blob: 624d1f6f6486451c157784e7466b36ac39d2237e [file] [log] [blame]
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Design Rationale</title>
<link rel="stylesheet" href="../../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.76.1">
<link rel="home" href="../index.html" title="Chapter&#160;1.&#160;Geometry 1.0">
<link rel="up" href="../index.html" title="Chapter&#160;1.&#160;Geometry 1.0">
<link rel="prev" href="quickstart.html" title="Quick Start">
<link rel="next" href="compilation.html" title="Compilation">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="quickstart.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="compilation.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="geometry.design"></a><a class="link" href="design.html" title="Design Rationale">Design Rationale</a>
</h2></div></div></div>
<p>
Suppose you need a C++ program to calculate the distance between two points.
You might define a struct:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">mypoint</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">y</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
and a function, containing the algorithm:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">mypoint</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">mypoint</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">dx</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">.</span><span class="identifier">x</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">dy</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">y</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">.</span><span class="identifier">y</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">dx</span> <span class="special">*</span> <span class="identifier">dx</span> <span class="special">+</span> <span class="identifier">dy</span> <span class="special">*</span> <span class="identifier">dy</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
Quite simple, and it is usable, but not generic. For a library it has to be
designed way further. The design above can only be used for 2D points, for
the struct <span class="bold"><strong>mypoint</strong></span> (and no other struct),
in a Cartesian coordinate system. A generic library should be able to calculate
the distance:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
for any point class or struct, not on just this <span class="bold"><strong>mypoint</strong></span>
type
</li>
<li class="listitem">
in more than two dimensions
</li>
<li class="listitem">
for other coordinate systems, e.g. over the earth or on a sphere
</li>
<li class="listitem">
between a point and a line or between other geometry combinations
</li>
<li class="listitem">
in higher precision than <span class="emphasis"><em>double</em></span>
</li>
<li class="listitem">
avoiding the square root: often we don't want to do that because it is
a relatively expensive function, and for comparing distances it is not
necessary
</li>
</ul></div>
<p>
In this and following sections we will make the design step by step more generic.
</p>
<a name="geometry.design.using_templates"></a><h4>
<a name="geometry.design.using_templates-heading"></a>
<a class="link" href="design.html#geometry.design.using_templates">Using Templates</a>
</h4>
<p>
The distance function can be changed into a template function. This is trivial
and allows calculating the distance between other point types than just <span class="bold"><strong>mypoint</strong></span>. We add two template parameters, allowing input
of two different point types.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">dx</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">.</span><span class="identifier">x</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">dy</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">y</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">.</span><span class="identifier">y</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">dx</span> <span class="special">*</span> <span class="identifier">dx</span> <span class="special">+</span> <span class="identifier">dy</span> <span class="special">*</span> <span class="identifier">dy</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
This template version is slightly better, but not much.
</p>
<p>
Consider a C++ class where member variables are protected... Such a class does
not allow to access <code class="computeroutput"><span class="identifier">x</span></code> and
<code class="computeroutput"><span class="identifier">y</span></code> members directly. So, this
paragraph is short and we just move on.
</p>
<a name="geometry.design.using_traits"></a><h4>
<a name="geometry.design.using_traits-heading"></a>
<a class="link" href="design.html#geometry.design.using_traits">Using Traits</a>
</h4>
<p>
We need to take a generic approach and allow any point type as input to the
distance function. Instead of accessing <code class="computeroutput"><span class="identifier">x</span></code>
and <code class="computeroutput"><span class="identifier">y</span></code> members, we will add
a few levels of indirection, using a traits system. The function then becomes:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">dx</span> <span class="special">=</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">b</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">dy</span> <span class="special">=</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">b</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">dx</span> <span class="special">*</span> <span class="identifier">dx</span> <span class="special">+</span> <span class="identifier">dy</span> <span class="special">*</span> <span class="identifier">dy</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
This adapted distance function uses a generic get function, with dimension
as a template parameter, to access the coordinates of a point. This get forwards
to the traits system, defined as following:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">access</span> <span class="special">{};</span>
<span class="special">}</span>
</pre>
<p>
which is then specialized for our <span class="bold"><strong>mypoint</strong></span>
type, implementing a static method called <code class="computeroutput"><span class="identifier">get</span></code>:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">access</span><span class="special">&lt;</span><span class="identifier">mypoint</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">double</span> <span class="identifier">get</span><span class="special">(</span><span class="identifier">mypoint</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">p</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">p</span><span class="special">.</span><span class="identifier">x</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// same for 1: p.y</span>
<span class="special">...</span>
<span class="special">}</span>
</pre>
<p>
Calling <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">access</span><span class="special">&lt;</span><span class="identifier">mypoint</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;::</span><span class="identifier">get</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span></code>
now returns us our <code class="computeroutput"><span class="identifier">x</span></code> coordinate.
