h>
#include <unistd.h>
#include <math.h>
#include <inttypes.h>
#include <cutils/properties.h>
#include <linux/input.h>
#include <linux/uinput.h>
#include <media/stagefright/foundation/ADebug.h>
#include <sys/inotify.h>
#define APP_ID_GET_VENDOR(appid) ((appid) >> 24)
#define APP_ID_MAKE(vendor, app) ((((uint64_t)(vendor)) << 24) | ((app) & 0x00FFFFFF))
#define APP_ID_VENDOR_GOOGLE 0x476f6f676cULL // "Googl"
#define APP_ID_APP_BMI160 2
#define SENS_TYPE_TO_EVENT(_sensorType) (EVT_NO_FIRST_SENSOR_EVENT + (_sensorType))
#define NANOHUB_FILE_PATH "/dev/nanohub"
#define NANOHUB_LOCK_DIR "/data/system/nanohub_lock"
#define NANOHUB_LOCK_FILE NANOHUB_LOCK_DIR "/lock"
#define MAG_BIAS_FILE_PATH "/sys/class/power_supply/battery/compass_compensation"
#define NANOHUB_LOCK_DIR_PERMS (S_IRUSR | S_IWUSR | S_IXUSR)
#define SENSOR_RATE_ONCHANGE 0xFFFFFF01UL
#define SENSOR_RATE_ONESHOT 0xFFFFFF02UL
#define MIN_MAG_SQ (10.0f * 10.0f)
#define MAX_MAG_SQ (80.0f * 80.0f)
#define ACCEL_RAW_KSCALE (8.0f * 9.81f / 32768.0f)
#define OS_LOG_EVENT 0x474F4C41 // ascii: ALOG
#ifdef LID_STATE_REPORTING_ENABLED
const char LID_STATE_PROPERTY[] = "sensors.contexthub.lid_state";
const char LID_STATE_UNKNOWN[] = "unknown";
const char LID_STATE_OPEN[] = "open";
const char LID_STATE_CLOSED[] = "closed";
#endif // LID_STATE_REPORTING_ENABLED
static const uint32_t delta_time_encoded = 1;
static const uint32_t delta_time_shift_table[2] = {9, 0};
namespace android {
// static
Mutex HubConnection::sInstanceLock;
// static
HubConnection *HubConnection::sInstance = NULL;
HubConnection *HubConnection::getInstance()
{
Mutex::Autolock autoLock(sInstanceLock);
if (sInstance == NULL) {
sInstance = new HubConnection;
}
return sInstance;
}
HubConnection::HubConnection()
: Thread(false /* canCallJava */),
mRing(10 *1024),
mActivityCbCookie(NULL),
mActivityCb(NULL),
mStepCounterOffset(0ull),
mLastStepCount(0ull)
{
mMagBias[0] = mMagBias[1] = mMagBias[2] = 0.0f;
mMagAccuracy = SENSOR_STATUS_UNRELIABLE;
mMagAccuracyRestore = SENSOR_STATUS_UNRELIABLE;
mGyroBias[0] = mGyroBias[1] = mGyroBias[2] = 0.0f;
memset(&mSensorState, 0x00, sizeof(mSensorState));
mFd = open(NANOHUB_FILE_PATH, O_RDWR);
mPollFds[0].fd = mFd;
mPollFds[0].events = POLLIN;
mPollFds[0].revents = 0;
mNumPollFds = 1;
initNanohubLock();
#ifdef USB_MAG_BIAS_REPORTING_ENABLED
mUsbMagBias = 0;
mMagBiasPollIndex = -1;
int magBiasFd = open(MAG_BIAS_FILE_PATH, O_RDONLY);
if (magBiasFd < 0) {
ALOGW("Mag bias file open failed: %s", strerror(errno));
} else {
mPollFds[mNumPollFds].fd = magBiasFd;
mPollFds[mNumPollFds].events = 0;
mPollFds[mNumPollFds].revents = 0;
mMagBiasPollIndex = mNumPollFds;
mNumPollFds++;
}
#endif // USB_MAG_BIAS_REPORTING_ENABLED
mSensorState[COMMS_SENSOR_ACCEL].sensorType = SENS_TYPE_ACCEL;
mSensorState[COMMS_SENSOR_GYRO].sensorType = SENS_TYPE_GYRO;
mSensorState[COMMS_SENSOR_GYRO].alt = COMMS_SENSOR_GYRO_UNCALIBRATED;
mSensorState[COMMS_SENSOR_GYRO_UNCALIBRATED].sensorType = SENS_TYPE_GYRO;
mSensorState[COMMS_SENSOR_GYRO_UNCALIBRATED].alt = COMMS_SENSOR_GYRO;
mSensorState[COMMS_SENSOR_MAG].sensorType = SENS_TYPE_MAG;
mSensorState[COMMS_SENSOR_MAG].alt = COMMS_SENSOR_MAG_UNCALIBRATED;
mSensorState[COMMS_SENSOR_MAG_UNCALIBRATED].sensorType = SENS_TYPE_MAG;
mSensorState[COMMS_SENSOR_MAG_UNCALIBRATED].alt = COMMS_SENSOR_MAG;
mSensorState[COMMS_SENSOR_LIGHT].sensorType = SENS_TYPE_ALS;
mSensorState[COMMS_SENSOR_PROXIMITY].sensorType = SENS_TYPE_PROX;
mSensorState[COMMS_SENSOR_PRESSURE].sensorType = SENS_TYPE_BARO;
mSensorState[COMMS_SENSOR_TEMPERATURE].sensorType = SENS_TYPE_TEMP;
mSensorState[COMMS_SENSOR_ORIENTATION].sensorType = SENS_TYPE_ORIENTATION;
mSensorState[COMMS_SENSOR_WINDOW_ORIENTATION].sensorType = SENS_TYPE_WIN_ORIENTATION;
mSensorState[COMMS_SENSOR_WINDOW_ORIENTATION].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_STEP_DETECTOR].sensorType = SENS_TYPE_STEP_DETECT;
mSensorState[COMMS_SENSOR_STEP_DETECTOR].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_STEP_COUNTER].sensorType = SENS_TYPE_STEP_COUNT;
mSensorState[COMMS_SENSOR_SIGNIFICANT_MOTION].sensorType = SENS_TYPE_SIG_MOTION;
mSensorState[COMMS_SENSOR_SIGNIFICANT_MOTION].rate = SENSOR_RATE_ONESHOT;
mSensorState[COMMS_SENSOR_GRAVITY].sensorType = SENS_TYPE_GRAVITY;
