blob: e56c5cf0f4405bb725a6bdb3e7339c1f60f6cf2d [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ast_to_hir.c
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
*
* During the conversion to HIR, the majority of the symantic checking is
* preformed on the program. This includes:
*
* * Symbol table management
* * Type checking
* * Function binding
*
* The majority of this work could be done during parsing, and the parser could
* probably generate HIR directly. However, this results in frequent changes
* to the parser code. Since we do not assume that every system this complier
* is built on will have Flex and Bison installed, we have to store the code
* generated by these tools in our version control system. In other parts of
* the system we've seen problems where a parser was changed but the generated
* code was not committed, merge conflicts where created because two developers
* had slightly different versions of Bison installed, etc.
*
* I have also noticed that running Bison generated parsers in GDB is very
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
* well 'print $1' in GDB.
*
* As a result, my preference is to put as little C code as possible in the
* parser (and lexer) sources.
*/
#include "main/core.h" /* for struct gl_extensions */
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "ir.h"
void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
_mesa_glsl_initialize_variables(instructions, state);
_mesa_glsl_initialize_functions(instructions, state);
state->symbols->language_version = state->language_version;
state->current_function = NULL;
/* Section 4.2 of the GLSL 1.20 specification states:
* "The built-in functions are scoped in a scope outside the global scope
* users declare global variables in. That is, a shader's global scope,
* available for user-defined functions and global variables, is nested
* inside the scope containing the built-in functions."
*
* Since built-in functions like ftransform() access built-in variables,
* it follows that those must be in the outer scope as well.
*
* We push scope here to create this nesting effect...but don't pop.
* This way, a shader's globals are still in the symbol table for use
* by the linker.
*/
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
ast->hir(instructions, state);
}
/**
* If a conversion is available, convert one operand to a different type
*
* The \c from \c ir_rvalue is converted "in place".
*
* \param to Type that the operand it to be converted to
* \param from Operand that is being converted
* \param state GLSL compiler state
*
* \return
* If a conversion is possible (or unnecessary), \c true is returned.
* Otherwise \c false is returned.
*/
bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (to->base_type == from->type->base_type)
return true;
/* This conversion was added in GLSL 1.20. If the compilation mode is
* GLSL 1.10, the conversion is skipped.
*/
if (state->language_version < 120)
return false;
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
*
* "There are no implicit array or structure conversions. For
* example, an array of int cannot be implicitly converted to an
* array of float. There are no implicit conversions between
* signed and unsigned integers."
*/
/* FINISHME: The above comment is partially a lie. There is int/uint
* FINISHME: conversion for immediate constants.
*/
if (!to->is_float() || !from->type->is_numeric())
return false;
/* Convert to a floating point type with the same number of components
* as the original type - i.e. int to float, not int to vec4.
*/
to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
from->type->matrix_columns);
switch (from->type->base_type) {
case GLSL_TYPE_INT:
from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
break;
case GLSL_TYPE_UINT:
from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
break;
case GLSL_TYPE_BOOL:
from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
break;
default:
assert(0);
}
return true;
}
static const struct glsl_type *
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
bool multiply,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
*
* "The arithmetic binary operators add (+), subtract (-),
* multiply (*), and divide (/) operate on integer and
* floating-point scalars, vectors, and matrices."
*/
if (!type_a->is_numeric() || !type_b->is_numeric()) {
_mesa_glsl_error(loc, state,
"Operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
/* "If one operand is floating-point based and the other is
* not, then the conversions from Section 4.1.10 "Implicit
* Conversions" are applied to the non-floating-point-based operand."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"Could not implicitly convert operands to "
"arithmetic operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
/* "If the operands are integer types, they must both be signed or
* both be unsigned."
*
* From this rule and the preceeding conversion it can be inferred that
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
* The is_numeric check above already filtered out the case where either
* type is not one of these, so now the base types need only be tested for
* equality.
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"base type mismatch for arithmetic operator");
return glsl_type::error_type;
}
/* "All arithmetic binary operators result in the same fundamental type
* (signed integer, unsigned integer, or floating-point) as the
* operands they operate on, after operand type conversion. After
* conversion, the following cases are valid
*
* * The two operands are scalars. In this case the operation is
* applied, resulting in a scalar."
*/
if (type_a->is_scalar() && type_b->is_scalar())
return type_a;
/* "* One operand is a scalar, and the other is a vector or matrix.
* In this case, the scalar operation is applied independently to each
* component of the vector or matrix, resulting in the same size
* vector or matrix."
*/
if (type_a->is_scalar()) {
if (!type_b->is_scalar())
return type_b;
} else if (type_b->is_scalar()) {
return type_a;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
* handled.
*/
assert(!type_a->is_scalar());
assert(!type_b->is_scalar());
/* "* The two operands are vectors of the same size. In this case, the
* operation is done component-wise resulting in the same size
* vector."
*/
if (type_a->is_vector() && type_b->is_vector()) {
if (type_a == type_b) {
return type_a;
} else {
_mesa_glsl_error(loc, state,
"vector size mismatch for arithmetic operator");
return glsl_type::error_type;
}
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
* <vector, vector> have been handled. At least one of the operands must
* be matrix. Further, since there are no integer matrix types, the base
* type of both operands must be float.
*/
assert(type_a->is_matrix() || type_b->is_matrix());
assert(type_a->base_type == GLSL_TYPE_FLOAT);
assert(type_b->base_type == GLSL_TYPE_FLOAT);
/* "* The operator is add (+), subtract (-), or divide (/), and the
* operands are matrices with the same number of rows and the same
* number of columns. In this case, the operation is done component-
* wise resulting in the same size matrix."
* * The operator is multiply (*), where both operands are matrices or
* one operand is a vector and the other a matrix. A right vector
* operand is treated as a column vector and a left vector operand as a
* row vector. In all these cases, it is required that the number of
* columns of the left operand is equal to the number of rows of the
* right operand. Then, the multiply (*) operation does a linear
* algebraic multiply, yielding an object that has the same number of
* rows as the left operand and the same number of columns as the right
* operand. Section 5.10 "Vector and Matrix Operations" explains in
* more detail how vectors and matrices are operated on."
*/
if (! multiply) {
if (type_a == type_b)
return type_a;
} else {
if (type_a->is_matrix() && type_b->is_matrix()) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (type_a->row_type() == type_b->column_type()) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
type_b->row_type()->vector_elements);
assert(type != glsl_type::error_type);
return type;
}
} else if (type_a->is_matrix()) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (type_a->row_type() == type_b) {
/* The resulting vector has a number of elements equal to
* the number of rows of matrix A. */
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
1);
assert(type != glsl_type::error_type);
return type;
}
} else {
assert(type_b->is_matrix());
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == type_b->column_type()) {
/* The resulting vector has a number of elements equal to
* the number of columns of matrix B. */
const glsl_type *const type =
glsl_type::get_instance(type_a->base_type,
type_b->row_type()->vector_elements,
1);
assert(type != glsl_type::error_type);
return type;
}
}
_mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
return glsl_type::error_type;
}
/* "All other cases are illegal."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 57:
*
* "The arithmetic unary operators negate (-), post- and pre-increment
* and decrement (-- and ++) operate on integer or floating-point
* values (including vectors and matrices). All unary operators work
* component-wise on their operands. These result with the same type
* they operated on."
*/
if (!type->is_numeric()) {
_mesa_glsl_error(loc, state,
"Operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
return type;
}
/**
* \brief Return the result type of a bit-logic operation.