Nice, isn't it? It is too verbose for a function like this, used so often in
the library. We can shorten the syntax by adding an extra free function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">inline</span> <span class="keyword">double</span> <span class="identifier">get</span><span class="special">(</span><span class="identifier">P</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">p</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">traits</span><span class="special">::</span><span class="identifier">access</span><span class="special">&lt;</span><span class="identifier">P</span><span class="special">,</span> <span class="identifier">D</span><span class="special">&gt;::</span><span class="identifier">get</span><span class="special">(</span><span class="identifier">p</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
This enables us to call <code class="computeroutput"><span class="identifier">get</span><span class="special">&lt;</span><span class="number">0</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span></code>, for any
point having the traits::access specialization, as shown in the distance algorithm
at the start of this paragraph. So we wanted to enable classes with methods
like <code class="computeroutput"><span class="identifier">x</span><span class="special">()</span></code>,
and they are supported as long as there is a specialization of the access
<code class="computeroutput"><span class="keyword">struct</span></code> with a static <code class="computeroutput"><span class="identifier">get</span></code> function returning <code class="computeroutput"><span class="identifier">x</span><span class="special">()</span></code> for dimension 0, and similar for 1 and <code class="computeroutput"><span class="identifier">y</span><span class="special">()</span></code>.
</p>
<a name="geometry.design.dimension_agnosticism"></a><h4>
<a name="geometry.design.dimension_agnosticism-heading"></a>
<a class="link" href="design.html#geometry.design.dimension_agnosticism">Dimension Agnosticism</a>
</h4>
<p>
Now we can calculate the distance between points in 2D, points of any structure
or class. However, we wanted to have 3D as well. So we have to make it dimension
agnostic. This complicates our distance function. We can use a <code class="computeroutput"><span class="keyword">for</span></code> loop to walk through dimensions, but for
loops have another performance than the straightforward coordinate addition
which was there originally. However, we can make more usage of templates and
make the distance algorithm as following, more complex but attractive for template
fans:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">pythagoras</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">double</span> <span class="identifier">apply</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">b</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">d</span> <span class="special">*</span> <span class="identifier">d</span> <span class="special">+</span> <span class="identifier">pythagoras</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">pythagoras</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="number">0</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">double</span> <span class="identifier">apply</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The distance function is calling that <code class="computeroutput"><span class="identifier">pythagoras</span></code>
structure, specifying the number of dimensions:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">BOOST_STATIC_ASSERT</span><span class="special">((</span> <span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">==</span> <span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">P2</span><span class="special">&gt;::</span><span class="identifier">value</span> <span class="special">));</span>
<span class="keyword">return</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">pythagoras</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">&gt;::</span><span class="identifier">value</span><span class="special">&gt;::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">));</span>
<span class="special">}</span>
</pre>
<p>
The dimension which is referred to is defined using another traits class:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">dimension</span> <span class="special">{};</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
which has to be specialized again for the <code class="computeroutput"><span class="keyword">struct</span>
<span class="identifier">mypoint</span></code>.
</p>
<p>
Because it only has to publish a value, we conveniently derive it from the
Boost.MPL <code class="computeroutput"><span class="keyword">class</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span></code>:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">mypoint</span><span class="special">&gt;</span> <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special">&lt;</span><span class="number">2</span><span class="special">&gt;</span>
<span class="special">{};</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
Like the free get function, the library also contains a dimension meta-function.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">dimension</span> <span class="special">:</span> <span class="identifier">traits</span><span class="special">::</span><span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">P</span><span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
Below is explained why the extra declaration is useful. Now we have agnosticism
in the number of dimensions. Our more generic distance function now accepts
points of three or more dimensions. The compile-time assertion will prevent
point a having two dimension and point b having three dimensions.
