blob: 2c26af55da766965347c0f4d9b95bffb77dd762a [file] [log] [blame]
#include "calibration/common/sphere_fit_calibration.h"
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include "calibration/util/cal_log.h"
#include "common/math/mat.h"
#include "common/math/vec.h"
// FORWARD DECLARATIONS
///////////////////////////////////////////////////////////////////////////////
// Utility for converting solver state to a calibration data structure.
static void convertStateToCalStruct(const float x[SF_STATE_DIM],
struct ThreeAxisCalData *calstruct);
static bool runCalibration(struct SphereFitCal *sphere_cal,
const struct SphereFitData *data,
uint64_t timestamp_nanos);
#define MIN_VALID_DATA_NORM (1e-4)
// FUNCTION IMPLEMENTATIONS
//////////////////////////////////////////////////////////////////////////////
void sphereFitInit(struct SphereFitCal *sphere_cal,
const struct LmParams *lm_params,
const size_t min_num_points_for_cal) {
ASSERT_NOT_NULL(sphere_cal);
ASSERT_NOT_NULL(lm_params);
// Initialize LM solver.
lmSolverInit(&sphere_cal->lm_solver, lm_params,
&sphereFitResidAndJacobianFunc);
// Reset other parameters.
sphereFitReset(sphere_cal);
// Set num points for calibration, checking that it is above min.
if (min_num_points_for_cal < MIN_NUM_SPHERE_FIT_POINTS) {
sphere_cal->min_points_for_cal = MIN_NUM_SPHERE_FIT_POINTS;
} else {
sphere_cal->min_points_for_cal = min_num_points_for_cal;
}
}
void sphereFitReset(struct SphereFitCal *sphere_cal) {
ASSERT_NOT_NULL(sphere_cal);
// Set state to default (diagonal scale matrix and zero offset).
memset(&sphere_cal->x0[0], 0, sizeof(float) * SF_STATE_DIM);
sphere_cal->x0[eParamScaleMatrix11] = 1.f;
sphere_cal->x0[eParamScaleMatrix22] = 1.f;
sphere_cal->x0[eParamScaleMatrix33] = 1.f;
memcpy(sphere_cal->x, sphere_cal->x0, sizeof(sphere_cal->x));
// Reset time.
sphere_cal->estimate_time_nanos = 0;
}
void sphereFitSetSolverData(struct SphereFitCal *sphere_cal,
struct LmData *lm_data) {
ASSERT_NOT_NULL(sphere_cal);
ASSERT_NOT_NULL(lm_data);
// Set solver data.
lmSolverSetData(&sphere_cal->lm_solver, lm_data);
}
bool sphereFitRunCal(struct SphereFitCal *sphere_cal,
const struct SphereFitData *data,
uint64_t timestamp_nanos) {
ASSERT_NOT_NULL(sphere_cal);
ASSERT_NOT_NULL(data);
// Run calibration if have enough points.
if (data->num_fit_points >= sphere_cal->min_points_for_cal) {
return runCalibration(sphere_cal, data, timestamp_nanos);
}
return false;
}
void sphereFitSetInitialBias(struct SphereFitCal *sphere_cal,
const float initial_bias[THREE_AXIS_DIM]) {
ASSERT_NOT_NULL(sphere_cal);
sphere_cal->x0[eParamOffset1] = initial_bias[0];
sphere_cal->x0[eParamOffset2] = initial_bias[1];
sphere_cal->x0[eParamOffset3] = initial_bias[2];
}
void sphereFitGetLatestCal(const struct SphereFitCal *sphere_cal,
struct ThreeAxisCalData *cal_data) {
ASSERT_NOT_NULL(sphere_cal);
ASSERT_NOT_NULL(cal_data);
convertStateToCalStruct(sphere_cal->x, cal_data);
cal_data->calibration_time_nanos = sphere_cal->estimate_time_nanos;
}
void sphereFitResidAndJacobianFunc(const float *state, const void *f_data,
float *residual, float *jacobian) {
ASSERT_NOT_NULL(state);
ASSERT_NOT_NULL(f_data);
ASSERT_NOT_NULL(residual);
const struct SphereFitData *data = (const struct SphereFitData*)f_data;
// Verify that expected norm is non-zero, else use default of 1.0.
float expected_norm = 1.0;
ASSERT(data->expected_norm > MIN_VALID_DATA_NORM);
if (data->expected_norm > MIN_VALID_DATA_NORM) {
expected_norm = data->expected_norm;
}
// Convert parameters to calibration structure.
struct ThreeAxisCalData calstruct;
convertStateToCalStruct(state, &calstruct);
// Compute Jacobian helper matrix if Jacobian requested.
//
// J = d(||M(x_data - bias)|| - expected_norm)/dstate
// = (M(x_data - bias) / ||M(x_data - bias)||) * d(M(x_data - bias))/dstate
// = x_corr / ||x_corr|| * A
// A = d(M(x_data - bias))/dstate
// = [dy/dM11, dy/dM21, dy/dM22, dy/dM31, dy/dM32, dy/dM3,...
