blob: 1a6b4ca70f0d4cc058ce8ba35aee77205a98bc0a [file] [log] [blame]
/*
* Copyright 2009-2011 Oleg Mazurov, Circuits At Home, http://www.circuitsathome.com
* MAX3421E USB host controller support
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the authors nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* USB functions */
#include "Usb.h"
static byte usb_error = 0;
static byte usb_task_state;
DEV_RECORD devtable[ USB_NUMDEVICES + 1 ];
EP_RECORD dev0ep; //Endpoint data structure used during enumeration for uninitialized device
/* constructor */
USB::USB () {
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; //set up state machine
init();
}
/* Initialize data structures */
void USB::init()
{
byte i;
for( i = 0; i < ( USB_NUMDEVICES + 1 ); i++ ) {
devtable[ i ].epinfo = NULL; //clear device table
devtable[ i ].devclass = 0;
}
devtable[ 0 ].epinfo = &dev0ep; //set single ep for uninitialized device
// not necessary dev0ep.MaxPktSize = 8; //minimum possible
dev0ep.sndToggle = bmSNDTOG0; //set DATA0/1 toggles to 0
dev0ep.rcvToggle = bmRCVTOG0;
}
byte USB::getUsbTaskState( void )
{
return( usb_task_state );
}
void USB::setUsbTaskState( byte state )
{
usb_task_state = state;
}
EP_RECORD* USB::getDevTableEntry( byte addr, byte ep )
{
EP_RECORD* ptr;
ptr = devtable[ addr ].epinfo;
ptr += ep;
return( ptr );
}
/* set device table entry */
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
void USB::setDevTableEntry( byte addr, EP_RECORD* eprecord_ptr )
{
devtable[ addr ].epinfo = eprecord_ptr;
//return();
}
/* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */
/* depending on request. Actual requests are defined as inlines */
/* return codes: */
/* 00 = success */
/* 01-0f = non-zero HRSLT */
byte USB::ctrlReq( byte addr, byte ep, byte bmReqType, byte bRequest, byte wValLo, byte wValHi, unsigned int wInd, unsigned int nbytes, char* dataptr, unsigned int nak_limit )
{
boolean direction = false; //request direction, IN or OUT
byte rcode;
SETUP_PKT setup_pkt;
regWr( rPERADDR, addr ); //set peripheral address
if( bmReqType & 0x80 ) {
direction = true; //determine request direction
}
/* fill in setup packet */
setup_pkt.ReqType_u.bmRequestType = bmReqType;
setup_pkt.bRequest = bRequest;
setup_pkt.wVal_u.wValueLo = wValLo;
setup_pkt.wVal_u.wValueHi = wValHi;
setup_pkt.wIndex = wInd;
setup_pkt.wLength = nbytes;
bytesWr( rSUDFIFO, 8, ( char *)&setup_pkt ); //transfer to setup packet FIFO
rcode = dispatchPkt( tokSETUP, ep, nak_limit ); //dispatch packet
//Serial.println("Setup packet"); //DEBUG
if( rcode ) { //return HRSLT if not zero
Serial.print("Setup packet error: ");
Serial.print( rcode, HEX );
return( rcode );
}
//Serial.println( direction, HEX );
if( dataptr != NULL ) { //data stage, if present
rcode = ctrlData( addr, ep, nbytes, dataptr, direction );
}
if( rcode ) { //return error
Serial.print("Data packet error: ");
Serial.print( rcode, HEX );
return( rcode );
}
rcode = ctrlStatus( ep, direction ); //status stage
return( rcode );
}
/* Control transfer with status stage and no data stage */
/* Assumed peripheral address is already set */
byte USB::ctrlStatus( byte ep, boolean direction, unsigned int nak_limit )
{
byte rcode;
if( direction ) { //GET
rcode = dispatchPkt( tokOUTHS, ep, nak_limit );
}
else {
rcode = dispatchPkt( tokINHS, ep, nak_limit );
}
return( rcode );
}
/* Control transfer with data stage. Stages 2 and 3 of control transfer. Assumes preipheral address is set and setup packet has been sent */
byte USB::ctrlData( byte addr, byte ep, unsigned int nbytes, char* dataptr, boolean direction, unsigned int nak_limit )
{
byte rcode;
if( direction ) { //IN transfer
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
rcode = inTransfer( addr, ep, nbytes, dataptr, nak_limit );
return( rcode );
}
else { //OUT transfer
devtable[ addr ].epinfo[ ep ].sndToggle = bmSNDTOG1;
rcode = outTransfer( addr, ep, nbytes, dataptr, nak_limit );
return( rcode );
}
}
/* IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
/* Keep sending INs and writes data to memory area pointed by 'data' */
/* rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error,
fe USB xfer timeout */
byte USB::inTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
{
byte rcode;
byte pktsize;
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
unsigned int xfrlen = 0;
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].rcvToggle ); //set toggle value
while( 1 ) { // use a 'return' to exit this loop
rcode = dispatchPkt( tokIN, ep, nak_limit ); //IN packet to EP-'endpoint'. Function takes care of NAKS.
if( rcode ) {
return( rcode ); //should be 0, indicating ACK. Else return error code.
}
/* check for RCVDAVIRQ and generate error if not present */
/* the only case when absense of RCVDAVIRQ makes sense is when toggle error occured. Need to add handling for that */
if(( regRd( rHIRQ ) & bmRCVDAVIRQ ) == 0 ) {
return ( 0xf0 ); //receive error
}
pktsize = regRd( rRCVBC ); //number of received bytes
data = bytesRd( rRCVFIFO, pktsize, data );
regWr( rHIRQ, bmRCVDAVIRQ ); // Clear the IRQ & free the buffer
xfrlen += pktsize; // add this packet's byte count to total transfer length
/* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */
if (( pktsize < maxpktsize ) || (xfrlen >= nbytes )) { // have we transferred 'nbytes' bytes?
if( regRd( rHRSL ) & bmRCVTOGRD ) { //save toggle value
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
}
else {
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG0;
}
return( 0 );
}
}//while( 1 )
}
int USB::newInTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
{
byte rcode;
byte pktsize;
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
unsigned int xfrlen = 0;
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].rcvToggle ); //set toggle value
while( 1 ) { // use a 'return' to exit this loop
rcode = dispatchPkt( tokIN, ep, nak_limit ); //IN packet to EP-'endpoint'. Function takes care of NAKS.
if( rcode ) {
return -1; //should be 0, indicating ACK. Else return error code.
}
/* check for RCVDAVIRQ and generate error if not present */
/* the only case when absense of RCVDAVIRQ makes sense is when toggle error occured. Need to add handling for that */
if(( regRd( rHIRQ ) & bmRCVDAVIRQ ) == 0 ) {
return -1; //receive error
}
pktsize = regRd( rRCVBC ); //number of received bytes
data = bytesRd( rRCVFIFO, pktsize, data );
regWr( rHIRQ, bmRCVDAVIRQ ); // Clear the IRQ & free the buffer
xfrlen += pktsize; // add this packet's byte count to total transfer length
/* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */
if (( pktsize < maxpktsize ) || (xfrlen >= nbytes )) { // have we transferred 'nbytes' bytes?
if( regRd( rHRSL ) & bmRCVTOGRD ) { //save toggle value
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
}
else {
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG0;
}
return xfrlen;
}
}//while( 1 )
}
/* OUT transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
/* Handles NAK bug per Maxim Application Note 4000 for single buffer transfer */
/* rcode 0 if no errors. rcode 01-0f is relayed from HRSL */
/* major part of this function borrowed from code shared by Richard Ibbotson */
byte USB::outTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
{
byte rcode, retry_count;
char* data_p = data; //local copy of the data pointer
unsigned int bytes_tosend, nak_count;
unsigned int bytes_left = nbytes;
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
if (!maxpktsize) { //todo: move this check close to epinfo init. Make it 1< pktsize <64
return 0xFE;
}
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].sndToggle ); //set toggle value
while( bytes_left ) {
retry_count = 0;
nak_count = 0;
bytes_tosend = ( bytes_left >= maxpktsize ) ? maxpktsize : bytes_left;
bytesWr( rSNDFIFO, bytes_tosend, data_p ); //filling output FIFO
regWr( rSNDBC, bytes_tosend ); //set number of bytes
regWr( rHXFR, ( tokOUT | ep )); //dispatch packet
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
rcode = ( regRd( rHRSL ) & 0x0f );
while( rcode && ( timeout > millis())) {
switch( rcode ) {
case hrNAK:
nak_count++;
if( nak_limit && ( nak_count == USB_NAK_LIMIT )) {
return( rcode); //return NAK
}
break;
case hrTIMEOUT:
retry_count++;
if( retry_count == USB_RETRY_LIMIT ) {
return( rcode ); //return TIMEOUT
}
break;
default:
return( rcode );
}//switch( rcode...