</p>
<a name="geometry.design.coordinate_type"></a><h4>
<a name="geometry.design.coordinate_type-heading"></a>
<a class="link" href="design.html#geometry.design.coordinate_type">Coordinate Type</a>
</h4>
<p>
We assumed double above. What if our points are in integer?
</p>
<p>
We can easily add a traits class, and we will do that. However, the distance
between two integer coordinates can still be a fractionized value. Besides
that, a design goal was to avoid square roots. We handle these cases below,
in another paragraph. For the moment we keep returning double, but we allow
integer coordinates for our point types. To define the coordinate type, we
add another traits class, <code class="computeroutput"><span class="identifier">coordinate_type</span></code>,
which should be specialized by the library user:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span><span class="special">{};</span>
<span class="comment">// specialization for our mypoint</span>
<span class="keyword">template</span> <span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">mypoint</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span>
</pre>
<p>
Like the access function, where we had a free get function, we add a proxy
here as well. A longer version is presented later on, the short function would
look like this:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span> <span class="special">:</span> <span class="identifier">traits</span><span class="special">::</span><span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">P</span><span class="special">&gt;</span> <span class="special">{};</span>
</pre>
<p>
We now can modify our distance algorithm again. Because it still returns double,
we only modify the <code class="computeroutput"><span class="identifier">pythagoras</span></code>
computation class. It should return the coordinate type of its input. But,
it has two input, possibly different, point types. They might also differ in
their coordinate types. Not that that is very likely, but we&#8217;re designing
a generic library and we should handle those strange cases. We have to choose
one of the coordinate types and of course we select the one with the highest
precision. This is not worked out here, it would be too long, and it is not
related to geometry. We just assume that there is a meta-function <code class="computeroutput"><span class="identifier">select_most_precise</span></code> selecting the best type.
</p>
<p>
So our computation class becomes:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">pythagoras</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">select_most_precise</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">P2</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">computation_type</span><span class="special">;</span>
<span class="keyword">static</span> <span class="identifier">computation_type</span> <span class="identifier">apply</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">computation_type</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">get</span><span class="special">&lt;</span><span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;(</span><span class="identifier">b</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">d</span> <span class="special">*</span> <span class="identifier">d</span> <span class="special">+</span> <span class="identifier">pythagoras</span> <span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">D</span><span class="special">-</span><span class="number">1</span><span class="special">&gt;</span> <span class="special">::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<a name="geometry.design.different_geometries"></a><h4>
<a name="geometry.design.different_geometries-heading"></a>
<a class="link" href="design.html#geometry.design.different_geometries">Different Geometries</a>
</h4>
<p>
We have designed a dimension agnostic system supporting any point type of any
coordinate type. There are still some tweaks but they will be worked out later.
Now we will see how we calculate the distance between a point and a polygon,
or between a point and a line-segment. These formulae are more complex, and
the influence on design is even larger. We don&#8217;t want to add a function with
another name:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">S</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance_point_segment</span><span class="special">(</span><span class="identifier">P</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">p</span><span class="special">,</span> <span class="identifier">S</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">s</span><span class="special">)</span>
</pre>
<p>
We want to be generic, the distance function has to be called from code not
knowing the type of geometry it handles, so it has to be named distance. We
also cannot create an overload because that would be ambiguous, having the
same template signature. There are two solutions:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
tag dispatching
</li>
<li class="listitem">
SFINAE
</li>
</ul></div>
<p>
We select tag dispatching because it fits into the traits system. The earlier
versions (previews) of Boost.Geometry used SFINAE but we found it had several
drawbacks for such a big design, so the switch to tag dispatching was made.