// dy/db1, dy/db2, dy/db3]'
// where:
// dy/dM11 = [x_data[0] - bias[0], 0, 0]
// dy/dM21 = [0, x_data[0] - bias[0], 0]
// dy/dM22 = [0, x_data[1] - bias[1], 0]
// dy/dM31 = [0, 0, x_data[0] - bias[0]]
// dy/dM32 = [0, 0, x_data[1] - bias[1]]
// dy/dM33 = [0, 0, x_data[2] - bias[2]]
// dy/db1 = [-scale_factor_x, 0, 0]
// dy/db2 = [0, -scale_factor_y, 0]
// dy/db3 = [0, 0, -scale_factor_z]
float A[SF_STATE_DIM * THREE_AXIS_DIM];
if (jacobian) {
memset(jacobian, 0, sizeof(float) * SF_STATE_DIM * data->num_fit_points);
memset(A, 0, sizeof(A));
A[0 * SF_STATE_DIM + eParamOffset1] = -calstruct.scale_factor_x;
A[1 * SF_STATE_DIM + eParamOffset2] = -calstruct.scale_factor_y;
A[2 * SF_STATE_DIM + eParamOffset3] = -calstruct.scale_factor_z;
}
// Loop over all data points to compute residual and Jacobian.
// TODO(dvitus): Use fit_data_std when available to weight residuals.
float x_corr[THREE_AXIS_DIM];
float x_bias_corr[THREE_AXIS_DIM];
size_t i;
for (i = 0; i < data->num_fit_points; ++i) {
const float *x_data = &data->fit_data[i * THREE_AXIS_DIM];
// Compute corrected sensor data
calDataCorrectData(&calstruct, x_data, x_corr);
// Compute norm of x_corr.
const float norm = vecNorm(x_corr, THREE_AXIS_DIM);
// Compute residual error: f_x = norm - exp_norm
residual[i] = norm - data->expected_norm;
// Compute Jacobian if valid pointer.
if (jacobian) {
if (norm < MIN_VALID_DATA_NORM) {
return;
}
const float scale = 1.f / norm;
// Compute bias corrected data.
vecSub(x_bias_corr, x_data, calstruct.bias, THREE_AXIS_DIM);
// Populate non-bias terms for A
A[0 + eParamScaleMatrix11] = x_bias_corr[0];
A[1 * SF_STATE_DIM + eParamScaleMatrix21] = x_bias_corr[0];
A[1 * SF_STATE_DIM + eParamScaleMatrix22] = x_bias_corr[1];
A[2 * SF_STATE_DIM + eParamScaleMatrix31] = x_bias_corr[0];
A[2 * SF_STATE_DIM + eParamScaleMatrix32] = x_bias_corr[1];
A[2 * SF_STATE_DIM + eParamScaleMatrix33] = x_bias_corr[2];
// Compute J = x_corr / ||x_corr|| * A
matTransposeMultiplyVec(&jacobian[i * SF_STATE_DIM], A, x_corr,
THREE_AXIS_DIM, SF_STATE_DIM);
vecScalarMulInPlace(&jacobian[i * SF_STATE_DIM], scale, SF_STATE_DIM);
}
}
}
void convertStateToCalStruct(const float x[SF_STATE_DIM],
struct ThreeAxisCalData *calstruct) {
memcpy(&calstruct->bias[0], &x[eParamOffset1],
sizeof(float) * THREE_AXIS_DIM);
calstruct->scale_factor_x = x[eParamScaleMatrix11];
calstruct->skew_yx = x[eParamScaleMatrix21];
calstruct->scale_factor_y = x[eParamScaleMatrix22];
calstruct->skew_zx = x[eParamScaleMatrix31];
calstruct->skew_zy = x[eParamScaleMatrix32];
calstruct->scale_factor_z = x[eParamScaleMatrix33];
}
bool runCalibration(struct SphereFitCal *sphere_cal,
const struct SphereFitData *data,
uint64_t timestamp_nanos) {
float x_sol[SF_STATE_DIM];
// Run calibration
const enum LmStatus status = lmSolverSolve(&sphere_cal->lm_solver,
sphere_cal->x0, (void *)data,
SF_STATE_DIM, data->num_fit_points,
x_sol);
// Check if solver was successful
if (status == RELATIVE_STEP_SUFFICIENTLY_SMALL ||
status == GRADIENT_SUFFICIENTLY_SMALL) {
// TODO(dvitus): Check quality of new fit before using.
// Store new fit.
#ifdef SPHERE_FIT_DBG_ENABLED
CAL_DEBUG_LOG(
"[SPHERE CAL]",
"Solution found in %d iterations with status %d.\n",
sphere_cal->lm_solver.num_iter, status);
CAL_DEBUG_LOG(
"[SPHERE CAL]",
"Solution:\n {%s%d.%06d [M(1,1)], %s%d.%06d [M(2,1)], "
"%s%d.%06d [M(2,2)], \n"
"%s%d.%06d [M(3,1)], %s%d.%06d [M(3,2)], %s%d.%06d [M(3,3)], \n"
"%s%d.%06d [b(1)], %s%d.%06d [b(2)], %s%d.%06d [b(3)]}.",
CAL_ENCODE_FLOAT(x_sol[0], 6), CAL_ENCODE_FLOAT(x_sol[1], 6),
CAL_ENCODE_FLOAT(x_sol[2], 6), CAL_ENCODE_FLOAT(x_sol[3], 6),
CAL_ENCODE_FLOAT(x_sol[4], 6), CAL_ENCODE_FLOAT(x_sol[5], 6),
CAL_ENCODE_FLOAT(x_sol[6], 6), CAL_ENCODE_FLOAT(x_sol[7], 6),
CAL_ENCODE_FLOAT(x_sol[8], 6));
#endif
memcpy(sphere_cal->x, x_sol, sizeof(x_sol));
sphere_cal->estimate_time_nanos = timestamp_nanos;
return true;
} else {
#ifdef SPHERE_FIT_DBG_ENABLED
CAL_DEBUG_LOG(
"[SPHERE CAL]",
"Solution failed in %d iterations with status %d.\n",
sphere_cal->lm_solver.num_iter, status);
#endif
}
return false;
}