*
* If the given types to the bit-logic operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-logic op
* \param type_b Type of RHS of bit-logic op
*/
static const struct glsl_type *
bit_logic_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (state->language_version < 130) {
_mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
return glsl_type::error_type;
}
/* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
*
* "The bitwise operators and (&), exclusive-or (^), and inclusive-or
* (|). The operands must be of type signed or unsigned integers or
* integer vectors."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The fundamental types of the operands (signed or unsigned) must
* match,"
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "operands of `%s' must have the same "
"base type", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size." */
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
"different sizes", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If one operand is a scalar and the other a vector, the scalar is
* applied component-wise to the vector, resulting in the same type as
* the vector. The fundamental types of the operands [...] will be the
* resulting fundamental type."
*/
if (type_a->is_scalar())
return type_b;
else
return type_a;
}
static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 56:
* "The operator modulus (%) operates on signed or unsigned integers or
* integer vectors. The operand types must both be signed or both be
* unsigned."
*/
if (!type_a->is_integer() || !type_b->is_integer()
|| (type_a->base_type != type_b->base_type)) {
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size. If one operand is
* a scalar and the other vector, then the scalar is applied component-
* wise to the vector, resulting in the same type as the vector. If both
* are vectors of the same size, the result is computed component-wise."
*/
if (type_a->is_vector()) {
if (!type_b->is_vector()
|| (type_a->vector_elements == type_b->vector_elements))
return type_a;
} else
return type_b;
/* "The operator modulus (%) is not defined for any other data types
* (non-integer types)."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
* "The relational operators greater than (>), less than (<), greater
* than or equal (>=), and less than or equal (<=) operate only on
* scalar integer and scalar floating-point expressions."
*/
if (!type_a->is_numeric()
|| !type_b->is_numeric()
|| !type_a->is_scalar()
|| !type_b->is_scalar()) {
_mesa_glsl_error(loc, state,
"Operands to relational operators must be scalar and "
"numeric");
return glsl_type::error_type;
}
/* "Either the operands' types must match, or the conversions from
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
* operand, after which the types must match."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"Could not implicitly convert operands to "
"relational operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "base type mismatch");
return glsl_type::error_type;
}
/* "The result is scalar Boolean."
*/
return glsl_type::bool_type;
}
/**
* \brief Return the result type of a bit-shift operation.
*
* If the given types to the bit-shift operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-shift op
* \param type_b Type of RHS of bit-shift op
*/
static const struct glsl_type *
shift_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (state->language_version < 130) {
_mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
return glsl_type::error_type;
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
*
* "The shift operators (<<) and (>>). For both operators, the operands
* must be signed or unsigned integers or integer vectors. One operand
* can be signed while the other is unsigned."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If the first operand is a scalar, the second operand has to be
* a scalar as well."
*/
if (type_a->is_scalar() && !type_b->is_scalar()) {
_mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
"second must be scalar as well",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* If both operands are vectors, check that they have same number of
* elements.
*/
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "Vector operands to operator %s must "
"have same number of elements",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "In all cases, the resulting type will be the same type as the left
* operand."
*/
return type_a;
}
/**
* Validates that a value can be assigned to a location with a specified type
*
* Validates that \c rhs can be assigned to some location. If the types are
* not an exact match but an automatic conversion is possible, \c rhs will be
* converted.
*
* \return
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
* Otherwise the actual RHS to be assigned will be returned. This may be
* \c rhs, or it may be \c rhs after some type conversion.
*
* \note
* In addition to being used for assignments, this function is used to
* type-check return values.
*/
ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state *state,
const glsl_type *lhs_type, ir_rvalue *rhs)
{
const glsl_type *rhs_type = rhs->type;
/* If there is already some error in the RHS, just return it. Anything
* else will lead to an avalanche of error message back to the user.
*/
if (rhs_type->is_error())
return rhs;
/* If the types are identical, the assignment can trivially proceed.
*/
if (rhs_type == lhs_type)
return rhs;
/* If the array element types are the same and the size of the LHS is zero,
* the assignment is okay.
*
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
* is handled by ir_dereference::is_lvalue.
*/
if (lhs_type->is_array() && rhs->type->is_array()
&& (lhs_type->element_type() == rhs->type->element_type())
&& (lhs_type->array_size() == 0)) {
return rhs;
}
/* Check for implicit conversion in GLSL 1.20 */
if (apply_implicit_conversion(lhs_type, rhs, state)) {
rhs_type = rhs->type;
if (rhs_type == lhs_type)
return rhs;
}
return NULL;
}
ir_rvalue *
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
ir_rvalue *lhs, ir_rvalue *rhs,
YYLTYPE lhs_loc)
{
void *ctx = state;
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
if (!error_emitted) {
if (!lhs->is_lvalue()) {
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
error_emitted = true;
}
if (state->es_shader && lhs->type->is_array()) {
_mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
"allowed in GLSL ES 1.00.");
error_emitted = true;
}
}
ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
if (new_rhs == NULL) {
_mesa_glsl_error(& lhs_loc, state, "type mismatch");
} else {
rhs = new_rhs;
/* If the LHS array was not declared with a size, it takes it size from
* the RHS. If the LHS is an l-value and a whole array, it must be a
* dereference of a variable. Any other case would require that the LHS
* is either not an l-value or not a whole array.
*/
if (lhs->type->array_size() == 0) {
ir_dereference *const d = lhs->as_dereference();
assert(d != NULL);
ir_variable *const var = d->variable_referenced();
assert(var != NULL);
if (var->max_array_access >= unsigned(rhs->type->array_size())) {
/* FINISHME: This should actually log the location of the RHS. */
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
"previous access",
var->max_array_access);
}
var->type = glsl_type::get_array_instance(lhs->type->element_type(),
rhs->type->array_size());
d->type = var->type;
}
}
/* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
* but not post_inc) need the converted assigned value as an rvalue
* to handle things like:
*
* i = j += 1;
*
* So we always just store the computed value being assigned to a
* temporary and return a deref of that temporary. If the rvalue
* ends up not being used, the temp will get copy-propagated out.
*/
ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
ir_var_temporary);
ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
instructions->push_tail(var);
instructions->push_tail(new(ctx) ir_assignment(deref_var,
rhs,
NULL));
deref_var = new(ctx) ir_dereference_variable(var);
if (!error_emitted)
instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
return new(ctx) ir_dereference_variable(var);
}
static ir_rvalue *
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
{
void *ctx = hieralloc_parent(lvalue);
ir_variable *var;
var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
ir_var_temporary);
instructions->push_tail(var);
var->mode = ir_var_auto;
instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
lvalue, NULL));
/* Once we've created this temporary, mark it read only so it's no
* longer considered an lvalue.
*/
var->read_only = true;
return new(ctx) ir_dereference_variable(var);
}
ir_rvalue *
ast_node::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void) instructions;
(void) state;
return NULL;
}
static void
mark_whole_array_access(ir_rvalue *access)
{
ir_dereference_variable *deref = access->as_dereference_variable();
if (deref) {
deref->var->max_array_access = deref->type->length - 1;
}
}
static ir_rvalue *
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
{
int join_op;
ir_rvalue *cmp = NULL;
if (operation == ir_binop_all_equal)
join_op = ir_binop_logic_and;
else
join_op = ir_binop_logic_or;
switch (op0->type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
return new(mem_ctx) ir_expression(operation, op0, op1);
case GLSL_TYPE_ARRAY: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
mark_whole_array_access(op0);
mark_whole_array_access(op1);
break;
}
case GLSL_TYPE_STRUCT: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
const char *field_name = op0->type->fields.structure[i].name;
e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
field_name);
e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
field_name);
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
break;
}
case GLSL_TYPE_ERROR:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SAMPLER:
/* I assume a comparison of a struct containing a sampler just
* ignores the sampler present in the type.
*/
break;
default:
assert(!"Should not get here.");
break;
}
if (cmp == NULL)
cmp = new(mem_ctx) ir_constant(true);
return cmp;
}
ir_rvalue *
ast_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
static const int operations[AST_NUM_OPERATORS] = {
-1, /* ast_assign doesn't convert to ir_expression. */
-1, /* ast_plus doesn't convert to ir_expression. */
ir_unop_neg,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
ir_binop_lshift,
ir_binop_rshift,
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_all_equal,
ir_binop_any_nequal,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
ir_unop_bit_not,
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_unop_logic_not,
/* Note: The following block of expression types actually convert
* to multiple IR instructions.
*/
ir_binop_mul, /* ast_mul_assign */
ir_binop_div, /* ast_div_assign */
ir_binop_mod, /* ast_mod_assign */
ir_binop_add, /* ast_add_assign */
ir_binop_sub, /* ast_sub_assign */
ir_binop_lshift, /* ast_ls_assign */
ir_binop_rshift, /* ast_rs_assign */
ir_binop_bit_and, /* ast_and_assign */
ir_binop_bit_xor, /* ast_xor_assign */
ir_binop_bit_or, /* ast_or_assign */
-1, /* ast_conditional doesn't convert to ir_expression. */
ir_binop_add, /* ast_pre_inc. */
ir_binop_sub, /* ast_pre_dec. */
ir_binop_add, /* ast_post_inc. */
ir_binop_sub, /* ast_post_dec. */
-1, /* ast_field_selection doesn't conv to ir_expression. */
-1, /* ast_array_index doesn't convert to ir_expression. */
-1, /* ast_function_call doesn't conv to ir_expression. */
-1, /* ast_identifier doesn't convert to ir_expression. */
-1, /* ast_int_constant doesn't convert to ir_expression. */
-1, /* ast_uint_constant doesn't conv to ir_expression. */
-1, /* ast_float_constant doesn't conv to ir_expression. */
-1, /* ast_bool_constant doesn't conv to ir_expression. */
-1, /* ast_sequence doesn't convert to ir_expression. */
};
ir_rvalue *result = NULL;
ir_rvalue *op[3];
const struct glsl_type *type = glsl_type::error_type;
bool error_emitted = false;
YYLTYPE loc;
loc = this->get_location();
switch (this->oper) {
case ast_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
result = do_assignment(instructions, state, op[0], op[1],
this->subexpressions[0]->get_location());
error_emitted = result->type->is_error();
type = result->type;
break;
}
case ast_plus:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = op[0];
break;
case ast_neg:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], NULL);
break;
case ast_add:
case ast_sub:
case ast_mul:
case ast_div:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul),
state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_mod:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_lshift:
case ast_rshift:
if (state->language_version < 130) {
_mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
operator_string(this->oper));
error_emitted = true;
}
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_less:
case ast_greater:
case ast_lequal:
case ast_gequal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = relational_result_type(op[0], op[1], state, & loc);
/* The relational operators must either generate an error or result
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
*/
assert(type->is_error()
|| ((type->base_type == GLSL_TYPE_BOOL)
&& type->is_scalar()));
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_nequal:
case ast_equal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
*
* "The equality operators equal (==), and not equal (!=)
* operate on all types. They result in a scalar Boolean. If
* the operand types do not match, then there must be a
* conversion from Section 4.1.10 "Implicit Conversions"
* applied to one operand that can make them match, in which
* case this conversion is done."
*/
if ((!apply_implicit_conversion(op[0]->type, op[1], state)
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|| (op[0]->type != op[1]->type)) {
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
"type", (this->oper == ast_equal) ? "==" : "!=");
error_emitted = true;
} else if ((state->language_version <= 110)
&& (op[0]->type->is_array() || op[1]->type->is_array())) {
_mesa_glsl_error(& loc, state, "array comparisons forbidden in "
"GLSL 1.10");
error_emitted = true;
}
result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
type = glsl_type::bool_type;
assert(error_emitted || (result->type == glsl_type::bool_type));
break;
case ast_bit_and:
case ast_bit_xor:
case ast_bit_or:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_bit_not:
op[0] = this->subexpressions[0]->hir(instructions, state);
if (state->language_version < 130) {
_mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
error_emitted = true;
}
if (!op[0]->type->is_integer()) {
_mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
error_emitted = true;
}
type = op[0]->type;
result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
break;
case ast_logic_and: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_constant *op0_const = op[0]->constant_expression_value();
if (op0_const) {
if (op0_const->value.b[0]) {
op[1] = this->subexpressions[1]->hir(instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
result = op[1];
} else {
result = op0_const;
}
type = glsl_type::bool_type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"and_tmp",
ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1], NULL);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_or: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_constant *op0_const = op[0]->constant_expression_value();
if (op0_const) {
if (op0_const->value.b[0]) {
result = op0_const;
} else {
op[1] = this->subexpressions[1]->hir(instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state,
"RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
result = op[1];
}
type = glsl_type::bool_type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"or_tmp",
ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
operator_string(this->oper));
error_emitted = true;
}
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[1], NULL);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_xor:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], op[1]);
type = glsl_type::bool_type;
break;
case ast_logic_not:
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state,
"operand of `!' must be scalar boolean");
error_emitted = true;
}
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], NULL);
type = glsl_type::bool_type;
break;
case ast_mul_assign:
case ast_div_assign:
case ast_add_assign:
case ast_sub_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul_assign),
state, & loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state,
op[0]->clone(ctx, NULL), temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = (op[0]->type->is_error());
/* GLSL 1.10 does not allow array assignment. However, we don't have to
* explicitly test for this because none of the binary expression
* operators allow array operands either.
*/
break;
}
case ast_mod_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state,
op[0]->clone(ctx, NULL), temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = type->is_error();
break;
}
case ast_ls_assign:
case ast_rs_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
temp_rhs,
this->subexpressions[0]->get_location());
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
}
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
temp_rhs,
this->subexpressions[0]->get_location());
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
}
case ast_conditional: {
op[0] = this->subexpressions[0]->hir(instructions, state);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The ternary selection operator (?:). It operates on three
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
* first expression, which must result in a scalar Boolean."
*/
if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
YYLTYPE loc = this->subexpressions[0]->get_location();
_mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
error_emitted = true;
}
/* The :? operator is implemented by generating an anonymous temporary
* followed by an if-statement. The last instruction in each branch of
* the if-statement assigns a value to the anonymous temporary. This
* temporary is the r-value of the expression.
*/
exec_list then_instructions;
exec_list else_instructions;
op[1] = this->subexpressions[1]->hir(&then_instructions, state);
op[2] = this->subexpressions[2]->hir(&else_instructions, state);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The second and third expressions can be any type, as
* long their types match, or there is a conversion in
* Section 4.1.10 "Implicit Conversions" that can be applied
* to one of the expressions to make their types match. This
* resulting matching type is the type of the entire
* expression."
*/
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|| (op[1]->type != op[2]->type)) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
"operator must have matching types.");
error_emitted = true;
type = glsl_type::error_type;
} else {
type = op[1]->type;
}
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
*
* "The second and third expressions must be the same type, but can
* be of any type other than an array."
*/
if ((state->language_version <= 110) && type->is_array()) {
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
"operator must not be arrays.");
error_emitted = true;
}
ir_constant *cond_val = op[0]->constant_expression_value();
ir_constant *then_val = op[1]->constant_expression_value();
ir_constant *else_val = op[2]->constant_expression_value();
if (then_instructions.is_empty()
&& else_instructions.is_empty()
&& (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
result = (cond_val->value.b[0]) ? then_val : else_val;
} else {
ir_variable *const tmp =
new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
then_instructions.move_nodes_to(& stmt->then_instructions);
ir_dereference *const then_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1], NULL);
stmt->then_instructions.push_tail(then_assign);
else_instructions.move_nodes_to(& stmt->else_instructions);
ir_dereference *const else_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[2], NULL);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
}
break;
}
case ast_pre_inc:
case ast_pre_dec: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
op[1] = new(ctx) ir_constant(1.0f);
else
op[1] = new(ctx) ir_constant(1);
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
result = do_assignment(instructions, state,
op[0]->clone(ctx, NULL), temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = op[0]->type->is_error();
break;
}
case ast_post_inc:
case ast_post_dec: {
op[0] = this->subexpressions[0]->hir(instructions, state);
if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
op[1] = new(ctx) ir_constant(1.0f);
else
op[1] = new(ctx) ir_constant(1);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
/* Get a temporary of a copy of the lvalue before it's modified.
* This may get thrown away later.
*/
result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
(void)do_assignment(instructions, state,
op[0]->clone(ctx, NULL), temp_rhs,
this->subexpressions[0]->get_location());
type = result->type;
error_emitted = op[0]->type->is_error();
break;
}
case ast_field_selection:
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
type = result->type;
break;
case ast_array_index: {
YYLTYPE index_loc = subexpressions[1]->get_location();
op[0] = subexpressions[0]->hir(instructions, state);
op[1] = subexpressions[1]->hir(instructions, state);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
ir_rvalue *const array = op[0];
result = new(ctx) ir_dereference_array(op[0], op[1]);
/* Do not use op[0] after this point. Use array.
*/
op[0] = NULL;
if (error_emitted)
break;
if (!array->type->is_array()
&& !array->type->is_matrix()
&& !array->type->is_vector()) {
_mesa_glsl_error(& index_loc, state,
"cannot dereference non-array / non-matrix / "
"non-vector");
error_emitted = true;
}
if (!op[1]->type->is_integer()) {
_mesa_glsl_error(& index_loc, state,
"array index must be integer type");
error_emitted = true;
} else if (!op[1]->type->is_scalar()) {
_mesa_glsl_error(& index_loc, state,
"array index must be scalar");
error_emitted = true;
}
/* If the array index is a constant expression and the array has a
* declared size, ensure that the access is in-bounds. If the array
* index is not a constant expression, ensure that the array has a
* declared size.
*/
ir_constant *const const_index = op[1]->constant_expression_value();
if (const_index != NULL) {
const int idx = const_index->value.i[0];
const char *type_name;
unsigned bound = 0;
if (array->type->is_matrix()) {
type_name = "matrix";
} else if (array->type->is_vector()) {
type_name = "vector";
} else {
type_name = "array";
}
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
*
* "It is illegal to declare an array with a size, and then
* later (in the same shader) index the same array with an
* integral constant expression greater than or equal to the
* declared size. It is also illegal to index an array with a
* negative constant expression."
*/
if (array->type->is_matrix()) {
if (array->type->row_type()->vector_elements <= idx) {
bound = array->type->row_type()->vector_elements;
}
} else if (array->type->is_vector()) {
if (array->type->vector_elements <= idx) {
bound = array->type->vector_elements;
}
} else {
if ((array->type->array_size() > 0)
&& (array->type->array_size() <= idx)) {
bound = array->type->array_size();
}
}
if (bound > 0) {
_mesa_glsl_error(& loc, state, "%s index must be < %u",
type_name, bound);
error_emitted = true;
} else if (idx < 0) {
_mesa_glsl_error(& loc, state, "%s index must be >= 0",
type_name);
error_emitted = true;
}
if (array->type->is_array()) {
/* If the array is a variable dereference, it dereferences the
* whole array, by definition. Use this to get the variable.
*
* FINISHME: Should some methods for getting / setting / testing
* FINISHME: array access limits be added to ir_dereference?
*/
ir_variable *const v = array->whole_variable_referenced();
if ((v != NULL) && (unsigned(idx) > v->max_array_access))
v->max_array_access = idx;
}
} else if (array->type->array_size() == 0) {
_mesa_glsl_error(&loc, state, "unsized array index must be constant");
} else {
if (array->type->is_array()) {
/* whole_variable_referenced can return NULL if the array is a
* member of a structure. In this case it is safe to not update
* the max_array_access field because it is never used for fields
* of structures.
*/
ir_variable *v = array->whole_variable_referenced();
if (v != NULL)
v->max_array_access = array->type->array_size();
// TODO: should this be array->type->array_size() - 1
}
}
/* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
*
* "Samplers aggregated into arrays within a shader (using square
* brackets [ ]) can only be indexed with integral constant
* expressions [...]."
*
* This restriction was added in GLSL 1.30. Shaders using earlier version
* of the language should not be rejected by the compiler front-end for
* using this construct. This allows useful things such as using a loop
* counter as the index to an array of samplers. If the loop in unrolled,
* the code should compile correctly. Instead, emit a warning.
*/
if (array->type->is_array() &&
array->type->element_type()->is_sampler() &&
const_index == NULL) {
if (state->language_version == 100) {
_mesa_glsl_warning(&loc, state,
"sampler arrays indexed with non-constant "
"expressions is optional in GLSL ES 1.00");
} else if (state->language_version < 130) {
_mesa_glsl_warning(&loc, state,
"sampler arrays indexed with non-constant "
"expressions is forbidden in GLSL 1.30 and "
"later");
} else {
_mesa_glsl_error(&loc, state,
"sampler arrays indexed with non-constant "
"expressions is forbidden in GLSL 1.30 and "
"later");
error_emitted = true;
}
}
if (error_emitted)
result->type = glsl_type::error_type;
type = result->type;
break;
}
case ast_function_call:
/* Should *NEVER* get here. ast_function_call should always be handled
* by ast_function_expression::hir.
*/
assert(0);
break;
case ast_identifier: {
/* ast_identifier can appear several places in a full abstract syntax
* tree. This particular use must be at location specified in the grammar
* as 'variable_identifier'.
*/
ir_variable *var =
state->symbols->get_variable(this->primary_expression.identifier);
result = new(ctx) ir_dereference_variable(var);
if (var != NULL) {
type = result->type;
} else {
_mesa_glsl_error(& loc, state, "`%s' undeclared",
this->primary_expression.identifier);
error_emitted = true;
}
break;
}
case ast_int_constant:
type = glsl_type::int_type;
result = new(ctx) ir_constant(this->primary_expression.int_constant);
break;
case ast_uint_constant:
type = glsl_type::uint_type;
result = new(ctx) ir_constant(this->primary_expression.uint_constant);
break;
case ast_float_constant:
type = glsl_type::float_type;
result = new(ctx) ir_constant(this->primary_expression.float_constant);
break;
case ast_bool_constant:
type = glsl_type::bool_type;
result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
break;
case ast_sequence: {
/* It should not be possible to generate a sequence in the AST without
* any expressions in it.
*/
assert(!this->expressions.is_empty());
/* The r-value of a sequence is the last expression in the sequence. If
* the other expressions in the sequence do not have side-effects (and
* therefore add instructions to the instruction list), they get dropped
* on the floor.
*/
foreach_list_typed (ast_node, ast, link, &this->expressions)
result = ast->hir(instructions, state);
type = result->type;
/* Any errors should have already been emitted in the loop above.
*/
error_emitted = true;
break;
}
}
if (type->is_error() && !error_emitted)
_mesa_glsl_error(& loc, state, "type mismatch");
return result;
}
ir_rvalue *
ast_expression_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* It is possible to have expression statements that don't have an
* expression. This is the solitary semicolon:
*
* for (i = 0; i < 5; i++)
* ;
*
* In this case the expression will be NULL. Test for NULL and don't do
* anything in that case.
*/
if (expression != NULL)
expression->hir(instructions, state);
/* Statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_compound_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (new_scope)
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, &this->statements)
ast->hir(instructions, state);
if (new_scope)
state->symbols->pop_scope();
/* Compound statements do not have r-values.
*/
return NULL;
}
static const glsl_type *
process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
struct _mesa_glsl_parse_state *state)
{
unsigned length = 0;
/* FINISHME: Reject delcarations of multidimensional arrays. */
if (array_size != NULL) {
exec_list dummy_instructions;
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
YYLTYPE loc = array_size->get_location();
/* FINISHME: Verify that the grammar forbids side-effects in array
* FINISHME: sizes. i.e., 'vec4 [x = 12] data'
*/
assert(dummy_instructions.is_empty());
if (ir != NULL) {
if (!ir->type->is_integer()) {
_mesa_glsl_error(& loc, state, "array size must be integer type");
} else if (!ir->type->is_scalar()) {
_mesa_glsl_error(& loc, state, "array size must be scalar type");
} else {
ir_constant *const size = ir->constant_expression_value();
if (size == NULL) {
_mesa_glsl_error(& loc, state, "array size must be a "
"constant valued expression");
} else if (size->value.i[0] <= 0) {
_mesa_glsl_error(& loc, state, "array size must be > 0");
} else {
assert(size->type == ir->type);
length = size->value.u[0];
}
}
}
} else if (state->es_shader) {
/* Section 10.17 of the GLSL ES 1.00 specification states that unsized
* array declarations have been removed from the language.
*/
_mesa_glsl_error(loc, state, "unsized array declarations are not "
"allowed in GLSL ES 1.00.");
}
return glsl_type::get_array_instance(base, length);
}
const glsl_type *
ast_type_specifier::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type;
type = state->symbols->get_type(this->type_name);
*name = this->type_name;
if (this->is_array) {
YYLTYPE loc = this->get_location();
type = process_array_type(&loc, type, this->array_size, state);
}
return type;
}
static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
if (qual->flags.q.invariant)
var->invariant = 1;
/* FINISHME: Mark 'in' variables at global scope as read-only. */
if (qual->flags.q.constant || qual->flags.q.attribute
|| qual->flags.q.uniform
|| (qual->flags.q.varying && (state->target == fragment_shader)))
var->read_only = 1;
if (qual->flags.q.centroid)
var->centroid = 1;
if (qual->flags.q.attribute && state->target != vertex_shader) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"`attribute' variables may not be declared in the "
"%s shader",
_mesa_glsl_shader_target_name(state->target));
}
/* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
*
* "The varying qualifier can be used only with the data types
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
* these."
*/
if (qual->flags.q.varying) {
const glsl_type *non_array_type;
if (var->type && var->type->is_array())
non_array_type = var->type->fields.array;
else
non_array_type = var->type;
if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"varying variables must be of base type float");
}
}
/* If there is no qualifier that changes the mode of the variable, leave
* the setting alone.
*/
if (qual->flags.q.in && qual->flags.q.out)
var->mode = ir_var_inout;
else if (qual->flags.q.attribute || qual->flags.q.in
|| (qual->flags.q.varying && (state->target == fragment_shader)))
var->mode = ir_var_in;
else if (qual->flags.q.out
|| (qual->flags.q.varying && (state->target == vertex_shader)))
var->mode = ir_var_out;
else if (qual->flags.q.uniform)
var->mode = ir_var_uniform;
if (qual->flags.q.flat)
var->interpolation = ir_var_flat;
else if (qual->flags.q.noperspective)
var->interpolation = ir_var_noperspective;
else
var->interpolation = ir_var_smooth;
var->pixel_center_integer = qual->flags.q.pixel_center_integer;
var->origin_upper_left = qual->flags.q.origin_upper_left;
if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
&& (strcmp(var->name, "gl_FragCoord") != 0)) {
const char *const qual_string = (qual->flags.q.origin_upper_left)
? "origin_upper_left" : "pixel_center_integer";
_mesa_glsl_error(loc, state,
"layout qualifier `%s' can only be applied to "
"fragment shader input `gl_FragCoord'",
qual_string);
}
if (qual->flags.q.explicit_location) {
const bool global_scope = (state->current_function == NULL);
bool fail = false;
const char *string = "";
/* In the vertex shader only shader inputs can be given explicit
* locations.
*
* In the fragment shader only shader outputs can be given explicit
* locations.
*/
switch (state->target) {
case vertex_shader:
if (!global_scope || (var->mode != ir_var_in)) {
fail = true;
string = "input";
}
break;
case geometry_shader:
_mesa_glsl_error(loc, state,
"geometry shader variables cannot be given "
"explicit locations\n");
break;
case fragment_shader:
if (!global_scope || (var->mode != ir_var_in)) {
fail = true;
string = "output";
}
break;
};
if (fail) {
_mesa_glsl_error(loc, state,
"only %s shader %s variables can be given an "
"explicit location\n",
_mesa_glsl_shader_target_name(state->target),
string);
} else {
var->explicit_location = true;
/* This bit of silliness is needed because invalid explicit locations
* are supposed to be flagged during linking. Small negative values
* biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
* built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
* The linker needs to be able to differentiate these cases. This
* ensures that negative values stay negative.
*/
if (qual->location >= 0) {
var->location = (state->target == vertex_shader)
? (qual->location + VERT_ATTRIB_GENERIC0)
: (qual->location + FRAG_RESULT_DATA0);
} else {
var->location = qual->location;
}
}
}
if (var->type->is_array() && state->language_version != 110) {
var->array_lvalue = true;
}
}
ir_rvalue *
ast_declarator_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *decl_type;
const char *type_name = NULL;
ir_rvalue *result = NULL;
YYLTYPE loc = this->get_location();
/* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
*
* "To ensure that a particular output variable is invariant, it is
* necessary to use the invariant qualifier. It can either be used to
* qualify a previously declared variable as being invariant
*
* invariant gl_Position; // make existing gl_Position be invariant"
*
* In these cases the parser will set the 'invariant' flag in the declarator
* list, and the type will be NULL.
*/
if (this->invariant) {
assert(this->type == NULL);
if (state->current_function != NULL) {
_mesa_glsl_error(& loc, state,
"All uses of `invariant' keyword must be at global "
"scope\n");
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
assert(!decl->is_array);
assert(decl->array_size == NULL);
assert(decl->initializer == NULL);
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if (earlier == NULL) {
_mesa_glsl_error(& loc, state,
"Undeclared variable `%s' cannot be marked "
"invariant\n", decl->identifier);
} else if ((state->target == vertex_shader)
&& (earlier->mode != ir_var_out)) {
_mesa_glsl_error(& loc, state,
"`%s' cannot be marked invariant, vertex shader "
"outputs only\n", decl->identifier);
} else if ((state->target == fragment_shader)
&& (earlier->mode != ir_var_in)) {
_mesa_glsl_error(& loc, state,
"`%s' cannot be marked invariant, fragment shader "
"inputs only\n", decl->identifier);
} else {
earlier->invariant = true;
}
}
/* Invariant redeclarations do not have r-values.
*/
return NULL;
}
assert(this->type != NULL);
assert(!this->invariant);
/* The type specifier may contain a structure definition. Process that
* before any of the variable declarations.
*/
(void) this->type->specifier->hir(instructions, state);
decl_type = this->type->specifier->glsl_type(& type_name, state);
if (this->declarations.is_empty()) {
/* The only valid case where the declaration list can be empty is when
* the declaration is setting the default precision of a built-in type
* (e.g., 'precision highp vec4;').