</p>
<p>
With tag dispatching the distance algorithm inspects the type of geometry of
the input parameters. The distance function will be changed into this:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">G1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g1</span><span class="special">,</span> <span class="identifier">G2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g2</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">dispatch</span><span class="special">::</span><span class="identifier">distance</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span>
<span class="special">&gt;::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">g1</span><span class="special">,</span> <span class="identifier">g2</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
It is referring to the tag meta-function and forwarding the call to the <span class="bold"><strong>apply</strong></span> method of a <span class="emphasis"><em>dispatch::distance</em></span>
structure. The <span class="bold"><strong>tag</strong></span> meta-function is another
traits class, and should be specialized for per point type, both shown here:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">traits</span>
<span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">tag</span> <span class="special">{};</span>
<span class="comment">// specialization</span>
<span class="keyword">template</span> <span class="special">&lt;&gt;</span>
<span class="keyword">struct</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">mypoint</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">point_tag</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span>
</pre>
<p>
Free meta-function, like coordinate_system and get:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">tag</span> <span class="special">:</span> <span class="identifier">traits</span><span class="special">::</span><span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G</span><span class="special">&gt;</span> <span class="special">{};</span>
</pre>
<p>
<span class="bold"><strong>Tags</strong></span> (<code class="computeroutput"><span class="identifier">point_tag</span></code>,
<code class="computeroutput"><span class="identifier">segment_tag</span></code>, etc) are empty
structures with the purpose to specialize a dispatch struct. The dispatch struct
for distance, and its specializations, are all defined in a separate namespace
and look like the following:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">dispatch</span> <span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">Tag1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag2</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">distance</span>
<span class="special">{};</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">distance</span> <span class="special">&lt;</span> <span class="identifier">point_tag</span><span class="special">,</span> <span class="identifier">point_tag</span><span class="special">,</span> <span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span> <span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">double</span> <span class="identifier">apply</span><span class="special">(</span><span class="identifier">P1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">P2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">b</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// here we call pythagoras</span>
<span class="comment">// exactly like we did before</span>
<span class="special">...</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">S</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">distance</span>
<span class="special">&lt;</span>
<span class="identifier">point_tag</span><span class="special">,</span> <span class="identifier">segment_tag</span><span class="special">,</span> <span class="identifier">P</span><span class="special">,</span> <span class="identifier">S</span>
<span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">double</span> <span class="identifier">apply</span><span class="special">(</span><span class="identifier">P</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">p</span><span class="special">,</span> <span class="identifier">S</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">s</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// here we refer to another function</span>
<span class="comment">// implementing point-segment</span>
<span class="comment">// calculations in 2 or 3</span>
<span class="comment">// dimensions...</span>
<span class="special">...</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// here we might have many more</span>
<span class="comment">// specializations,</span>
<span class="comment">// for point-polygon, box-circle, etc.</span>
<span class="special">}</span> <span class="comment">// namespace</span>
</pre>
<p>
So yes, it is possible; the distance algorithm is generic now in the sense
that it also supports different geometry types. One drawback: we have to define
two dispatch specializations for point - segment and for segment - point separately.
That will also be solved, in the paragraph reversibility below. The example
below shows where we are now: different point types, geometry types, dimensions.
</p>
<pre class="programlisting"><span class="identifier">point</span> <span class="identifier">a</span><span class="special">(</span><span class="number">1</span><span class="special">,</span><span class="number">1</span><span class="special">);</span>
<span class="identifier">point</span> <span class="identifier">b</span><span class="special">(</span><span class="number">2</span><span class="special">,</span><span class="number">2</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">segment</span> <span class="identifier">s1</span><span class="special">(</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">5</span><span class="special">,</span><span class="number">3</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">s1</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">rgb</span> <span class="identifier">red</span><span class="special">(</span><span class="number">255</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="number">0</span><span class="special">);</span>
<span class="identifier">rbc</span> <span class="identifier">orange</span><span class="special">(</span><span class="number">255</span><span class="special">,</span> <span class="number">128</span><span class="special">,</span> <span class="number">0</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"color distance: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">red</span><span class="special">,</span> <span class="identifier">orange</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<a name="geometry.design.kernel_revisited"></a><h4>
<a name="geometry.design.kernel_revisited-heading"></a>
<a class="link" href="design.html#geometry.design.kernel_revisited">Kernel Revisited</a>
</h4>
<p>
We described above that we had a traits class <code class="computeroutput"><span class="identifier">coordinate_type</span></code>,
defined in namespace traits, and defined a separate <code class="computeroutput"><span class="identifier">coordinate_type</span></code>
class as well. This was actually not really necessary before, because the only
difference was the namespace clause. But now that we have another geometry
type, a segment in this case, it is essential. We can call the <code class="computeroutput"><span class="identifier">coordinate_type</span></code> meta-function for any geometry
type, point, segment, polygon, etc, implemented again by tag dispatching:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">dispatch</span><span class="special">::</span><span class="identifier">coordinate_type</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span> <span class="identifier">G</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
Inside the dispatch namespace this meta-function is implemented twice: a generic
version and one specialization for points. The specialization for points calls
the traits class. The generic version calls the point specialization, as a
sort of recursive meta-function definition:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">dispatch</span>
<span class="special">{</span>
<span class="comment">// Version for any geometry:</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">GeometryTag</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">point_type</span>
<span class="special">&lt;</span>
<span class="identifier">GeometryTag</span><span class="special">,</span> <span class="identifier">G</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">point_type</span><span class="special">;</span>
<span class="comment">// Call specialization on point-tag</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">coordinate_type</span> <span class="special">&lt;</span> <span class="identifier">point_tag</span><span class="special">,</span> <span class="identifier">point_type</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Specialization for point-type:</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">point_tag</span><span class="special">,</span> <span class="identifier">P</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span>
<span class="identifier">traits</span><span class="special">::</span><span class="identifier">coordinate_type</span><span class="special">&lt;</span><span class="identifier">P</span><span class="special">&gt;::</span><span class="identifier">type</span>
<span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span>
</pre>
<p>
So it calls another meta-function point_type. This is not elaborated in here
but realize that it is available for all geometry types, and typedefs the point
type which makes up the geometry, calling it type.
</p>
<p>
The same applies for the meta-function dimension and for the upcoming meta-function
coordinate system.
</p>
<a name="geometry.design.coordinate_system"></a><h4>
<a name="geometry.design.coordinate_system-heading"></a>
<a class="link" href="design.html#geometry.design.coordinate_system">Coordinate System</a>
</h4>
<p>
Until here we assumed a Cartesian system. But we know that the Earth is not
flat. Calculating a distance between two GPS-points with the system above would
result in nonsense. So we again extend our design. We define for each point
type a coordinate system type using the traits system again. Then we make the
calculation dependant on that coordinate system.
</p>
<p>
Coordinate system is similar to coordinate type, a meta-function, calling a
dispatch function to have it for any geometry-type, forwarding to its point
specialization, and finally calling a traits class, defining a typedef type
with a coordinate system. We don&#8217;t show that all here again. We only show
the definition of a few coordinate systems:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">cartesian</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">DegreeOrRadian</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">geographic</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">DegreeOrRadian</span> <span class="identifier">units</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
So Cartesian is simple, for geographic we can also select if its coordinates
are stored in degrees or in radians.
</p>
<p>
The distance function will now change: it will select the computation method
for the corresponding coordinate system and then call the dispatch struct for
distance. We call the computation method specialized for coordinate systems
a strategy. So the new version of the distance function is:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">G1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g1</span><span class="special">,</span> <span class="identifier">G2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g2</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">strategy_distance</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">coordinate_system</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">coordinate_system</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">point_type</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">point_type</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="identifier">dimension</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">value</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">strategy</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">dispatch</span><span class="special">::</span><span class="identifier">distance</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span><span class="special">,</span> <span class="identifier">strategy</span>
<span class="special">&gt;::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">g1</span><span class="special">,</span> <span class="identifier">g2</span><span class="special">,</span> <span class="identifier">strategy</span><span class="special">());</span>
<span class="special">}</span>
</pre>
<p>
The strategy_distance mentioned here is a struct with specializations for different
coordinate systems.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">strategy_distance</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">strategy_distance</span><span class="special">&lt;</span><span class="identifier">cartesian</span><span class="special">,</span> <span class="identifier">cartesian</span><span class="special">,</span> <span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">pythagoras</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">D</span><span class="special">&gt;</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
So, here is our <code class="computeroutput"><span class="identifier">pythagoras</span></code>
again, now defined as a strategy. The distance dispatch function just calls
its apply method.
</p>
<p>
So this is an important step: for spherical or geographical coordinate systems,
another strategy (computation method) can be implemented. For spherical coordinate
systems have the haversine formula. So the dispatching traits struct is specialized
like this
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">P1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">P2</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span> <span class="special">=</span> <span class="number">2</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">strategy_distance</span><span class="special">&lt;</span><span class="identifier">spherical</span><span class="special">,</span> <span class="identifier">spherical</span><span class="special">,</span> <span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">,</span> <span class="identifier">D</span><span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">haversine</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span><span class="special">&gt;</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// struct haversine with apply function</span>
<span class="comment">// is omitted here</span>
</pre>
<p>
For geography, we have some alternatives for distance calculation. There is
the Andoyer method, fast and precise, and there is the Vincenty method, slower
and more precise, and there are some less precise approaches as well.
