blob: d3d72e7cef831a7f12e2e222ff7233b91c141db4 [file] [log] [blame]
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Wrapper that works with mpfr_class defined in gmpfrxx.h
// See http://math.berkeley.edu/~wilken/code/gmpfrxx/
// Also requires the gmp and mpfr libraries.
//
#ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP
#define BOOST_MATH_E_FLOAT_BINDINGS_HPP
#include <boost/config.hpp>
#include <e_float/e_float.h>
#include <functions/functions.h>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/real_cast.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/bindings/detail/big_digamma.hpp>
#include <boost/math/bindings/detail/big_lanczos.hpp>
namespace boost{ namespace math{ namespace ef{
class e_float
{
public:
// Constructors:
e_float() {}
e_float(const ::e_float& c) : m_value(c){}
e_float(char c)
{
m_value = ::e_float(c);
}
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
e_float(wchar_t c)
{
m_value = ::e_float(c);
}
#endif
e_float(unsigned char c)
{
m_value = ::e_float(c);
}
e_float(signed char c)
{
m_value = ::e_float(c);
}
e_float(unsigned short c)
{
m_value = ::e_float(c);
}
e_float(short c)
{
m_value = ::e_float(c);
}
e_float(unsigned int c)
{
m_value = ::e_float(c);
}
e_float(int c)
{
m_value = ::e_float(c);
}
e_float(unsigned long c)
{
m_value = ::e_float((UINT64)c);
}
e_float(long c)
{
m_value = ::e_float((INT64)c);
}
#ifdef BOOST_HAS_LONG_LONG
e_float(boost::ulong_long_type c)
{
m_value = ::e_float(c);
}
e_float(boost::long_long_type c)
{
m_value = ::e_float(c);
}
#endif
e_float(float c)
{
assign_large_real(c);
}
e_float(double c)
{
assign_large_real(c);
}
e_float(long double c)
{
assign_large_real(c);
}
// Assignment:
e_float& operator=(char c) { m_value = ::e_float(c); return *this; }
e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; }
e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; }
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; }
#endif
e_float& operator=(short c) { m_value = ::e_float(c); return *this; }
e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; }
e_float& operator=(int c) { m_value = ::e_float(c); return *this; }
e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; }
e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; }
e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; }
#ifdef BOOST_HAS_LONG_LONG
e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; }
e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; }
#endif
e_float& operator=(float c) { assign_large_real(c); return *this; }
e_float& operator=(double c) { assign_large_real(c); return *this; }
e_float& operator=(long double c) { assign_large_real(c); return *this; }
// Access:
::e_float& value(){ return m_value; }
::e_float const& value()const{ return m_value; }
// Member arithmetic:
e_float& operator+=(const e_float& other)
{ m_value += other.value(); return *this; }
e_float& operator-=(const e_float& other)
{ m_value -= other.value(); return *this; }
e_float& operator*=(const e_float& other)
{ m_value *= other.value(); return *this; }
e_float& operator/=(const e_float& other)
{ m_value /= other.value(); return *this; }
e_float operator-()const
{ return -m_value; }
e_float const& operator+()const
{ return *this; }
private:
::e_float m_value;
template <class V>
void assign_large_real(const V& a)
{
using std::frexp;
using std::ldexp;
using std::floor;
if (a == 0) {
m_value = ::ef::zero();
return;
}
if (a == 1) {
m_value = ::ef::one();
return;
}
if ((boost::math::isinf)(a))
{
m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf();
return;
}
if((boost::math::isnan)(a))
{
m_value = m_value.my_value_nan();
return;
}
int e;
long double f, term;
::e_float t;
m_value = ::ef::zero();
f = frexp(a, &e);
::e_float shift = ::ef::pow2(30);
while(f)
{
// extract 30 bits from f:
f = ldexp(f, 30);
term = floor(f);
e -= 30;
m_value *= shift;
m_value += ::e_float(static_cast<UINT64>(term));
f -= term;
}
m_value *= ::ef::pow2(e);
}
};
// Non-member arithmetic:
inline e_float operator+(const e_float& a, const e_float& b)
{
e_float result(a);
result += b;
return result;
}
inline e_float operator-(const e_float& a, const e_float& b)