*/
if (decl_type != NULL) {
} else {
_mesa_glsl_error(& loc, state, "incomplete declaration");
}
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
const struct glsl_type *var_type;
ir_variable *var;
/* FINISHME: Emit a warning if a variable declaration shadows a
* FINISHME: declaration at a higher scope.
*/
if ((decl_type == NULL) || decl_type->is_void()) {
if (type_name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
type_name, decl->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
}
continue;
}
if (decl->is_array) {
var_type = process_array_type(&loc, decl_type, decl->array_size,
state);
} else {
var_type = decl_type;
}
var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
*
* "Global variables can only use the qualifiers const,
* attribute, uni form, or varying. Only one may be
* specified.
*
* Local variables can only use the qualifier const."
*
* This is relaxed in GLSL 1.30.
*/
if (state->language_version < 120) {
if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(& loc, state,
"`out' qualifier in declaration of `%s' "
"only valid for function parameters in GLSL 1.10.",
decl->identifier);
}
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(& loc, state,
"`in' qualifier in declaration of `%s' "
"only valid for function parameters in GLSL 1.10.",
decl->identifier);
}
/* FINISHME: Test for other invalid qualifiers. */
}
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
& loc);
if (this->type->qualifier.flags.q.invariant) {
if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
var->mode == ir_var_inout)) {
/* FINISHME: Note that this doesn't work for invariant on
* a function signature outval
*/
_mesa_glsl_error(& loc, state,
"`%s' cannot be marked invariant, vertex shader "
"outputs only\n", var->name);
} else if ((state->target == fragment_shader) &&
!(var->mode == ir_var_in || var->mode == ir_var_inout)) {
/* FINISHME: Note that this doesn't work for invariant on
* a function signature inval
*/
_mesa_glsl_error(& loc, state,
"`%s' cannot be marked invariant, fragment shader "
"inputs only\n", var->name);
}
}
if (state->current_function != NULL) {
const char *mode = NULL;
const char *extra = "";
/* There is no need to check for 'inout' here because the parser will
* only allow that in function parameter lists.
*/
if (this->type->qualifier.flags.q.attribute) {
mode = "attribute";
} else if (this->type->qualifier.flags.q.uniform) {
mode = "uniform";
} else if (this->type->qualifier.flags.q.varying) {
mode = "varying";
} else if (this->type->qualifier.flags.q.in) {
mode = "in";
extra = " or in function parameter list";
} else if (this->type->qualifier.flags.q.out) {
mode = "out";
extra = " or in function parameter list";
}
if (mode) {
_mesa_glsl_error(& loc, state,
"%s variable `%s' must be declared at "
"global scope%s",
mode, var->name, extra);
}
} else if (var->mode == ir_var_in) {
if (state->target == vertex_shader) {
bool error_emitted = false;
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs can also form arrays of these
* types, but not structures."
*
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. They cannot be arrays or structures."
*
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
*
* "The attribute qualifier can be used only with float,
* floating-point vectors, and matrices. Attribute variables
* cannot be declared as arrays or structures."
*/
const glsl_type *check_type = var->type->is_array()
? var->type->fields.array : var->type;
switch (check_type->base_type) {
case GLSL_TYPE_FLOAT:
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->language_version > 120)
break;
/* FALLTHROUGH */
default:
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"type %s`%s'",
var->type->is_array() ? "array of " : "",
check_type->name);
error_emitted = true;
}
if (!error_emitted && (state->language_version <= 130)
&& var->type->is_array()) {
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"array type");
error_emitted = true;
}
}
}
/* Process the initializer and add its instructions to a temporary
* list. This list will be added to the instruction stream (below) after
* the declaration is added. This is done because in some cases (such as
* redeclarations) the declaration may not actually be added to the
* instruction stream.
*/
exec_list initializer_instructions;
if (decl->initializer != NULL) {
YYLTYPE initializer_loc = decl->initializer->get_location();
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
*
* "All uniform variables are read-only and are initialized either
* directly by an application via API commands, or indirectly by
* OpenGL."
*/
if ((state->language_version <= 110)
&& (var->mode == ir_var_uniform)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize uniforms in GLSL 1.10");
}
if (var->type->is_sampler()) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize samplers");
}
if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize %s shader input / %s",
_mesa_glsl_shader_target_name(state->target),
(state->target == vertex_shader)
? "attribute" : "varying");
}
ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
state);
/* Calculate the constant value if this is a const or uniform
* declaration.
*/
if (this->type->qualifier.flags.q.constant
|| this->type->qualifier.flags.q.uniform) {
ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
if (new_rhs != NULL) {
rhs = new_rhs;
ir_constant *constant_value = rhs->constant_expression_value();
if (!constant_value) {
_mesa_glsl_error(& initializer_loc, state,
"initializer of %s variable `%s' must be a "
"constant expression",
(this->type->qualifier.flags.q.constant)
? "const" : "uniform",
decl->identifier);
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(ctx, var->type);
}
} else {
rhs = constant_value;
var->constant_value = constant_value;
}
} else {
_mesa_glsl_error(&initializer_loc, state,
"initializer of type %s cannot be assigned to "
"variable of type %s",
rhs->type->name, var->type->name);
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(ctx, var->type);
}
}
}
if (rhs && !rhs->type->is_error()) {
bool temp = var->read_only;
if (this->type->qualifier.flags.q.constant)
var->read_only = false;
/* Never emit code to initialize a uniform.
*/
const glsl_type *initializer_type;
if (!this->type->qualifier.flags.q.uniform) {
result = do_assignment(&initializer_instructions, state,
lhs, rhs,
this->get_location());
initializer_type = result->type;
} else
initializer_type = rhs->type;
/* If the declared variable is an unsized array, it must inherrit
* its full type from the initializer. A declaration such as
*
* uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
*
* becomes
*
* uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
*
* The assignment generated in the if-statement (below) will also
* automatically handle this case for non-uniforms.
*
* If the declared variable is not an array, the types must
* already match exactly. As a result, the type assignment
* here can be done unconditionally. For non-uniforms the call
* to do_assignment can change the type of the initializer (via
* the implicit conversion rules). For uniforms the initializer
* must be a constant expression, and the type of that expression
* was validated above.
*/
var->type = initializer_type;
var->read_only = temp;
}
}
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to write to a const variable outside of
* its declaration, so they must be initialized when
* declared."
*/
if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
_mesa_glsl_error(& loc, state,
"const declaration of `%s' must be initialized");
}
/* Check if this declaration is actually a re-declaration, either to
* resize an array or add qualifiers to an existing variable.
*
* This is allowed for variables in the current scope, or when at
* global scope (for built-ins in the implicit outer scope).
*/
ir_variable *earlier = state->symbols->get_variable(decl->identifier);
if (earlier != NULL && (state->current_function == NULL ||
state->symbols->name_declared_this_scope(decl->identifier))) {
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
*
* "It is legal to declare an array without a size and then
* later re-declare the same name as an array of the same
* type and specify a size."
*/
if ((earlier->type->array_size() == 0)
&& var->type->is_array()
&& (var->type->element_type() == earlier->type->element_type())) {
/* FINISHME: This doesn't match the qualifiers on the two
* FINISHME: declarations. It's not 100% clear whether this is
* FINISHME: required or not.
*/
/* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
*
* "The size [of gl_TexCoord] can be at most
* gl_MaxTextureCoords."
*/
const unsigned size = unsigned(var->type->array_size());
if ((strcmp("gl_TexCoord", var->name) == 0)
&& (size > state->Const.MaxTextureCoords)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
"be larger than gl_MaxTextureCoords (%u)\n",
state->Const.MaxTextureCoords);
} else if ((size > 0) && (size <= earlier->max_array_access)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
"previous access",
earlier->max_array_access);
}
earlier->type = var->type;
delete var;
var = NULL;
} else if (state->ARB_fragment_coord_conventions_enable
&& strcmp(var->name, "gl_FragCoord") == 0
&& earlier->type == var->type
&& earlier->mode == var->mode) {
/* Allow redeclaration of gl_FragCoord for ARB_fcc layout
* qualifiers.
*/
earlier->origin_upper_left = var->origin_upper_left;
earlier->pixel_center_integer = var->pixel_center_integer;
} else {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
}
continue;
}
/* By now, we know it's a new variable declaration (we didn't hit the
* above "continue").
*
* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
*
* "Identifiers starting with "gl_" are reserved for use by
* OpenGL, and may not be declared in a shader as either a
* variable or a function."
*/
if (strncmp(decl->identifier, "gl_", 3) == 0)
_mesa_glsl_error(& loc, state,
"identifier `%s' uses reserved `gl_' prefix",
decl->identifier);
/* Add the variable to the symbol table. Note that the initializer's
* IR was already processed earlier (though it hasn't been emitted yet),
* without the variable in scope.
*
* This differs from most C-like languages, but it follows the GLSL
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
* spec:
*
* "Within a declaration, the scope of a name starts immediately
* after the initializer if present or immediately after the name
* being declared if not."
*/
if (!state->symbols->add_variable(var)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "name `%s' already taken in the "
"current scope", decl->identifier);
continue;
}
/* Push the variable declaration to the top. It means that all
* the variable declarations will appear in a funny
* last-to-first order, but otherwise we run into trouble if a
* function is prototyped, a global var is decled, then the
* function is defined with usage of the global var. See
* glslparsertest's CorrectModule.frag.
*/
instructions->push_head(var);
instructions->append_list(&initializer_instructions);
}
/* Generally, variable declarations do not have r-values. However,
* one is used for the declaration in
*
* while (bool b = some_condition()) {
* ...
* }
*
* so we return the rvalue from the last seen declaration here.
*/
return result;
}
ir_rvalue *
ast_parameter_declarator::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *type;
const char *name = NULL;
YYLTYPE loc = this->get_location();
type = this->type->specifier->glsl_type(& name, state);
if (type == NULL) {
if (name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
name, this->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
this->identifier);
}
type = glsl_type::error_type;
}
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
*
* "Functions that accept no input arguments need not use void in the
* argument list because prototypes (or definitions) are required and
* therefore there is no ambiguity when an empty argument list "( )" is
* declared. The idiom "(void)" as a parameter list is provided for
* convenience."
*
* Placing this check here prevents a void parameter being set up
* for a function, which avoids tripping up checks for main taking
* parameters and lookups of an unnamed symbol.
*/
if (type->is_void()) {
if (this->identifier != NULL)
_mesa_glsl_error(& loc, state,
"named parameter cannot have type `void'");
is_void = true;
return NULL;
}
if (formal_parameter && (this->identifier == NULL)) {
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
return NULL;
}
/* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
* call already handled the "vec4[..] foo" case.
*/
if (this->is_array) {
type = process_array_type(&loc, type, this->array_size, state);
}
if (type->array_size() == 0) {
_mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
"a declared size.");
type = glsl_type::error_type;
}
is_void = false;
ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
/* Apply any specified qualifiers to the parameter declaration. Note that
* for function parameters the default mode is 'in'.
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
instructions->push_tail(var);
/* Parameter declarations do not have r-values.
*/
return NULL;
}
void
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
bool formal,
exec_list *ir_parameters,
_mesa_glsl_parse_state *state)
{
ast_parameter_declarator *void_param = NULL;
unsigned count = 0;
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
param->formal_parameter = formal;
param->hir(ir_parameters, state);
if (param->is_void)
void_param = param;
count++;
}
if ((void_param != NULL) && (count > 1)) {
YYLTYPE loc = void_param->get_location();
_mesa_glsl_error(& loc, state,
"`void' parameter must be only parameter");
}
}
void
emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
ir_function *f)
{
/* Emit the new function header */
if (state->current_function == NULL) {
instructions->push_tail(f);
} else {
/* IR invariants disallow function declarations or definitions nested
* within other function definitions. Insert the new ir_function
* block in the instruction sequence before the ir_function block
* containing the current ir_function_signature.
*/
ir_function *const curr =
const_cast<ir_function *>(state->current_function->function());
curr->insert_before(f);
}
}
ir_rvalue *
ast_function::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_function *f = NULL;
ir_function_signature *sig = NULL;
exec_list hir_parameters;
const char *const name = identifier;
/* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
*
* "Function declarations (prototypes) cannot occur inside of functions;
* they must be at global scope, or for the built-in functions, outside
* the global scope."
*
* From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
*
* "User defined functions may only be defined within the global scope."
*
* Note that this language does not appear in GLSL 1.10.
*/
if ((state->current_function != NULL) && (state->language_version != 110)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"declaration of function `%s' not allowed within "
"function body", name);
}
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
*
* "Identifiers starting with "gl_" are reserved for use by
* OpenGL, and may not be declared in a shader as either a
* variable or a function."
*/
if (strncmp(name, "gl_", 3) == 0) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"identifier `%s' uses reserved `gl_' prefix", name);
}
/* Convert the list of function parameters to HIR now so that they can be
* used below to compare this function's signature with previously seen
* signatures for functions with the same name.
*/
ast_parameter_declarator::parameters_to_hir(& this->parameters,
is_definition,
& hir_parameters, state);
const char *return_type_name;
const glsl_type *return_type =
this->return_type->specifier->glsl_type(& return_type_name, state);
if (!return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function `%s' has undeclared return type `%s'",
name, return_type_name);
return_type = glsl_type::error_type;
}
/* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
* "No qualifier is allowed on the return type of a function."
*/
if (this->return_type->has_qualifiers()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"function `%s' return type has qualifiers", name);
}
/* Verify that this function's signature either doesn't match a previously
* seen signature for a function with the same name, or, if a match is found,
* that the previously seen signature does not have an associated definition.
*/
f = state->symbols->get_function(name);
if (f != NULL && (state->es_shader || f->has_user_signature())) {
sig = f->exact_matching_signature(&hir_parameters);
if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
"qualifiers don't match prototype", name, badvar);
}
if (sig->return_type != return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
"match prototype", name);
}
if (is_definition && sig->is_defined) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
}
}
} else {
f = new(ctx) ir_function(name);
if (!state->symbols->add_function(f)) {
/* This function name shadows a non-function use of the same name. */
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
"non-function", name);
return NULL;
}
emit_function(state, instructions, f);
}
/* Verify the return type of main() */
if (strcmp(name, "main") == 0) {
if (! return_type->is_void()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must return void");
}
if (!hir_parameters.is_empty()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
}
}
/* Finish storing the information about this new function in its signature.
*/
if (sig == NULL) {
sig = new(ctx) ir_function_signature(return_type);
f->add_signature(sig);
}
sig->replace_parameters(&hir_parameters);
signature = sig;
/* Function declarations (prototypes) do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_function_definition::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
prototype->is_definition = true;
prototype->hir(instructions, state);
ir_function_signature *signature = prototype->signature;
if (signature == NULL)
return NULL;
assert(state->current_function == NULL);
state->current_function = signature;
state->found_return = false;
/* Duplicate parameters declared in the prototype as concrete variables.
* Add these to the symbol table.
*/
state->symbols->push_scope();
foreach_iter(exec_list_iterator, iter, signature->parameters) {
ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
assert(var != NULL);
/* The only way a parameter would "exist" is if two parameters have
* the same name.