</p>
<p>
Per coordinate system, one strategy is defined as the default strategy. To
be able to use another strategy as well, we modify our design again and add
an overload for the distance algorithm, taking a strategy object as a third
parameter.
</p>
<p>
This new overload distance function also has the advantage that the strategy
can be constructed outside the distance function. Because it was constructed
inside above, it could not have construction parameters. But for Andoyer or
Vincenty, or the haversine formula, it certainly makes sense to have a constructor
taking the radius of the earth as a parameter.
</p>
<p>
So, the distance overloaded function is:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">S</span><span class="special">&gt;</span>
<span class="keyword">double</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">G1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g1</span><span class="special">,</span> <span class="identifier">G2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g2</span><span class="special">,</span> <span class="identifier">S</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">strategy</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">dispatch</span><span class="special">::</span><span class="identifier">distance</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">tag</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span><span class="special">,</span> <span class="identifier">S</span>
<span class="special">&gt;::</span><span class="identifier">apply</span><span class="special">(</span><span class="identifier">g1</span><span class="special">,</span> <span class="identifier">g2</span><span class="special">,</span> <span class="identifier">strategy</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
The strategy has to have a method apply taking two points as arguments (for
points). It is not required that it is a static method. A strategy might define
a constructor, where a configuration value is passed and stored as a member
variable. In those cases a static method would be inconvenient. It can be implemented
as a normal method (with the const qualifier).
</p>
<p>
We do not list all implementations here, Vincenty would cover half a page of
mathematics, but you will understand the idea. We can call distance like this:
</p>
<pre class="programlisting"><span class="identifier">distance</span><span class="special">(</span><span class="identifier">c1</span><span class="special">,</span> <span class="identifier">c2</span><span class="special">)</span>
</pre>
<p>
where <code class="computeroutput"><span class="identifier">c1</span></code> and <code class="computeroutput"><span class="identifier">c2</span></code> are Cartesian points, or like this:
</p>
<pre class="programlisting"><span class="identifier">distance</span><span class="special">(</span><span class="identifier">g1</span><span class="special">,</span> <span class="identifier">g2</span><span class="special">)</span>
</pre>
<p>
where <code class="computeroutput"><span class="identifier">g1</span></code> and <code class="computeroutput"><span class="identifier">g2</span></code> are Geographic points, calling the default
strategy for Geographic points (e.g. Andoyer), and like this:
</p>
<pre class="programlisting"><span class="identifier">distance</span><span class="special">(</span><span class="identifier">g1</span><span class="special">,</span> <span class="identifier">g2</span><span class="special">,</span> <span class="identifier">vincenty</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span><span class="special">&gt;(</span><span class="number">6275</span><span class="special">))</span>
</pre>
<p>
where a strategy is specified explicitly and constructed with a radius.
</p>
<a name="geometry.design.point_concept"></a><h4>
<a name="geometry.design.point_concept-heading"></a>
<a class="link" href="design.html#geometry.design.point_concept">Point Concept</a>
</h4>
<p>
The five traits classes mentioned in the previous sections form together the
Point Concept. Any point type for which specializations are implemented in
the traits namespace should be accepted a as valid type. So the Point Concept
consists of:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
a specialization for <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">tag</span></code>
</li>
<li class="listitem">
a specialization for <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">coordinate_system</span></code>
</li>
<li class="listitem">
a specialization for <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">coordinate_type</span></code>
</li>
<li class="listitem">
a specialization for <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">dimension</span></code>
</li>
<li class="listitem">
a specialization for <code class="computeroutput"><span class="identifier">traits</span><span class="special">::</span><span class="identifier">access</span></code>
</li>
</ul></div>
<p>
The last one is a class, containing the method get and the (optional) method
set, the first four are metafunctions, either defining type or declaring a
value (conform MPL conventions).
</p>
<p>
So we now have agnosticism for the number of dimensions, agnosticism for coordinate
systems; the design can handle any coordinate type, and it can handle different
geometry types. Furthermore we can specify our own strategies, the code will
not compile in case of two points with different dimensions (because of the
assertion), and it will not compile for two points with different coordinate
systems (because there is no specialization). A library can check if a point
type fulfills the requirements imposed by the concepts. This is handled in
the upcoming section Concept Checking.
</p>
<a name="geometry.design.return_type"></a><h4>
<a name="geometry.design.return_type-heading"></a>
<a class="link" href="design.html#geometry.design.return_type">Return Type</a>
</h4>
<p>
We promised that calling <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">sqrt</span></code> was
not always necessary. So we define a distance result <code class="computeroutput"><span class="keyword">struct</span></code>
that contains the squared value and is convertible to a double value. This,
however, only has to be done for <code class="computeroutput"><span class="identifier">pythagoras</span></code>.
The spherical distance functions do not take the square root so for them it
is not necessary to avoid the expensive square root call; they can just return
their distance.
</p>
<p>
So the distance result struct is dependant on strategy, therefore made a member
type of the strategy. The result struct looks like this:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">cartesian_distance</span>
<span class="special">{</span>
<span class="identifier">T</span> <span class="identifier">sq</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">cartesian_distance</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">sq</span> <span class="special">(</span><span class="identifier">v</span><span class="special">)</span> <span class="special">{}</span>
<span class="keyword">inline</span> <span class="keyword">operator</span> <span class="identifier">T</span><span class="special">()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">sq</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
It also has operators defined to compare itself to other results without taking
the square root.
</p>
<p>
Each strategy should define its return type, within the strategy class, for
example:
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">cartesian_distance</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">return_type</span><span class="special">;</span>
</pre>
<p>
or:
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">return_type</span><span class="special">;</span>
</pre>
<p>
for cartesian (pythagoras) and spherical, respectively.
</p>
<p>
Again our distance function will be modified, as expected, to reflect the new
return type. For the overload with a strategy it is not complex:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span> <span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Strategy</span> <span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">Strategy</span><span class="special">::</span><span class="identifier">return_type</span> <span class="identifier">distance</span><span class="special">(</span> <span class="identifier">G1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">G1</span> <span class="special">,</span> <span class="identifier">G2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">G2</span> <span class="special">,</span> <span class="identifier">S</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">strategy</span><span class="special">)</span>
</pre>
<p>
But for the one without strategy we have to select strategy, coordinate type,
etc. It would be spacious to do it in one line so we add a separate meta-function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span> <span class="special">=</span> <span class="identifier">G1</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">distance_result</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">point_type</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">P1</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">point_type</span><span class="special">&lt;</span><span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">P2</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">strategy_distance</span>
<span class="special">&lt;</span>
<span class="keyword">typename</span> <span class="identifier">cs_tag</span><span class="special">&lt;</span><span class="identifier">P1</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="keyword">typename</span> <span class="identifier">cs_tag</span><span class="special">&lt;</span><span class="identifier">P2</span><span class="special">&gt;::</span><span class="identifier">type</span><span class="special">,</span>
<span class="identifier">P1</span><span class="special">,</span> <span class="identifier">P2</span>
<span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">S</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">S</span><span class="special">::</span><span class="identifier">return_type</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
and modify our distance function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">G1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">G2</span><span class="special">&gt;</span>
<span class="keyword">inline</span> <span class="keyword">typename</span> <span class="identifier">distance_result</span><span class="special">&lt;</span><span class="identifier">G1</span><span class="special">,</span> <span class="identifier">G2</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">distance</span><span class="special">(</span><span class="identifier">G1</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g1</span><span class="special">,</span> <span class="identifier">G2</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">g2</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// ...</span>
<span class="special">}</span>
</pre>
<p>
Of course also the apply functions in the dispatch specializations will return
a result like this. They have a strategy as a template parameter everywhere,
making the less verbose version possible.
</p>
<a name="geometry.design.summary"></a><h4>
<a name="geometry.design.summary-heading"></a>
<a class="link" href="design.html#geometry.design.summary">Summary</a>
</h4>
<p>
In this design rationale, Boost.Geometry is step by step designed using tag
dispatching, concepts, traits, and metaprogramming. We used the well-known
distance function to show the design.
</p>
<p>
Boost.Geometry is designed like described here, with some more techniques as
automatically reversing template arguments, tag casting, and reusing implementation
classes or dispatch classes as policies in other dispatch classes.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2011 Barend Gehrels, Bruno Lalande, Mateusz Loskot<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="quickstart.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="compilation.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>