mSensorState[COMMS_SENSOR_LINEAR_ACCEL].sensorType = SENS_TYPE_LINEAR_ACCEL;
mSensorState[COMMS_SENSOR_ROTATION_VECTOR].sensorType = SENS_TYPE_ROTATION_VECTOR;
mSensorState[COMMS_SENSOR_GEO_MAG].sensorType = SENS_TYPE_GEO_MAG_ROT_VEC;
mSensorState[COMMS_SENSOR_GAME_ROTATION_VECTOR].sensorType = SENS_TYPE_GAME_ROT_VECTOR;
mSensorState[COMMS_SENSOR_HALL].sensorType = SENS_TYPE_HALL;
mSensorState[COMMS_SENSOR_HALL].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_SYNC].sensorType = SENS_TYPE_VSYNC;
mSensorState[COMMS_SENSOR_SYNC].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_ACTIVITY].sensorType = SENS_TYPE_ACTIVITY;
mSensorState[COMMS_SENSOR_ACTIVITY].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_TILT].sensorType = SENS_TYPE_TILT;
mSensorState[COMMS_SENSOR_TILT].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_GESTURE].sensorType = SENS_TYPE_GESTURE;
mSensorState[COMMS_SENSOR_GESTURE].rate = SENSOR_RATE_ONESHOT;
mSensorState[COMMS_SENSOR_DOUBLE_TWIST].sensorType = SENS_TYPE_DOUBLE_TWIST;
mSensorState[COMMS_SENSOR_DOUBLE_TWIST].rate = SENSOR_RATE_ONCHANGE;
mSensorState[COMMS_SENSOR_DOUBLE_TAP].sensorType = SENS_TYPE_DOUBLE_TAP;
mSensorState[COMMS_SENSOR_DOUBLE_TAP].rate = SENSOR_RATE_ONCHANGE;
#ifdef LID_STATE_REPORTING_ENABLED
initializeUinputNode();
// set initial lid state
if (property_set(LID_STATE_PROPERTY, LID_STATE_UNKNOWN) < 0) {
ALOGE("could not set lid_state property");
}
// enable hall sensor for folio
if (mFd >= 0) {
queueActivate(COMMS_SENSOR_HALL, true /* enable */);
}
#endif // LID_STATE_REPORTING_ENABLED
}
HubConnection::~HubConnection()
{
close(mFd);
}
void HubConnection::onFirstRef()
{
run("HubConnection", PRIORITY_URGENT_DISPLAY);
}
status_t HubConnection::initCheck() const
{
return mFd < 0 ? UNKNOWN_ERROR : OK;
}
status_t HubConnection::getAliveCheck()
{
return OK;
}
static sp<JSONObject> readSettings(File *file) {
off64_t size = file->seekTo(0, SEEK_END);
file->seekTo(0, SEEK_SET);
sp<JSONObject> root;
if (size > 0) {
char *buf = (char *)malloc(size);
CHECK_EQ(file->read(buf, size), (ssize_t)size);
file->seekTo(0, SEEK_SET);
sp<JSONCompound> in = JSONCompound::Parse(buf, size);
free(buf);
buf = NULL;
if (in != NULL && in->isObject()) {
root = (JSONObject *)in.get();
}
}
if (root == NULL) {
root = new JSONObject;
}
return root;
}
static bool getCalibrationInt32(
const sp<JSONObject> &settings, const char *key, int32_t *out,
size_t numArgs) {
sp<JSONArray> array;
if (!settings->getArray(key, &array)) {
return false;
} else {
for (size_t i = 0; i < numArgs; i++) {
if (!array->getInt32(i, &out[i])) {
return false;
}
}
}
return true;
}
static bool getCalibrationFloat(
const sp<JSONObject> &settings, const char *key, float out[3]) {
sp<JSONArray> array;
if (!settings->getArray(key, &array)) {
return false;
} else {
for (size_t i = 0; i < 3; i++) {
if (!array->getFloat(i, &out[i])) {
return false;
}
}
}
return true;
}
static void loadSensorSettings(sp<JSONObject>* settings,
sp<JSONObject>* saved_settings) {
File settings_file(CONTEXTHUB_SETTINGS_PATH, "r");
File saved_settings_file(CONTEXTHUB_SAVED_SETTINGS_PATH, "r");
status_t err;
if ((err = settings_file.initCheck()) != OK) {
ALOGE("settings file open failed: %d (%s)",
err,
strerror(-err));
*settings = new JSONObject;
} else {
*settings = readSettings(&settings_file);
}
if ((err = saved_settings_file.initCheck()) != OK) {
ALOGE("saved settings file open failed: %d (%s)",
err,
strerror(-err));
*saved_settings = new JSONObject;
} else {
*saved_settings = readSettings(&saved_settings_file);
}
}
void HubConnection::saveSensorSettings() const {
File saved_settings_file(CONTEXTHUB_SAVED_SETTINGS_PATH, "w");
status_t err;
if ((err = saved_settings_file.initCheck()) != OK) {
ALOGE("saved settings file open failed %d (%s)",
err,
strerror(-err));
return;
}
// Build a settings object.
sp<JSONArray> magArray = new JSONArray;
#ifdef USB_MAG_BIAS_REPORTING_ENABLED
magArray->addFloat(mMagBias[0] + mUsbMagBias);
#else
magArray->addFloat(mMagBias[0]);
#endif // USB_MAG_BIAS_REPORTING_ENABLED
magArray->addFloat(mMagBias[1]);
magArray->addFloat(mMagBias[2]);
sp<JSONObject> settingsObject = new JSONObject;
settingsObject->setArray("mag", magArray);
// Write the JSON string to disk.
AString serializedSettings = settingsObject->toString();
size_t size = serializedSettings.size();
if ((err = saved_settings_file.write(serializedSettings.c_str(), size)) != (ssize_t)size) {
ALOGE("saved settings file write failed %d (%s)",
err,
strerror(-err));
}
}
sensors_event_t *HubConnection::initEv(sensors_event_t *ev, uint64_t timestamp, uint32_t type, uint32_t sensor)
{
memset(ev, 0x00, sizeof(sensors_event_t));
ev->version = sizeof(sensors_event_t);
ev->timestamp = timestamp;
ev->type = type;
ev->sensor = sensor;
return ev;
}
void HubConnection::processSample(uint64_t timestamp, uint32_t type, uint32_t sensor, struct OneAxisSample *sample, __attribute__((unused)) bool highAccuracy)
{
sensors_event_t nev[1];
int cnt = 0;
switch (sensor) {
case COMMS_SENSOR_ACTIVITY:
if (mActivityCb != NULL) {
(*mActivityCb)(mActivityCbCookie, timestamp / 1000ull,
false, /* is_flush */
(float)(sample->idata & 0x7), 0.0, 0.0);
}
break;
case COMMS_SENSOR_PRESSURE:
initEv(&nev[cnt++], timestamp, type, sensor)->pressure = sample->fdata;
break;
case COMMS_SENSOR_TEMPERATURE:
initEv(&nev[cnt++], timestamp, type, sensor)->temperature = sample->fdata;
break;
case COMMS_SENSOR_PROXIMITY:
initEv(&nev[cnt++], timestamp, type, sensor)->distance = sample->fdata;
break;
case COMMS_SENSOR_LIGHT:
initEv(&nev[cnt++], timestamp, type, sensor)->light = sample->fdata;
break;
case COMMS_SENSOR_STEP_COUNTER:
// We'll stash away the last step count in case we need to reset
// the hub. This last step count would then become the new offset.
mLastStepCount = mStepCounterOffset + sample->idata;
initEv(&nev[cnt++], timestamp, type, sensor)->u64.step_counter = mLastStepCount;
break;
case COMMS_SENSOR_STEP_DETECTOR:
case COMMS_SENSOR_SIGNIFICANT_MOTION:
case COMMS_SENSOR_TILT:
case COMMS_SENSOR_DOUBLE_TWIST:
initEv(&nev[cnt++], timestamp, type, sensor)->data[0] = 1.0f;
break;
case COMMS_SENSOR_GESTURE:
case COMMS_SENSOR_SYNC:
initEv(&nev[cnt++], timestamp, type, sensor)->data[0] = sample->idata;
break;
case COMMS_SENSOR_HALL:
#ifdef LID_STATE_REPORTING_ENABLED
sendFolioEvent(sample->idata);
#endif // LID_STATE_REPORTING_ENABLED
break;
case COMMS_SENSOR_WINDOW_ORIENTATION:
initEv(&nev[cnt++], timestamp, type, sensor)->data[0] = sample->idata;
break;
default:
break;
}
if (cnt > 0)
mRing.write(nev, cnt);
}
void HubConnection::magAccuracyUpdate(float x, float y, float z)
{
float magSq = x * x + y * y + z * z;
if (magSq < MIN_MAG_SQ || magSq > MAX_MAG_SQ) {
// save last good accuracy (either MEDIUM or HIGH)
if (mMagAccuracy != SENSOR_STATUS_UNRELIABLE)
mMagAccuracyRestore = mMagAccuracy;
mMagAccuracy = SENSOR_STATUS_UNRELIABLE;
} else if (mMagAccuracy == SENSOR_STATUS_UNRELIABLE) {
// restore
mMagAccuracy = mMagAccuracyRestore;
}
}
void HubConnection::processSample(uint64_t timestamp, uint32_t type, uint32_t sensor, struct RawThreeAxisSample *sample, __attribute__((unused)) bool highAccuracy)
{
sensors_vec_t *sv;
sensors_event_t nev[2];
int cnt = 0;
switch (sensor) {
case COMMS_SENSOR_ACCEL:
sv = &initEv(&nev[cnt++], timestamp, type, sensor)->acceleration;
sv->x = sample->ix * ACCEL_RAW_KSCALE;
sv->y = sample->iy * ACCEL_RAW_KSCALE;
sv->z = sample->iz * ACCEL_RAW_KSCALE;
sv->status = SENSOR_STATUS_ACCURACY_HIGH;
break;
default:
break;
}
if (cnt > 0)
mRing.write(nev, cnt);
}
void HubConnection::processSample(uint64_t timestamp, uint32_t type, uint32_t sensor, struct ThreeAxisSample *sample, bool highAccuracy)
{
sensors_vec_t *sv;
uncalibrated_event_t *ue;
sensors_event_t *ev;
sensors_event_t nev[2];
static const float heading_accuracy = M_PI / 6.0f;
float w;
int cnt = 0;
switch (sensor) {
case COMMS_SENSOR_ACCEL:
sv = &initEv(&nev[cnt++], timestamp, type, sensor)->acceleration;
sv->x = sample->x;
sv->y = sample->y;
sv->z = sample->z;
sv->status = SENSOR_STATUS_ACCURACY_HIGH;
break;
case COMMS_SENSOR_GYRO:
if (mSensorState[sensor].enable) {
sv = &initEv(&nev[cnt++], timestamp, type, sensor)->gyro;
sv->x = sample->x;
sv->y = sample->y;
sv->z = sample->z;
sv->status = SENSOR_STATUS_ACCURACY_HIGH;
}
if (mSensorState[COMMS_SENSOR_GYRO_UNCALIBRATED].enable) {
ue = &initEv(&nev[cnt++], timestamp,
SENSOR_TYPE_GYROSCOPE_UNCALIBRATED,
COMMS_SENSOR_GYRO_UNCALIBRATED)->uncalibrated_gyro;
ue->x_uncalib = sample->x + mGyroBias[0];
ue->y_uncalib = sample->y + mGyroBias[1];
ue->z_uncalib = sample->z + mGyroBias[2];
ue->x_bias = mGyroBias[0];
ue->y_bias = mGyroBias[1];
ue->z_bias = mGyroBias[2];
}
break;
case COMMS_SENSOR_GYRO_BIAS:
mGyroBias[0] = sample->x;
mGyroBias[1] = sample->y;
mGyroBias[2] = sample->z;
break;
case COMMS_SENSOR_MAG:
magAccuracyUpdate(sample->x, sample->y, sample->z);
if (mSensorState[sensor].enable) {
sv = &initEv(&nev[cnt++], timestamp, type, sensor)->magnetic;
sv->x = sample->x;
sv->y = sample->y;
sv->z = sample->z;
sv->status = mMagAccuracy;
}
if (mSensorState[COMMS_SENSOR_MAG_UNCALIBRATED].enable) {
ue = &initEv(&nev[cnt++], timestamp,
SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
COMMS_SENSOR_MAG_UNCALIBRATED)->uncalibrated_magnetic;
ue->x_uncalib = sample->x + mMagBias[0];
ue->y_uncalib = sample->y + mMagBias[1];
ue->z_uncalib = sample->z + mMagBias[2];
ue->x_bias = mMagBias[0];
ue->y_bias = mMagBias[1];
ue->z_bias = mMagBias[2];
}
break;
case COMMS_SENSOR_MAG_BIAS:
mMagAccuracy = highAccuracy ? SENSOR_STATUS_ACCURACY_HIGH : SENSOR_STATUS_ACCURACY_MEDIUM;
mMagBias[0] = sample->x;
mMagBias[1] = sample->y;
mMagBias[2] = sample->z;
saveSensorSettings();
break;
case COMMS_SENSOR_ORIENTATION:
case COMMS_SENSOR_LINEAR_ACCEL:
case COMMS_SENSOR_GRAVITY:
sv = &initEv(&nev[cnt++], timestamp, type, sensor)->orientation;
sv->x = sample->x;
sv->y = sample->y;
sv->z = sample->z;
sv->status = mMagAccuracy;
break;
case COMMS_SENSOR_DOUBLE_TAP:
ev = initEv(&nev[cnt++], timestamp, type, sensor);
ev->data[0] = sample->x;
ev->data[1] = sample->y;
ev->data[2] = sample->z;
break;
case COMMS_SENSOR_ROTATION_VECTOR:
ev = initEv(&nev[cnt++], timestamp, type, sensor);
w = sample->x * sample->x + sample->y * sample->y + sample->z * sample->z;
if (w < 1.0f)
w = sqrt(1.0f - w);
else
w = 0.0f;
ev->data[0] = sample->x;
ev->data[1] = sample->y;
ev->data[2] = sample->z;
ev->data[3] = w;
ev->data[4] = (4 - mMagAccuracy) * heading_accuracy;
break;
case COMMS_SENSOR_GEO_MAG:
case COMMS_SENSOR_GAME_ROTATION_VECTOR:
ev = initEv(&nev[cnt++], timestamp, type, sensor);
w = sample->x * sample->x + sample->y * sample->y + sample->z * sample->z;
if (w < 1.0f)
w = sqrt(1.0f - w);
else
w = 0.0f;
ev->data[0] = sample->x;
ev->data[1] = sample->y;
ev->data[2] = sample->z;
ev->data[3] = w;
break;
default:
break;
}
if (cnt > 0)
mRing.write(nev, cnt);
}
void HubConnection::discardInotifyEvent() {
// Read & discard an inotify event. We only use the presence of an event as
// a trigger to perform the file existence check (for simplicity)
if (mInotifyPollIndex >= 0) {
char buf[sizeof(struct inotify_event) + NAME_MAX + 1];
int ret = ::read(mPollFds[mInotifyPollIndex].fd, buf, sizeof(buf));
ALOGD("Discarded %d bytes of inotify data", ret);
}
}
void HubConnection::waitOnNanohubLock() {
if (mInotifyPollIndex < 0) {
return;
}
struct pollfd *pfd = &mPollFds[mInotifyPollIndex];
// While the lock file exists, poll on the inotify fd (with timeout)
while (access(NANOHUB_LOCK_FILE, F_OK) == 0) {
ALOGW("Nanohub is locked; blocking read thread");
int ret = poll(pfd, 1, 5000);
if ((ret > 0) && (pfd->revents & POLLIN)) {
discardInotifyEvent();
}
}
}
void HubConnection::restoreSensorState()
{
Mutex::Autolock autoLock(mLock);
sendCalibrationOffsets();
for (int i = 0; i < NUM_COMMS_SENSORS_PLUS_1; i++) {
if (mSensorState[i].sensorType && mSensorState[i].enable) {
struct ConfigCmd cmd;
initConfigCmd(&cmd, i);
ALOGI("restoring: sensor=%d, handle=%d, enable=%d, period=%" PRId64 ", latency=%" PRId64,
cmd.sensorType, i, mSensorState[i].enable, frequency_q10_to_period_ns(mSensorState[i].rate),
mSensorState[i].latency);
int ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret != sizeof(cmd)) {
ALOGE("failed to send config command to restore sensor %d\n", cmd.sensorType);
}
cmd.cmd = CONFIG_CMD_FLUSH;
for (int j = 0; j < mSensorState[i].flushCnt; j++) {
int ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret != sizeof(cmd)) {
ALOGE("failed to send flush command to sensor %d\n", cmd.sensorType);
}
}
}
}
mStepCounterOffset = mLastStepCount;
}
void HubConnection::postOsLog(uint8_t *buf, ssize_t len)
{
// if len is less than 6, it's either an invalid or an empty log message.
if (len < 6)
return;
buf[len] = 0x00;
switch (buf[4]) {
case 'E':
ALOGE("osLog: %s", &buf[5]);
break;
case 'W':
ALOGW("osLog: %s", &buf[5]);
break;
case 'I':
ALOGI("osLog: %s", &buf[5]);
break;
case 'D':
ALOGD("osLog: %s", &buf[5]);
break;
default:
break;
}
}
ssize_t HubConnection::processBuf(uint8_t *buf, ssize_t len)
{
struct nAxisEvent *data = (struct nAxisEvent *)buf;
uint32_t type, sensor, bias, currSensor;
int i, numSamples;
bool one, rawThree, three;
sensors_event_t ev;
uint64_t timestamp;
ssize_t ret = 0;
if (len >= 4) {
ret = sizeof(data->evtType);
one = three = rawThree = false;
bias = 0;
switch (data->evtType) {
case OS_LOG_EVENT:
postOsLog(buf, len);
return 0;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ACCEL):
type = SENSOR_TYPE_ACCELEROMETER;
sensor = COMMS_SENSOR_ACCEL;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ACCEL_RAW):
type = SENSOR_TYPE_ACCELEROMETER;
sensor = COMMS_SENSOR_ACCEL;
rawThree = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_GYRO):
type = SENSOR_TYPE_GYROSCOPE;
sensor = COMMS_SENSOR_GYRO;
bias = COMMS_SENSOR_GYRO_BIAS;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_MAG):
type = SENSOR_TYPE_MAGNETIC_FIELD;
sensor = COMMS_SENSOR_MAG;
bias = COMMS_SENSOR_MAG_BIAS;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ALS):
type = SENSOR_TYPE_LIGHT;
sensor = COMMS_SENSOR_LIGHT;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_PROX):
type = SENSOR_TYPE_PROXIMITY;
sensor = COMMS_SENSOR_PROXIMITY;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_BARO):
type = SENSOR_TYPE_PRESSURE;
sensor = COMMS_SENSOR_PRESSURE;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_TEMP):
type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
sensor = COMMS_SENSOR_TEMPERATURE;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ORIENTATION):
type = SENSOR_TYPE_ORIENTATION;
sensor = COMMS_SENSOR_ORIENTATION;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_WIN_ORIENTATION):
type = SENSOR_TYPE_DEVICE_ORIENTATION;
sensor = COMMS_SENSOR_WINDOW_ORIENTATION;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_STEP_DETECT):
type = SENSOR_TYPE_STEP_DETECTOR;
sensor = COMMS_SENSOR_STEP_DETECTOR;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_STEP_COUNT):
type = SENSOR_TYPE_STEP_COUNTER;
sensor = COMMS_SENSOR_STEP_COUNTER;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_SIG_MOTION):
type = SENSOR_TYPE_SIGNIFICANT_MOTION;
sensor = COMMS_SENSOR_SIGNIFICANT_MOTION;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_GRAVITY):
type = SENSOR_TYPE_GRAVITY;
sensor = COMMS_SENSOR_GRAVITY;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_LINEAR_ACCEL):
type = SENSOR_TYPE_LINEAR_ACCELERATION;
sensor = COMMS_SENSOR_LINEAR_ACCEL;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ROTATION_VECTOR):
type = SENSOR_TYPE_ROTATION_VECTOR;
sensor = COMMS_SENSOR_ROTATION_VECTOR;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_GEO_MAG_ROT_VEC):
type = SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR;
sensor = COMMS_SENSOR_GEO_MAG;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_GAME_ROT_VECTOR):
type = SENSOR_TYPE_GAME_ROTATION_VECTOR;
sensor = COMMS_SENSOR_GAME_ROTATION_VECTOR;
three = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_HALL):
type = 0;
sensor = COMMS_SENSOR_HALL;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_VSYNC):
type = SENSOR_TYPE_SYNC;
sensor = COMMS_SENSOR_SYNC;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_ACTIVITY):
type = 0;
sensor = COMMS_SENSOR_ACTIVITY;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_TILT):
type = SENSOR_TYPE_TILT_DETECTOR;
sensor = COMMS_SENSOR_TILT;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_GESTURE):
type = SENSOR_TYPE_PICK_UP_GESTURE;
sensor = COMMS_SENSOR_GESTURE;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_DOUBLE_TWIST):
type = SENSOR_TYPE_DOUBLE_TWIST;
sensor = COMMS_SENSOR_DOUBLE_TWIST;
one = true;
break;
case SENS_TYPE_TO_EVENT(SENS_TYPE_DOUBLE_TAP):
type = SENSOR_TYPE_DOUBLE_TAP;
sensor = COMMS_SENSOR_DOUBLE_TAP;
three = true;
break;
case EVT_RESET_REASON:
uint32_t resetReason;
memcpy(&resetReason, data->buffer, sizeof(resetReason));
ALOGI("Observed hub reset: 0x%08" PRIx32, resetReason);
restoreSensorState();
return 0;
default:
return 0;
}
}
if (len >= 16) {
ret += sizeof(data->referenceTime);
timestamp = data->referenceTime;
numSamples = data->firstSample.numSamples;
for (i=0; i<numSamples; i++) {
if (data->firstSample.biasPresent && data->firstSample.biasSample == i)
currSensor = bias;
else
currSensor = sensor;
if (one) {
if (i > 0)
timestamp += ((uint64_t)data->oneSamples[i].deltaTime) << delta_time_shift_table[data->oneSamples[i].deltaTime & delta_time_encoded];
processSample(timestamp, type, currSensor, &data->oneSamples[i], data->firstSample.highAccuracy);
ret += sizeof(data->oneSamples[i]);
} else if (rawThree) {
if (i > 0)
timestamp += ((uint64_t)data->rawThreeSamples[i].deltaTime) << delta_time_shift_table[data->rawThreeSamples[i].deltaTime & delta_time_encoded];
processSample(timestamp, type, currSensor, &data->rawThreeSamples[i], data->firstSample.highAccuracy);
ret += sizeof(data->rawThreeSamples[i]);
} else if (three) {
if (i > 0)
timestamp += ((uint64_t)data->threeSamples[i].deltaTime) << delta_time_shift_table[data->threeSamples[i].deltaTime & delta_time_encoded];
processSample(timestamp, type, currSensor, &data->threeSamples[i], data->firstSample.highAccuracy);
ret += sizeof(data->threeSamples[i]);
}
}
if (!numSamples)
ret += sizeof(data->firstSample);
for (i=0; i<data->firstSample.numFlushes; i++) {
if (sensor == COMMS_SENSOR_ACTIVITY) {
if (mActivityCb != NULL) {
(*mActivityCb)(mActivityCbCookie, 0ull, /* when_us */
true, /* is_flush */
0.0f, 0.0f, 0.0f);
}
} else {
memset(&ev, 0x00, sizeof(sensors_event_t));
ev.version = META_DATA_VERSION;
ev.timestamp = 0;
ev.type = SENSOR_TYPE_META_DATA;
ev.sensor = 0;
ev.meta_data.what = META_DATA_FLUSH_COMPLETE;
if (mSensorState[sensor].alt && mSensorState[mSensorState[sensor].alt].flushCnt > 0) {
mSensorState[mSensorState[sensor].alt].flushCnt --;
ev.meta_data.sensor = mSensorState[sensor].alt;
} else {
mSensorState[sensor].flushCnt --;
ev.meta_data.sensor = sensor;
}
mRing.write(&ev, 1);
ALOGI("flushing %d", ev.meta_data.sensor);
}
}
}
return ret;
}
void HubConnection::sendCalibrationOffsets()
{
sp<JSONObject> settings;
sp<JSONObject> saved_settings;
int32_t accel[3], gyro[3], proximity, proximity_array[4];
float barometer, mag[3], light;
loadSensorSettings(&settings, &saved_settings);
if (getCalibrationInt32(settings, "accel", accel, 3))
queueDataInternal(COMMS_SENSOR_ACCEL, accel, sizeof(accel));
if (getCalibrationInt32(settings, "gyro", gyro, 3))
queueDataInternal(COMMS_SENSOR_GYRO, gyro, sizeof(gyro));
if (settings->getFloat("barometer", &barometer))
queueDataInternal(COMMS_SENSOR_PRESSURE, &barometer, sizeof(barometer));
if (settings->getInt32("proximity", &proximity))
queueDataInternal(COMMS_SENSOR_PROXIMITY, &proximity, sizeof(proximity));
if (getCalibrationInt32(settings, "proximity", proximity_array, 4))
queueDataInternal(COMMS_SENSOR_PROXIMITY, proximity_array, sizeof(proximity_array));
if (settings->getFloat("light", &light))
queueDataInternal(COMMS_SENSOR_LIGHT, &light, sizeof(light));
if (getCalibrationFloat(saved_settings, "mag", mag))
queueDataInternal(COMMS_SENSOR_MAG, mag, sizeof(mag));
}
bool HubConnection::threadLoop() {
ALOGI("threadLoop: starting");
if (mFd < 0) {
ALOGE("threadLoop: exiting prematurely: nanohub is unavailable");
return false;
}
waitOnNanohubLock();
sendCalibrationOffsets();
while (!Thread::exitPending()) {
ssize_t ret;
do {
ret = poll(mPollFds, mNumPollFds, -1);
} while (ret < 0 && errno == EINTR);
if (mInotifyPollIndex >= 0 && mPollFds[mInotifyPollIndex].revents & POLLIN) {
discardInotifyEvent();
waitOnNanohubLock();
}
#ifdef USB_MAG_BIAS_REPORTING_ENABLED
if (mMagBiasPollIndex >= 0 && mPollFds[mMagBiasPollIndex].revents & POLLERR) {
// Read from mag bias file
char buf[16];
lseek(mPollFds[mMagBiasPollIndex].fd, 0, SEEK_SET);
::read(mPollFds[mMagBiasPollIndex].fd, buf, 16);
float bias = atof(buf);
mUsbMagBias = bias;
queueUsbMagBias();
}
#endif // USB_MAG_BIAS_REPORTING_ENABLED
if (mPollFds[0].revents & POLLIN) {
uint8_t recv[256];
ssize_t len = ::read(mFd, recv, sizeof(recv));
for (ssize_t offset = 0; offset < len;) {
ret = processBuf(recv + offset, len - offset);
if (ret > 0)
offset += ret;
else
break;
}
}
}
return false;
}
ssize_t HubConnection::read(sensors_event_t *ev, size_t size) {
return mRing.read(ev, size);
}
void HubConnection::setActivityCallback(
void *cookie,
void (*cb)(void *, uint64_t time_ms, bool, float x, float y, float z))
{
Mutex::Autolock autoLock(mLock);
mActivityCbCookie = cookie;
mActivityCb = cb;
}
void HubConnection::initConfigCmd(struct ConfigCmd *cmd, int handle)
{
uint8_t alt = mSensorState[handle].alt;
memset(cmd, 0x00, sizeof(*cmd));
cmd->evtType = EVT_NO_SENSOR_CONFIG_EVENT;
cmd->sensorType = mSensorState[handle].sensorType;
if (alt && mSensorState[alt].enable && mSensorState[handle].enable) {
cmd->cmd = CONFIG_CMD_ENABLE;
if (mSensorState[alt].rate > mSensorState[handle].rate)
cmd->rate = mSensorState[alt].rate;
else
cmd->rate = mSensorState[handle].rate;
if (mSensorState[alt].latency < mSensorState[handle].latency)
cmd->latency = mSensorState[alt].latency;
else
cmd->latency = mSensorState[handle].latency;
} else if (alt && mSensorState[alt].enable) {
cmd->cmd = mSensorState[alt].enable ? CONFIG_CMD_ENABLE : CONFIG_CMD_DISABLE;
cmd->rate = mSensorState[alt].rate;
cmd->latency = mSensorState[alt].latency;
} else { /* !alt || !mSensorState[alt].enable */
cmd->cmd = mSensorState[handle].enable ? CONFIG_CMD_ENABLE : CONFIG_CMD_DISABLE;
cmd->rate = mSensorState[handle].rate;
cmd->latency = mSensorState[handle].latency;
}
}
void HubConnection::queueActivate(int handle, bool enable)
{
struct ConfigCmd cmd;
int ret;
Mutex::Autolock autoLock(mLock);
if (mSensorState[handle].sensorType) {
mSensorState[handle].enable = enable;
initConfigCmd(&cmd, handle);
ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret == sizeof(cmd))
ALOGI("queueActivate: sensor=%d, handle=%d, enable=%d",
cmd.sensorType, handle, enable);
else
ALOGE("queueActivate: failed to send command: sensor=%d, handle=%d, enable=%d",
cmd.sensorType, handle, enable);
} else {
ALOGI("queueActivate: unhandled handle=%d, enable=%d", handle, enable);
}
}
void HubConnection::queueSetDelay(int handle, nsecs_t sampling_period_ns)
{
struct ConfigCmd cmd;
int ret;
Mutex::Autolock autoLock(mLock);
if (mSensorState[handle].sensorType) {
if (sampling_period_ns > 0 &&
mSensorState[handle].rate != SENSOR_RATE_ONCHANGE &&
mSensorState[handle].rate != SENSOR_RATE_ONESHOT) {
mSensorState[handle].rate = period_ns_to_frequency_q10(sampling_period_ns);
}
initConfigCmd(&cmd, handle);
ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret == sizeof(cmd))
ALOGI("queueSetDelay: sensor=%d, handle=%d, period=%" PRId64,
cmd.sensorType, handle, sampling_period_ns);
else
ALOGE("queueSetDelay: failed to send command: sensor=%d, handle=%d, period=%" PRId64,
cmd.sensorType, handle, sampling_period_ns);
} else {
ALOGI("queueSetDelay: unhandled handle=%d, period=%" PRId64, handle, sampling_period_ns);
}
}
void HubConnection::queueBatch(
int handle,
__attribute__((unused)) int flags,
nsecs_t sampling_period_ns,
nsecs_t max_report_latency_ns)
{
struct ConfigCmd cmd;
int ret;
Mutex::Autolock autoLock(mLock);
if (mSensorState[handle].sensorType) {
if (sampling_period_ns > 0 &&
mSensorState[handle].rate != SENSOR_RATE_ONCHANGE &&
mSensorState[handle].rate != SENSOR_RATE_ONESHOT) {
mSensorState[handle].rate = period_ns_to_frequency_q10(sampling_period_ns);
}
mSensorState[handle].latency = max_report_latency_ns;
initConfigCmd(&cmd, handle);
ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret == sizeof(cmd))
ALOGI("queueBatch: sensor=%d, handle=%d, period=%" PRId64 ", latency=%" PRId64,
cmd.sensorType, handle, sampling_period_ns, max_report_latency_ns);
else
ALOGE("queueBatch: failed to send command: sensor=%d, handle=%d, period=%" PRId64 ", latency=%" PRId64,
cmd.sensorType, handle, sampling_period_ns, max_report_latency_ns);
} else {
ALOGI("queueBatch: unhandled handle=%d, period=%" PRId64 ", latency=%" PRId64,
handle, sampling_period_ns, max_report_latency_ns);
}
}
void HubConnection::queueFlush(int handle)
{
struct ConfigCmd cmd;
int ret;
Mutex::Autolock autoLock(mLock);
if (mSensorState[handle].sensorType) {
mSensorState[handle].flushCnt++;
initConfigCmd(&cmd, handle);
cmd.cmd = CONFIG_CMD_FLUSH;
ret = TEMP_FAILURE_RETRY(write(mFd, &cmd, sizeof(cmd)));
if (ret == sizeof(cmd))
ALOGI("queueFlush: sensor=%d, handle=%d",
cmd.sensorType, handle);
else
ALOGE("queueFlush: failed to send command: sensor=%d, handle=%d",
cmd.sensorType, handle);
} else {
ALOGI("queueFlush: unhandled handle=%d", handle);
}
}
void HubConnection::queueDataInternal(int handle, void *data, size_t length)
{
struct ConfigCmd *cmd = (struct ConfigCmd *)malloc(sizeof(struct ConfigCmd) + length);
size_t ret;
if (cmd && mSensorState[handle].sensorType) {
initConfigCmd(cmd, handle);
memcpy(cmd->data, data, length);
cmd->cmd = CONFIG_CMD_CFG_DATA;
ret = TEMP_FAILURE_RETRY(write(mFd, cmd, sizeof(*cmd) + length));
if (ret == sizeof(*cmd) + length)
ALOGI("queueData: sensor=%d, length=%zu",
cmd->sensorType, length);
else
ALOGE("queueData: failed to send command: sensor=%d, length=%zu",
cmd->sensorType, length);
} else {
ALOGI("queueData: unhandled handle=%d", handle);
}
free(cmd);
}
void HubConnection::queueData(int handle, void *data, size_t length)
{
Mutex::Autolock autoLock(mLock);
queueDataInternal(handle, data, length);
}
void HubConnection::initNanohubLock() {
// Create the lock directory (if it doesn't already exist)
if (mkdir(NANOHUB_LOCK_DIR, NANOHUB_LOCK_DIR_PERMS) < 0 && errno != EEXIST) {
ALOGE("Couldn't create Nanohub lock directory: %s", strerror(errno));
return;
}
mInotifyPollIndex = -1;
int inotifyFd = inotify_init1(IN_NONBLOCK);
if (inotifyFd < 0) {
ALOGE("Couldn't initialize inotify: %s", strerror(errno));
} else if (inotify_add_watch(inotifyFd, NANOHUB_LOCK_DIR, IN_CREATE | IN_DELETE) < 0) {
ALOGE("Couldn't add inotify watch: %s", strerror(errno));
close(inotifyFd);
} else {
mPollFds[mNumPollFds].fd = inotifyFd;
mPollFds[mNumPollFds].events = POLLIN;
mPollFds[mNumPollFds].revents = 0;
mInotifyPollIndex = mNumPollFds;
mNumPollFds++;
}
}
#ifdef USB_MAG_BIAS_REPORTING_ENABLED
void HubConnection::queueUsbMagBias()
{
struct MsgCmd *cmd = (struct MsgCmd *)malloc(sizeof(struct MsgCmd) + sizeof(float));
size_t ret;
if (cmd) {
cmd->evtType = EVT_APP_FROM_HOST;
cmd->msg.appId = APP_ID_MAKE(APP_ID_VENDOR_GOOGLE, APP_ID_APP_BMI160);
cmd->msg.dataLen = sizeof(float);
memcpy((float *)(cmd+1), &mUsbMagBias, sizeof(float));
ret = TEMP_FAILURE_RETRY(write(mFd, cmd, sizeof(*cmd) + sizeof(float)));
if (ret == sizeof(*cmd) + sizeof(float))
ALOGI("queueUsbMagBias: bias=%f\n", mUsbMagBias);
else
ALOGE("queueUsbMagBias: failed to send command: bias=%f\n", mUsbMagBias);
free(cmd);
}
}
#endif // USB_MAG_BIAS_REPORTING_ENABLED
#ifdef LID_STATE_REPORTING_ENABLED
status_t HubConnection::initializeUinputNode()
{
int ret = 0;
// Open uinput dev node
mUinputFd = TEMP_FAILURE_RETRY(open("/dev/uinput", O_WRONLY | O_NONBLOCK));
if (mUinputFd < 0) {
ALOGE("could not open uinput node: %s", strerror(errno));
return UNKNOWN_ERROR;
}
// Enable SW_LID events
ret = TEMP_FAILURE_RETRY(ioctl(mUinputFd, UI_SET_EVBIT, EV_SW));
ret |= TEMP_FAILURE_RETRY(ioctl(mUinputFd, UI_SET_EVBIT, EV_SYN));
ret |= TEMP_FAILURE_RETRY(ioctl(mUinputFd, UI_SET_SWBIT, SW_LID));
if (ret < 0) {
ALOGE("could not send ioctl to uinput node: %s", strerror(errno));
return UNKNOWN_ERROR;
}
// Create uinput node for SW_LID
struct uinput_user_dev uidev;
memset(&uidev, 0, sizeof(uidev));
snprintf(uidev.name, UINPUT_MAX_NAME_SIZE, "uinput-folio");
uidev.id.bustype = BUS_SPI;
uidev.id.vendor = 0;
uidev.id.product = 0;
uidev.id.version = 0;
ret = TEMP_FAILURE_RETRY(write(mUinputFd, &uidev, sizeof(uidev)));
if (ret < 0) {
ALOGE("write to uinput node failed: %s", strerror(errno));
return UNKNOWN_ERROR;
}
ret = TEMP_FAILURE_RETRY(ioctl(mUinputFd, UI_DEV_CREATE));
if (ret < 0) {
ALOGE("could not send ioctl to uinput node: %s", strerror(errno));
return UNKNOWN_ERROR;
}
return OK;
}
void HubConnection::sendFolioEvent(int32_t data) {
ssize_t ret = 0;
struct input_event ev;
memset(&ev, 0, sizeof(ev));
ev.type = EV_SW;
ev.code = SW_LID;
ev.value = data;
ret = TEMP_FAILURE_RETRY(write(mUinputFd, &ev, sizeof(ev)));
if (ret < 0) {
ALOGE("write to uinput node failed: %s", strerror(errno));
return;
}
// Force flush with EV_SYN event
ev.type = EV_SYN;
ev.code = SYN_REPORT;
ev.value = 0;
ret = TEMP_FAILURE_RETRY(write(mUinputFd, &ev, sizeof(ev)));
if (ret < 0) {
ALOGE("write to uinput node failed: %s", strerror(errno));
return;
}
// Set lid state property
if (property_set(LID_STATE_PROPERTY,
(data ? LID_STATE_CLOSED : LID_STATE_OPEN)) < 0) {
ALOGE("could not set lid_state property");
}
}
#endif // LID_STATE_REPORTING_ENABLED
} // namespace android