{
e_float result(a);
result -= b;
return result;
}
inline e_float operator*(const e_float& a, const e_float& b)
{
e_float result(a);
result *= b;
return result;
}
inline e_float operator/(const e_float& a, const e_float& b)
{
e_float result(a);
result /= b;
return result;
}
// Comparison:
inline bool operator == (const e_float& a, const e_float& b)
{ return a.value() == b.value() ? true : false; }
inline bool operator != (const e_float& a, const e_float& b)
{ return a.value() != b.value() ? true : false;}
inline bool operator < (const e_float& a, const e_float& b)
{ return a.value() < b.value() ? true : false; }
inline bool operator <= (const e_float& a, const e_float& b)
{ return a.value() <= b.value() ? true : false; }
inline bool operator > (const e_float& a, const e_float& b)
{ return a.value() > b.value() ? true : false; }
inline bool operator >= (const e_float& a, const e_float& b)
{ return a.value() >= b.value() ? true : false; }
std::istream& operator >> (std::istream& is, e_float& f)
{
return is >> f.value();
}
std::ostream& operator << (std::ostream& os, const e_float& f)
{
return os << f.value();
}
inline e_float fabs(const e_float& v)
{
return ::ef::fabs(v.value());
}
inline e_float abs(const e_float& v)
{
return ::ef::fabs(v.value());
}
inline e_float floor(const e_float& v)
{
return ::ef::floor(v.value());
}
inline e_float ceil(const e_float& v)
{
return ::ef::ceil(v.value());
}
inline e_float pow(const e_float& v, const e_float& w)
{
return ::ef::pow(v.value(), w.value());
}
inline e_float pow(const e_float& v, int i)
{
return ::ef::pow(v.value(), ::e_float(i));
}
inline e_float exp(const e_float& v)
{
return ::ef::exp(v.value());
}
inline e_float log(const e_float& v)
{
return ::ef::log(v.value());
}
inline e_float sqrt(const e_float& v)
{
return ::ef::sqrt(v.value());
}
inline e_float sin(const e_float& v)
{
return ::ef::sin(v.value());
}
inline e_float cos(const e_float& v)
{
return ::ef::cos(v.value());
}
inline e_float tan(const e_float& v)
{
return ::ef::tan(v.value());
}
inline e_float acos(const e_float& v)
{
return ::ef::acos(v.value());
}
inline e_float asin(const e_float& v)
{
return ::ef::asin(v.value());
}
inline e_float atan(const e_float& v)
{
return ::ef::atan(v.value());
}
inline e_float ldexp(const e_float& v, int e)
{
return v.value() * ::ef::pow2(e);
}
inline e_float frexp(const e_float& v, int* expon)
{
double d;
INT64 i;
v.value().extract_parts(d, i);
*expon = static_cast<int>(i);
return v.value() * ::ef::pow2(-i);
}
inline e_float sinh (const e_float& x)
{
return ::ef::sinh(x.value());
}
inline e_float cosh (const e_float& x)
{
return ::ef::cosh(x.value());
}
inline e_float tanh (const e_float& x)
{
return ::ef::tanh(x.value());
}
inline e_float asinh (const e_float& x)
{
return ::ef::asinh(x.value());
}
inline e_float acosh (const e_float& x)
{
return ::ef::acosh(x.value());
}
inline e_float atanh (const e_float& x)
{
return ::ef::atanh(x.value());
}
e_float fmod(const e_float& v1, const e_float& v2)
{
e_float n;
if(v1 < 0)
n = ceil(v1 / v2);
else
n = floor(v1 / v2);
return v1 - n * v2;
}
} namespace detail{
template <>
inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&)
{
if(x.value().isnan())
return FP_NAN;
if(x.value().isinf())
return FP_INFINITE;
if(x == 0)
return FP_ZERO;
return FP_NORMAL;
}
} namespace ef{
template <class Policy>
inline int itrunc(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::trunc(v, pol);
if(fabs(r) > (std::numeric_limits<int>::max)())
return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol));
return static_cast<int>(r.value().extract_int64());
}
template <class Policy>
inline long ltrunc(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::trunc(v, pol);
if(fabs(r) > (std::numeric_limits<long>::max)())
return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol));
return static_cast<long>(r.value().extract_int64());
}
#ifdef BOOST_HAS_LONG_LONG
template <class Policy>
inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::trunc(v, pol);
if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
return static_cast<boost::long_long_type>(r.value().extract_int64());