*/
if (state->symbols->name_declared_this_scope(var->name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
} else {
state->symbols->add_variable(var);
}
}
/* Convert the body of the function to HIR. */
this->body->hir(&signature->body, state);
signature->is_defined = true;
state->symbols->pop_scope();
assert(state->current_function == signature);
state->current_function = NULL;
if (!signature->return_type->is_void() && !state->found_return) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
"%s, but no return statement",
signature->function_name(),
signature->return_type->name);
}
/* Function definitions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_jump_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
switch (mode) {
case ast_return: {
ir_return *inst;
assert(state->current_function);
if (opt_return_value) {
if (state->current_function->return_type->base_type ==
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return` with a value, in function `%s' "
"returning void",
state->current_function->function_name());
}
ir_rvalue *const ret = opt_return_value->hir(instructions, state);
assert(ret != NULL);
/* Implicit conversions are not allowed for return values. */
if (state->current_function->return_type != ret->type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return' with wrong type %s, in function `%s' "
"returning %s",
ret->type->name,
state->current_function->function_name(),
state->current_function->return_type->name);
}
inst = new(ctx) ir_return(ret);
} else {
if (state->current_function->return_type->base_type !=
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return' with no value, in function %s returning "
"non-void",
state->current_function->function_name());
}
inst = new(ctx) ir_return;
}
state->found_return = true;
instructions->push_tail(inst);
break;
}
case ast_discard:
if (state->target != fragment_shader) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`discard' may only appear in a fragment shader");
}
instructions->push_tail(new(ctx) ir_discard);
break;
case ast_break:
case ast_continue:
/* FINISHME: Handle switch-statements. They cannot contain 'continue',
* FINISHME: and they use a different IR instruction for 'break'.
*/
/* FINISHME: Correctly handle the nesting. If a switch-statement is
* FINISHME: inside a loop, a 'continue' is valid and will bind to the
* FINISHME: loop.
*/
if (state->loop_or_switch_nesting == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`%s' may only appear in a loop",
(mode == ast_break) ? "break" : "continue");
} else {
ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
/* Inline the for loop expression again, since we don't know
* where near the end of the loop body the normal copy of it
* is going to be placed.
*/
if (mode == ast_continue &&
state->loop_or_switch_nesting_ast->rest_expression) {
state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
state);
}
if (loop != NULL) {
ir_loop_jump *const jump =
new(ctx) ir_loop_jump((mode == ast_break)
? ir_loop_jump::jump_break
: ir_loop_jump::jump_continue);
instructions->push_tail(jump);
}
}
break;
}
/* Jump instructions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_selection_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_rvalue *const condition = this->condition->hir(instructions, state);
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
*
* "Any expression whose type evaluates to a Boolean can be used as the
* conditional expression bool-expression. Vector types are not accepted
* as the expression to if."
*
* The checks are separated so that higher quality diagnostics can be
* generated for cases where both rules are violated.
*/
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
YYLTYPE loc = this->condition->get_location();
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
"boolean");
}
ir_if *const stmt = new(ctx) ir_if(condition);
if (then_statement != NULL) {
state->symbols->push_scope();
then_statement->hir(& stmt->then_instructions, state);
state->symbols->pop_scope();
}
if (else_statement != NULL) {
state->symbols->push_scope();
else_statement->hir(& stmt->else_instructions, state);
state->symbols->pop_scope();
}
instructions->push_tail(stmt);
/* if-statements do not have r-values.
*/
return NULL;
}
void
ast_iteration_statement::condition_to_hir(ir_loop *stmt,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (condition != NULL) {
ir_rvalue *const cond =
condition->hir(& stmt->body_instructions, state);
if ((cond == NULL)
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
YYLTYPE loc = condition->get_location();
_mesa_glsl_error(& loc, state,
"loop condition must be scalar boolean");
} else {
/* As the first code in the loop body, generate a block that looks
* like 'if (!condition) break;' as the loop termination condition.
*/
ir_rvalue *const not_cond =
new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
NULL);
ir_if *const if_stmt = new(ctx) ir_if(not_cond);
ir_jump *const break_stmt =
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(break_stmt);
stmt->body_instructions.push_tail(if_stmt);
}
}
}
ir_rvalue *
ast_iteration_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* For-loops and while-loops start a new scope, but do-while loops do not.
*/
if (mode != ast_do_while)
state->symbols->push_scope();
if (init_statement != NULL)
init_statement->hir(instructions, state);
ir_loop *const stmt = new(ctx) ir_loop();
instructions->push_tail(stmt);
/* Track the current loop and / or switch-statement nesting.
*/
ir_instruction *const nesting = state->loop_or_switch_nesting;
ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
state->loop_or_switch_nesting = stmt;
state->loop_or_switch_nesting_ast = this;
if (mode != ast_do_while)
condition_to_hir(stmt, state);
if (body != NULL)
body->hir(& stmt->body_instructions, state);
if (rest_expression != NULL)
rest_expression->hir(& stmt->body_instructions, state);
if (mode == ast_do_while)
condition_to_hir(stmt, state);
if (mode != ast_do_while)
state->symbols->pop_scope();
/* Restore previous nesting before returning.
*/
state->loop_or_switch_nesting = nesting;
state->loop_or_switch_nesting_ast = nesting_ast;
/* Loops do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_type_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (this->structure != NULL)
return this->structure->hir(instructions, state);
return NULL;
}
ir_rvalue *
ast_struct_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
unsigned decl_count = 0;
/* Make an initial pass over the list of structure fields to determine how
* many there are. Each element in this list is an ast_declarator_list.
* This means that we actually need to count the number of elements in the
* 'declarations' list in each of the elements.
*/
foreach_list_typed (ast_declarator_list, decl_list, link,
&this->declarations) {
foreach_list_const (decl_ptr, & decl_list->declarations) {
decl_count++;
}
}
/* Allocate storage for the structure fields and process the field
* declarations. As the declarations are processed, try to also convert
* the types to HIR. This ensures that structure definitions embedded in
* other structure definitions are processed.
*/
glsl_struct_field *const fields = hieralloc_array(state, glsl_struct_field,
decl_count);
unsigned i = 0;
foreach_list_typed (ast_declarator_list, decl_list, link,
&this->declarations) {
const char *type_name;
decl_list->type->specifier->hir(instructions, state);
/* Section 10.9 of the GLSL ES 1.00 specification states that
* embedded structure definitions have been removed from the language.
*/
if (state->es_shader && decl_list->type->specifier->structure != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "Embedded structure definitions are "
"not allowed in GLSL ES 1.00.");
}
const glsl_type *decl_type =
decl_list->type->specifier->glsl_type(& type_name, state);
foreach_list_typed (ast_declaration, decl, link,
&decl_list->declarations) {
const struct glsl_type *field_type = decl_type;
if (decl->is_array) {
YYLTYPE loc = decl->get_location();
field_type = process_array_type(&loc, decl_type, decl->array_size,
state);
}
fields[i].type = (field_type != NULL)
? field_type : glsl_type::error_type;
fields[i].name = decl->identifier;
i++;
}
}
assert(i == decl_count);
const glsl_type *t =
glsl_type::get_record_instance(fields, decl_count, this->name);
YYLTYPE loc = this->get_location();
if (!state->symbols->add_type(name, t)) {
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
} else {
const glsl_type **s = (const glsl_type **)
realloc(state->user_structures,
sizeof(state->user_structures[0]) *
(state->num_user_structures + 1));
if (s != NULL) {
s[state->num_user_structures] = t;
state->user_structures = s;
state->num_user_structures++;
}
}
/* Structure type definitions do not have r-values.
*/
return NULL;
}