/* process NAK according to Host out NAK bug */
regWr( rSNDBC, 0 );
regWr( rSNDFIFO, *data_p );
regWr( rSNDBC, bytes_tosend );
regWr( rHXFR, ( tokOUT | ep )); //dispatch packet
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
rcode = ( regRd( rHRSL ) & 0x0f );
}//while( rcode && ....
bytes_left -= bytes_tosend;
data_p += bytes_tosend;
}//while( bytes_left...
devtable[ addr ].epinfo[ ep ].sndToggle = ( regRd( rHRSL ) & bmSNDTOGRD ) ? bmSNDTOG1 : bmSNDTOG0; //update toggle
return( rcode ); //should be 0 in all cases
}
/* dispatch usb packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
/* If NAK, tries to re-send up to nak_limit times */
/* If nak_limit == 0, do not count NAKs, exit after timeout */
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
byte USB::dispatchPkt( byte token, byte ep, unsigned int nak_limit )
{
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
byte tmpdata;
byte rcode;
unsigned int nak_count = 0;
char retry_count = 0;
while( timeout > millis() ) {
regWr( rHXFR, ( token|ep )); //launch the transfer
rcode = 0xff;
while( millis() < timeout ) { //wait for transfer completion
tmpdata = regRd( rHIRQ );
if( tmpdata & bmHXFRDNIRQ ) {
regWr( rHIRQ, bmHXFRDNIRQ ); //clear the interrupt
rcode = 0x00;
break;
}//if( tmpdata & bmHXFRDNIRQ
}//while ( millis() < timeout
if( rcode != 0x00 ) { //exit if timeout
return( rcode );
}
rcode = ( regRd( rHRSL ) & 0x0f ); //analyze transfer result
switch( rcode ) {
case hrNAK:
nak_count ++;
if( nak_limit && ( nak_count == nak_limit )) {
return( rcode );
}
break;
case hrTIMEOUT:
retry_count ++;
if( retry_count == USB_RETRY_LIMIT ) {
return( rcode );
}
break;
default:
return( rcode );
}//switch( rcode
}//while( timeout > millis()
return( rcode );
}
/* USB main task. Performs enumeration/cleanup */
void USB::Task( void ) //USB state machine
{
byte i;
byte rcode;
static byte tmpaddr;
byte tmpdata;
static unsigned long delay = 0;
USB_DEVICE_DESCRIPTOR buf;
tmpdata = getVbusState();
/* modify USB task state if Vbus changed */
switch( tmpdata ) {
case SE1: //illegal state
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
break;
case SE0: //disconnected
if(( usb_task_state & USB_STATE_MASK ) != USB_STATE_DETACHED ) {
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
}
break;
case FSHOST: //attached
case LSHOST:
if(( usb_task_state & USB_STATE_MASK ) == USB_STATE_DETACHED ) {
delay = millis() + USB_SETTLE_DELAY;
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
}
break;
}// switch( tmpdata
//Serial.print("USB task state: ");
//Serial.println( usb_task_state, HEX );
switch( usb_task_state ) {
case USB_DETACHED_SUBSTATE_INITIALIZE:
init();
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
break;
case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: //just sit here
break;
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
break;
case USB_ATTACHED_SUBSTATE_SETTLE: //setlle time for just attached device
if( delay < millis() ) {
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
}
break;
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
regWr( rHCTL, bmBUSRST ); //issue bus reset
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
if(( regRd( rHCTL ) & bmBUSRST ) == 0 ) {
tmpdata = regRd( rMODE ) | bmSOFKAENAB; //start SOF generation
regWr( rMODE, tmpdata );
// regWr( rMODE, bmSOFKAENAB );
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
delay = millis() + 20; //20ms wait after reset per USB spec
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
if( regRd( rHIRQ ) & bmFRAMEIRQ ) { //when first SOF received we can continue
if( delay < millis() ) { //20ms passed
usb_task_state = USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE;
}
}
break;
case USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE:
// toggle( BPNT_0 );
devtable[ 0 ].epinfo->MaxPktSize = 8; //set max.packet size to min.allowed
rcode = getDevDescr( 0, 0, 8, ( char* )&buf );
if( rcode == 0 ) {
devtable[ 0 ].epinfo->MaxPktSize = buf.bMaxPacketSize0;
usb_task_state = USB_STATE_ADDRESSING;
}
else {
usb_error = USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE;
usb_task_state = USB_STATE_ERROR;
}
break;
case USB_STATE_ADDRESSING:
for( i = 1; i < USB_NUMDEVICES; i++ ) {
if( devtable[ i ].epinfo == NULL ) {
devtable[ i ].epinfo = devtable[ 0 ].epinfo; //set correct MaxPktSize
//temporary record
//until plugged with real device endpoint structure
rcode = setAddr( 0, 0, i );
if( rcode == 0 ) {
tmpaddr = i;
usb_task_state = USB_STATE_CONFIGURING;
}
else {
usb_error = USB_STATE_ADDRESSING; //set address error
usb_task_state = USB_STATE_ERROR;
}
break; //break if address assigned or error occured during address assignment attempt
}
}//for( i = 1; i < USB_NUMDEVICES; i++
if( usb_task_state == USB_STATE_ADDRESSING ) { //no vacant place in devtable
usb_error = 0xfe;
usb_task_state = USB_STATE_ERROR;
}
break;
case USB_STATE_CONFIGURING:
break;
case USB_STATE_RUNNING:
break;
case USB_STATE_ERROR:
break;
}// switch( usb_task_state
}