}
#endif
template <class Policy>
inline int iround(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::round(v, pol);
if(fabs(r) > (std::numeric_limits<int>::max)())
return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64());
return static_cast<int>(r.value().extract_int64());
}
template <class Policy>
inline long lround(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::round(v, pol);
if(fabs(r) > (std::numeric_limits<long>::max)())
return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64());
return static_cast<long int>(r.value().extract_int64());
}
#ifdef BOOST_HAS_LONG_LONG
template <class Policy>
inline boost::long_long_type llround(const e_float& v, const Policy& pol)
{
BOOST_MATH_STD_USING
e_float r = boost::math::round(v, pol);
if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
return static_cast<boost::long_long_type>(r.value().extract_int64());
}
#endif
}}}
namespace std{
template<>
class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float>
{
public:
static const ::boost::math::ef::e_float (min) (void)
{
return (numeric_limits< ::e_float>::min)();
}
static const ::boost::math::ef::e_float (max) (void)
{
return (numeric_limits< ::e_float>::max)();
}
static const ::boost::math::ef::e_float epsilon (void)
{
return (numeric_limits< ::e_float>::epsilon)();
}
static const ::boost::math::ef::e_float round_error(void)
{
return (numeric_limits< ::e_float>::round_error)();
}
static const ::boost::math::ef::e_float infinity (void)
{
return (numeric_limits< ::e_float>::infinity)();
}
static const ::boost::math::ef::e_float quiet_NaN (void)
{
return (numeric_limits< ::e_float>::quiet_NaN)();
}
//
// e_float's supplied digits member is wrong
// - it should be same the same as digits 10
// - given that radix is 10.
//
static const int digits = digits10;
};
} // namespace std
namespace boost{ namespace math{
namespace policies{
template <class Policy>
struct precision< ::boost::math::ef::e_float, Policy>
{
typedef typename Policy::precision_type precision_type;
typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2;
typedef typename mpl::if_c<
((digits_2::value <= precision_type::value)
|| (Policy::precision_type::value <= 0)),
// Default case, full precision for RealType:
digits_2,
// User customised precision:
precision_type
>::type type;
};
}
namespace tools{
template <>
inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float))
{
return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L;
}
template <>
inline ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>()
{
return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>());
}
template <>
inline ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>()
{
return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>());
}
}
namespace lanczos{
template<class Policy>
struct lanczos<boost::math::ef::e_float, Policy>
{
typedef typename mpl::if_c<
std::numeric_limits< ::e_float>::digits10 < 22,
lanczos13UDT,
typename mpl::if_c<
std::numeric_limits< ::e_float>::digits10 < 36,
lanczos22UDT,
typename mpl::if_c<
std::numeric_limits< ::e_float>::digits10 < 50,
lanczos31UDT,
typename mpl::if_c<
std::numeric_limits< ::e_float>::digits10 < 110,
lanczos61UDT,
undefined_lanczos
>::type
>::type
>::type
>::type type;
};
} // namespace lanczos
template <class Policy>
inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
{
//
// This is 12 * sqrt(6) * zeta(3) / pi^3:
// See http://mathworld.wolfram.com/ExtremeValueDistribution.html
//
return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366");
}
template <class Policy>
inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
{
// using namespace boost::math::constants;
return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391");
// Computed using NTL at 150 bit, about 50 decimal digits.
// return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
}
template <class Policy>
inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
{
// using namespace boost::math::constants;
return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995");
// Computed using NTL at 150 bit, about 50 decimal digits.
// return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
// (four_minus_pi<RealType>() * four_minus_pi<RealType>());
}
template <class Policy>
inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
{
//using namespace boost::math::constants;
// Computed using NTL at 150 bit, about 50 decimal digits.
return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995");
// return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
// (four_minus_pi<RealType>() * four_minus_pi<RealType>());
} // kurtosis
namespace detail{
//
// Version of Digamma accurate to ~100 decimal digits.
//
template <class Policy>
boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const mpl::int_<0>* , const Policy& pol)
{
//
// This handles reflection of negative arguments, and all our
// eboost::math::ef::e_floator handling, then forwards to the T-specific approximation.
//
BOOST_MATH_STD_USING // ADL of std functions.
boost::math::ef::e_float result = 0;
//
// Check for negative arguments and use reflection:
//
if(x < 0)
{
// Reflect:
x = 1 - x;
// Argument reduction for tan:
boost::math::ef::e_float remainder = x - floor(x);
// Shift to negative if > 0.5:
if(remainder > 0.5)
{
remainder -= 1;
}
//
// check for evaluation at a negative pole:
//
if(remainder == 0)
{
return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
}
result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder);
}
result += big_digamma(x);
return result;
}
boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x)
{
static const boost::math::ef::e_float P1[] = {
boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"),
boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"),
boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"),
boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"),
boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"),
boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"),
boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"),
boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"),
boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"),
boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"),
boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"),
boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"),
boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"),
boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"),
boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"),
};
static const boost::math::ef::e_float Q1[] = {
boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"),
boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"),
boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"),
boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"),
boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"),
boost::lexical_cast<boost::math::ef::e_float>("1.0"),
};
static const boost::math::ef::e_float P2[] = {
boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"),
boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"),
boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"),
boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"),
boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"),
boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"),
boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"),
};
static const boost::math::ef::e_float Q2[] = {
boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"),
boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"),
boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"),
boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"),
boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"),
boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"),
boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"),
boost::lexical_cast<boost::math::ef::e_float>("1.0"),
};
boost::math::ef::e_float value, factor, r;
BOOST_MATH_STD_USING
using namespace boost::math::tools;
if (x < 0)
{
x = -x; // even function
}
if (x == 0)
{
return static_cast<boost::math::ef::e_float>(1);
}
if (x <= 15) // x in (0, 15]
{
boost::math::ef::e_float y = x * x;
value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
}
else // x in (15, \infty)
{
boost::math::ef::e_float y = 1 / x - 1 / 15;
r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
factor = exp(x) / sqrt(x);
value = factor * r;
}
return value;
}
boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x)
{
static const boost::math::ef::e_float P1[] = {
lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"),
lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"),
lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"),
lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"),
lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"),
lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"),
lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"),
lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"),
lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"),
lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"),
lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"),
lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"),
lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"),
lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"),
lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"),
};
static const boost::math::ef::e_float Q1[] = {
lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"),
lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"),
lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"),
lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"),
lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"),
lexical_cast<boost::math::ef::e_float>("1.0"),
};
static const boost::math::ef::e_float P2[] = {
lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"),
lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"),
lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"),
lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"),
lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"),
lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"),
lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"),
lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"),
};
static const boost::math::ef::e_float Q2[] = {
lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"),
lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"),
lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"),
lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"),
lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"),
lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"),
lexical_cast<boost::math::ef::e_float>("1.0"),
};
boost::math::ef::e_float value, factor, r, w;
BOOST_MATH_STD_USING
using namespace boost::math::tools;
w = abs(x);
if (x == 0)
{
return static_cast<boost::math::ef::e_float>(0);
}
if (w <= 15) // w in (0, 15]
{
boost::math::ef::e_float y = x * x;
r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
factor = w;
value = factor * r;
}
else // w in (15, \infty)
{
boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15;
r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
factor = exp(w) / sqrt(w);
value = factor * r;
}
if (x < 0)
{
value *= -value; // odd function
}
return value;
}
} // namespace detail
}}
#endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP